Digital division algorithms for efficient execution on integrated circuits

dc.citation.epage53
dc.citation.issue1
dc.citation.journalTitleДосягнення у кібер-фізичних системах
dc.citation.spage46
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationOpole University of Technology
dc.contributor.authorObshta, Anatoliy
dc.contributor.authorKhoma, Volodymyr
dc.contributor.authorProkopchuk, Andrii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T10:08:03Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractIn this paper, we analyse division algorithms for use on chips and propose the implementation of an optimal divider for these chips. By “optimal”, we refer to an algorithm that meets the following criteria: space efficiency – which involves minimizing resource utilization on the IC’s die area; speed efficiency – the algorithm's processing time (measured in n clock cycles); power efficiency – power consumption of the divider; implementation time – time for implementation of the algorithm using HDL. The chosen algorithm should strike a balance between space efficiency and processing speed, ensuring the efficient use of hardware resources while delivering swift computational results. The ultimate goal is to create a division module that aligns seamlessly with the integrated circuit's architecture, catering to computational efficiency and resource constraints.
dc.format.extent46-53
dc.format.pages8
dc.identifier.citationObshta A. Digital division algorithms for efficient execution on integrated circuits / Obshta Anatoliy, Khoma Volodymyr, Prokopchuk Andrii // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 46–53.
dc.identifier.citationenObshta A. Digital division algorithms for efficient execution on integrated circuits / Obshta Anatoliy, Khoma Volodymyr, Prokopchuk Andrii // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 1. — P. 46–53.
dc.identifier.doidoi.org/10.23939/acps2024.01.046
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64191
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofДосягнення у кібер-фізичних системах, 1 (9), 2024
dc.relation.ispartofAdvances in Cyber-Physical Systems, 1 (9), 2024
dc.relation.references[1] Matthews E., Lu A., Fang Z., Shannon L. (2019). Rethinking integer divider design for FPGA-based soft-processors. IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines, pp. 289–297. DOI: https://doi.org/10.1109/FCCM.2019.00046
dc.relation.references[2] Sanju Vikasini M. K., Kailath B. J. (2021). 16-bit Modified vedic paravartya divider with quotient in fractions. IEEE Region 10 Symposium, pp. 1–5. DOI: https://doi.org/10.1109/TENSYMP52854.2021.9551013
dc.relation.references[3] Han G., Zhang W., Niu L., Zhang C., Wang Z. (2022). Hardware implementation of approximate fixed-point divider for machine learning optimization algorithm. IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, pp. 22–25. DOI: https://doi.org/10.1109/PrimeAsia56064.2022.10104001
dc.relation.references[4] Tynymbayev S., Aitkhozhayeva E., Berdibayev R., Gnatyuk S., Okhrimenko T., Namazbayev T. (2019). Development of modular reduction based on the divider by blocking negative remainders for critical cryptographic applications. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering, pp. 809–812. DOI: https://doi.org/10.1109/UKRCON.2019.8879846
dc.relation.references[5] Purohit A. A., Ahmed M. R., Reddy R. V. S. (2020). Design of area optimized arithmetic and logical unit for microcontroller. IEEE VLSI DEVICE CIRCUIT AND SYSTEM, pp. 335–339. DOI: https://doi.org/10.1109/VLSIDCS47293.2020.9179942
dc.relation.references[6] Patankar U. S., Flores M. E., Koel A. (2020). Division algorithms – from past to present chance to improve area time and complexity for digital applications. IEEE Latin America Electron Devices Conference, pp. 1–4. DOI: https://doi.org/10.1109/LAEDC49063.2020.9073050
dc.relation.references[7] Patankar U. S., Flores M. E., Koel A. (2021). Study of estimation based functional iteration approximation dividers. IEEE International Conference on Consumer Electronics, pp. 1–4. DOI: https://doi.org/10.1109/ICCE50685.2021.9427657
dc.relation.references[8] Patankar U. S., Flores M. E., Koel A. (2021). Review of basic classes of dividers based on division algorithm. IEEE Access, pp. 23035–23069. DOI: https://doi.org/10.1109/ACCESS.2021.3055735
dc.relation.references[9] Liu Z., Song X., Wang Z., Wang Y., Zhou J. (2023). Constructing high radix quotient digit selection tables for SRT division and square root. IEEE Transactions on Computers, pp. 2111–2119. DOI: https://doi.org/10.1109/TC.2023.3235978
dc.relation.references[10] Chouhan M., Raghuvanshi A.S., Muchahary D. (2022). FPGA implementation of high performance and energy efficient Radix-4 based FFT. Asian Conference on Innovation in Technology, pp. 1–5. DOI: https://doi.org/10.1109/ASIANCON55314.2022.9908613
dc.relation.references[11] Lang T., Nannarelli A. (2007). A radix-10 digit-recurrence division unit: algorithm and architecture. IEEE Transactions on Computers, pp. 727–739. DOI: https://doi.org/10.1109/TC.2007.1038
dc.relation.references[12] Vazquez A., Antelo E., Montuschi P. (2007). A radix-10 SRT divider based on alternative BCD codings. International Conference on Computer Design, pp. 280–287. DOI: https://doi.org/10.1109/ICCD.2007.4601914
dc.relation.references[13] Mehta B., Talukdar J., Gajjar S. (2017). High speed SRT divider for intelligent embedded system. International Conference on Soft Computing and Its Engineering Applications, pp. 1–5. DOI: https://doi.org/10.1109/ICSOFTCOMP.2017.8280077
dc.relation.references[14] Jun K., Swartzlander E. E. (2012). Modified non-restoring division algorithm with improved delay profile and error correction. Circuits, Systems and Computers, pp. 1460–1464. DOI: https://doi.org/10.1109/ACSSC.2012.6489269
dc.relation.references[15] Dixit S., Nadeem M. (2017). FPGA accomplishment of a 16-bit divider. Imperial Journal of Interdisciplinary Research, pp. 140–143. Available at: https://www.researchgate.net/publication/360588032_FPGA_Accomplishment_of_a_16-Bit_Divider (Accessed: 07 November 2023).
dc.relation.references[16] Narendra K., Ahmed S., Kumar S., Asha G. H. (2015). FPGA implementation of fixed point integer divider using iterative array structure. International Journal of Engineering and Technical Research, pp. 170–179. Available at: https://www.erpublication.org/published_paper/JETR031914.pdf (Accessed: 07 November 2023).
dc.relation.references[17] Patankar U. S., Flores M. E., Koel A. (2023). A. Novel data dependent divider circuit block implementation for complex division and area critical applications. Sci Rep., 13, pp. 1–27. DOI: https://doi.org/10.1038/s41598-023-28343-3
dc.relation.references[18] Takagi N., Kadowaki S., Takagi K. (2005). A hardware algorithm for integer division. IEEE Symposium on Computer Arithmetic, pp. 140–146. DOI: https://doi.org/10.1109/ARITH.2005.6
dc.relation.references[19] Han K., Tenca A., Tran D. (2009). High-speed floating-point divider with reduced area. The International Society for Optical Engineering, pp. 1–8. Available at: https://www.researchgate.net/publication/253273653_Highspeed_floating-point_divider_with_reduced_area (Accessed: 07 November 2023).
dc.relation.references[20] Korol I., Korol I. (2019). Logical algorithms of the accelerated multiplication with minimum quantity of nonzero digits of the converted multipliers. Advances in Cyber-Physical Systems, pp. 25–31. DOI: https://doi.org/10.23939/acps2019.01.025
dc.relation.references[21] Ugurdag H. F., De Dinechin F., Gener Y. S., Gören S., Didier L. S. (2017). Hardware division by small integer constants. IEEE Transactions onComputers, pp. 2097–2110. DOI: https://doi.org/10.1109/TC.2017.2707488
dc.relation.references[22] Mannatungal K. S., Perera M. D. R. (2016). Performance evaluation of division algorithms in FPGA. Proceedings of the International Research Conference “Medical, Allied Health, Basic and Applied Sciences”, pp. 84–88. Available at: http://ir.kdu.ac.lk/bitstream/handle/345/1170/ FAHS017.pdf?isAllowed=y&sequence=1 (Accessed: 07 November 2023).
dc.relation.referencesen[1] Matthews E., Lu A., Fang Z., Shannon L. (2019). Rethinking integer divider design for FPGA-based soft-processors. IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines, pp. 289–297. DOI: https://doi.org/10.1109/FCCM.2019.00046
dc.relation.referencesen[2] Sanju Vikasini M. K., Kailath B. J. (2021). 16-bit Modified vedic paravartya divider with quotient in fractions. IEEE Region 10 Symposium, pp. 1–5. DOI: https://doi.org/10.1109/TENSYMP52854.2021.9551013
dc.relation.referencesen[3] Han G., Zhang W., Niu L., Zhang C., Wang Z. (2022). Hardware implementation of approximate fixed-point divider for machine learning optimization algorithm. IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, pp. 22–25. DOI: https://doi.org/10.1109/PrimeAsia56064.2022.10104001
dc.relation.referencesen[4] Tynymbayev S., Aitkhozhayeva E., Berdibayev R., Gnatyuk S., Okhrimenko T., Namazbayev T. (2019). Development of modular reduction based on the divider by blocking negative remainders for critical cryptographic applications. IEEE 2nd Ukraine Conference on Electrical and Computer Engineering, pp. 809–812. DOI: https://doi.org/10.1109/UKRCON.2019.8879846
dc.relation.referencesen[5] Purohit A. A., Ahmed M. R., Reddy R. V. S. (2020). Design of area optimized arithmetic and logical unit for microcontroller. IEEE VLSI DEVICE CIRCUIT AND SYSTEM, pp. 335–339. DOI: https://doi.org/10.1109/VLSIDCS47293.2020.9179942
dc.relation.referencesen[6] Patankar U. S., Flores M. E., Koel A. (2020). Division algorithms – from past to present chance to improve area time and complexity for digital applications. IEEE Latin America Electron Devices Conference, pp. 1–4. DOI: https://doi.org/10.1109/LAEDC49063.2020.9073050
dc.relation.referencesen[7] Patankar U. S., Flores M. E., Koel A. (2021). Study of estimation based functional iteration approximation dividers. IEEE International Conference on Consumer Electronics, pp. 1–4. DOI: https://doi.org/10.1109/ICCE50685.2021.9427657
dc.relation.referencesen[8] Patankar U. S., Flores M. E., Koel A. (2021). Review of basic classes of dividers based on division algorithm. IEEE Access, pp. 23035–23069. DOI: https://doi.org/10.1109/ACCESS.2021.3055735
dc.relation.referencesen[9] Liu Z., Song X., Wang Z., Wang Y., Zhou J. (2023). Constructing high radix quotient digit selection tables for SRT division and square root. IEEE Transactions on Computers, pp. 2111–2119. DOI: https://doi.org/10.1109/TC.2023.3235978
dc.relation.referencesen[10] Chouhan M., Raghuvanshi A.S., Muchahary D. (2022). FPGA implementation of high performance and energy efficient Radix-4 based FFT. Asian Conference on Innovation in Technology, pp. 1–5. DOI: https://doi.org/10.1109/ASIANCON55314.2022.9908613
dc.relation.referencesen[11] Lang T., Nannarelli A. (2007). A radix-10 digit-recurrence division unit: algorithm and architecture. IEEE Transactions on Computers, pp. 727–739. DOI: https://doi.org/10.1109/TC.2007.1038
dc.relation.referencesen[12] Vazquez A., Antelo E., Montuschi P. (2007). A radix-10 SRT divider based on alternative BCD codings. International Conference on Computer Design, pp. 280–287. DOI: https://doi.org/10.1109/ICCD.2007.4601914
dc.relation.referencesen[13] Mehta B., Talukdar J., Gajjar S. (2017). High speed SRT divider for intelligent embedded system. International Conference on Soft Computing and Its Engineering Applications, pp. 1–5. DOI: https://doi.org/10.1109/ICSOFTCOMP.2017.8280077
dc.relation.referencesen[14] Jun K., Swartzlander E. E. (2012). Modified non-restoring division algorithm with improved delay profile and error correction. Circuits, Systems and Computers, pp. 1460–1464. DOI: https://doi.org/10.1109/ACSSC.2012.6489269
dc.relation.referencesen[15] Dixit S., Nadeem M. (2017). FPGA accomplishment of a 16-bit divider. Imperial Journal of Interdisciplinary Research, pp. 140–143. Available at: https://www.researchgate.net/publication/360588032_FPGA_Accomplishment_of_a_16-Bit_Divider (Accessed: 07 November 2023).
dc.relation.referencesen[16] Narendra K., Ahmed S., Kumar S., Asha G. H. (2015). FPGA implementation of fixed point integer divider using iterative array structure. International Journal of Engineering and Technical Research, pp. 170–179. Available at: https://www.erpublication.org/published_paper/JETR031914.pdf (Accessed: 07 November 2023).
dc.relation.referencesen[17] Patankar U. S., Flores M. E., Koel A. (2023). A. Novel data dependent divider circuit block implementation for complex division and area critical applications. Sci Rep., 13, pp. 1–27. DOI: https://doi.org/10.1038/s41598-023-28343-3
dc.relation.referencesen[18] Takagi N., Kadowaki S., Takagi K. (2005). A hardware algorithm for integer division. IEEE Symposium on Computer Arithmetic, pp. 140–146. DOI: https://doi.org/10.1109/ARITH.2005.6
dc.relation.referencesen[19] Han K., Tenca A., Tran D. (2009). High-speed floating-point divider with reduced area. The International Society for Optical Engineering, pp. 1–8. Available at: https://www.researchgate.net/publication/253273653_Highspeed_floating-point_divider_with_reduced_area (Accessed: 07 November 2023).
dc.relation.referencesen[20] Korol I., Korol I. (2019). Logical algorithms of the accelerated multiplication with minimum quantity of nonzero digits of the converted multipliers. Advances in Cyber-Physical Systems, pp. 25–31. DOI: https://doi.org/10.23939/acps2019.01.025
dc.relation.referencesen[21] Ugurdag H. F., De Dinechin F., Gener Y. S., Gören S., Didier L. S. (2017). Hardware division by small integer constants. IEEE Transactions onComputers, pp. 2097–2110. DOI: https://doi.org/10.1109/TC.2017.2707488
dc.relation.referencesen[22] Mannatungal K. S., Perera M. D. R. (2016). Performance evaluation of division algorithms in FPGA. Proceedings of the International Research Conference "Medical, Allied Health, Basic and Applied Sciences", pp. 84–88. Available at: http://ir.kdu.ac.lk/bitstream/handle/345/1170/ FAHS017.pdf?isAllowed=y&sequence=1 (Accessed: 07 November 2023).
dc.relation.urihttps://doi.org/10.1109/FCCM.2019.00046
dc.relation.urihttps://doi.org/10.1109/TENSYMP52854.2021.9551013
dc.relation.urihttps://doi.org/10.1109/PrimeAsia56064.2022.10104001
dc.relation.urihttps://doi.org/10.1109/UKRCON.2019.8879846
dc.relation.urihttps://doi.org/10.1109/VLSIDCS47293.2020.9179942
dc.relation.urihttps://doi.org/10.1109/LAEDC49063.2020.9073050
dc.relation.urihttps://doi.org/10.1109/ICCE50685.2021.9427657
dc.relation.urihttps://doi.org/10.1109/ACCESS.2021.3055735
dc.relation.urihttps://doi.org/10.1109/TC.2023.3235978
dc.relation.urihttps://doi.org/10.1109/ASIANCON55314.2022.9908613
dc.relation.urihttps://doi.org/10.1109/TC.2007.1038
dc.relation.urihttps://doi.org/10.1109/ICCD.2007.4601914
dc.relation.urihttps://doi.org/10.1109/ICSOFTCOMP.2017.8280077
dc.relation.urihttps://doi.org/10.1109/ACSSC.2012.6489269
dc.relation.urihttps://www.researchgate.net/publication/360588032_FPGA_Accomplishment_of_a_16-Bit_Divider
dc.relation.urihttps://www.erpublication.org/published_paper/JETR031914.pdf
dc.relation.urihttps://doi.org/10.1038/s41598-023-28343-3
dc.relation.urihttps://doi.org/10.1109/ARITH.2005.6
dc.relation.urihttps://www.researchgate.net/publication/253273653_Highspeed_floating-point_divider_with_reduced_area
dc.relation.urihttps://doi.org/10.23939/acps2019.01.025
dc.relation.urihttps://doi.org/10.1109/TC.2017.2707488
dc.relation.urihttp://ir.kdu.ac.lk/bitstream/handle/345/1170/
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Obshta A., Khoma V., Prokopchuk A., 2024
dc.subjectFPGA
dc.subjectASIC
dc.subjectDigital divider
dc.subjectDigit recurrence
dc.subjectFunctional iteration
dc.titleDigital division algorithms for efficient execution on integrated circuits
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v9n1_Obshta_A-Digital_division_algorithms_46-53.pdf
Size:
333.84 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v9n1_Obshta_A-Digital_division_algorithms_46-53__COVER.png
Size:
445.27 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: