New challenges for exploitation of continuously operating reference GNSS stations during hostilities. Case study of Ukraine

dc.citation.epage37
dc.citation.issue99
dc.citation.journalTitleГеодезія, картографія і аерофотознімання
dc.citation.spage28
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБрусак, Іван
dc.contributor.authorБабченко, Володимир
dc.contributor.authorСавчук, Наталія
dc.contributor.authorМарчук, Владислав
dc.contributor.authorШкварок, Юрій
dc.contributor.authorТуряниця, Михайло
dc.contributor.authorBrusak, Ivan
dc.contributor.authorBabchenko, Volodymyr
dc.contributor.authorSavchuk, Nataliia
dc.contributor.authorMarchuk, Vladyslav
dc.contributor.authorShkvarok, Yurii
dc.contributor.authorTurianytsia, Mykhailo
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-07T08:33:06Z
dc.date.created2024-02-24
dc.date.issued2024-02-24
dc.description.abstractУ дослідженні наведено сучасний стан активних перманентних ГНСС-станцій та особливості їх роботи під час бойових дій на території України. Стабільна робота ГНСС-мереж на сьогодні є важливою не лише для робіт у сільському господарстві, геодезичних та землевпорядних роботах, а й для уточнення навігації чи топографії для військових цілей. Метою цієї роботи є аналіз впливу бойових дій на ГНСС-мережу України, враховуючи фактори тимчасової окупації окремих територій, перебої електроживлення через ракетні удари по енергетичній інфраструктурі та подавлення ГНСС-сигналу радіоелектронними методами в прифронтових регіонах. Інше завданням цього дослідження – висвітлити приклади некоректної роботи в RTK чи VRS режимі, враховуючи можливі помилки від радіоелектронного подавлення чи GPS-спуфінгу та надати практичні рекомендації для спостерігачів. У результаті роботи проведено аналіз змін кількості належно працюючих ГНСС-станцій за період з 2021 року до 2023 року на прикладі двох мереж GeoTerrace та System.NET, які разом досить повно охоплюють всі регіони України, окрім тимчасово окупованих росією територій. Виконано опрацювання добових 30-секундних RINEX-файлів перманентних ГНСС-станцій у програмному пакеті Bernese GNSS v.5.2 за три роки. Зафіксовано, що після початку повномасштабного вторгнення у лютому 2022 року та до весни цього ж року відбулося різке скорочення кількості належно працюючих активних ГНСС-станцій на близько 10 % від загальної кількості. Наукова новизна та практичне значення. У статті надано практичні рекомендації для користувачів – геодезистів та землевпорядників, які виконують ГНСС-виміри у RTK чи VRS режимах від перманентних станцій з метою оцінки спостережень на вплив радіоелектронного подавлення чи GPS-спуфінгу. Виконана оцінка мережі та щоденно обчислені координати ГНСС-станцій за період з 2021 року до 2023 року можуть бути використані для геодинамічних досліджень регіону у майбутньому.
dc.description.abstractThe study presents the current state of GNSS Continuously Operating Reference Stations (CORS) networks and their operational characteristics during the ongoing hostilities in Ukraine. Stable GNSS CORS network operation is crucial not only for agricultural, geodetic, and land management tasks but also for military navigation and topography. The aim of this work is to analyze the impact of hostilities in Ukraine's GNSS network, considering factors like temporary occupation of certain territories, power outages due to missile strikes on energy infrastructure, and GNSS signal jamming using radio-electronic methods in front-line regions. Another objective of this study is to highlight examples of incorrect RTK or VRS operation due to potential errors from radio-electronic jamming or GPS spoofing as well as to provide practical recommendations for surveyors. As a result, the research has analyzed changes in the number of properly functioning GNSS stations from 2021 to 2023 using the GeoTerrace and System.NET networks. These networks cover all regions of Ukraine except the temporarily occupied territories by russia. Daily processing of RINEX files with a sampling interval of 30 seconds from CORS GNSS stations was conducted using the Bernese GNSS v.5.2 software package over three years. It was noted that following the large-scale invasion in February 2022 and through the spring of that year, there was a sharp reduction of about 10% in the number of properly functioning active GNSS stations. Scientific novelty and practical importance. The article presents practical recommendations for users, such as surveyors and land managers, performing GNSS measurements in RTK or VRS modes using permanent stations, to assess the influence of radio-electronic jamming or GPS spoofing on observations. CORS network assessment and daily calculated coordinates of GNSS stations from 2021 to 2023 can be used for future geodynamic research in the region.
dc.format.extent28-37
dc.format.pages10
dc.identifier.citationNew challenges for exploitation of continuously operating reference GNSS stations during hostilities. Case study of Ukraine / Ivan Brusak, Volodymyr Babchenko, Nataliia Savchuk, Vladyslav Marchuk, Yurii Shkvarok, Mykhailo Turianytsia // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2024. — No 99. — P. 28–37.
dc.identifier.citationenNew challenges for exploitation of continuously operating reference GNSS stations during hostilities. Case study of Ukraine / Ivan Brusak, Volodymyr Babchenko, Nataliia Savchuk, Vladyslav Marchuk, Yurii Shkvarok, Mykhailo Turianytsia // Geodesy, Cartography and Aerial Photography. — Lviv : Lviv Politechnic Publishing House, 2024. — No 99. — P. 28–37.
dc.identifier.doidoi.org/10.23939/istcgcap2024.99.028
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64018
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодезія, картографія і аерофотознімання, 99, 2024
dc.relation.ispartofGeodesy, Cartography and Aerial Photography, 99, 2024
dc.relation.referencesDach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS software version 5.2. https://doi.org/10.7892/boris.72297
dc.relation.referencesDe Wilde, W., Sleewaegen, J. M., Bougard, B., Cuypers, G., Popugaev, A., Landmann, M., ... & Granados, G. S. (2018, September). Authentication by polarization: A powerful anti-spoofing method. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018) (pp. 3643–3658) URL: http://spcomnav.uab.es/docs/conferences/FANTASTIC_GNSS18-0248.pdf
dc.relation.referencesEUREF Permanent GNSS Network. URL: https://epncb.oma.be/ (дата звернення: 01.03.2024).
dc.relation.referencesGoward, Dana A. (July 11, 2017). “Mass GPS Spoofing Attack in Black Sea?”. The Maritime Executive. An apparent mass and blatant, GPS spoofing attack involving over 20 vessels in the Black Sea last month has navigation experts and maritime executives scratching their heads. URL: https://maritime-executive.com/editorials/mass-gps-spoofing-attack-in-black-sea
dc.relation.referencesInternational GNSS Service. URL: https://igs.org/network-resources (дата звернення: 01.03.2024).
dc.relation.referencesIshchenko M.V (2009). Review of permanent GNSSstations networks. Astronomical School’s Report. 6 (9), 114–117. URL: http://astro.nau.edu.ua/papers/AstSR_2009_Vol_6_Iss_1_P_114.pdf (In Ukrainian).
dc.relation.referencesKhoda, O. (2024). Propagation of the IGb14 Reference Frame on the Territory of Ukraine Based on Results of the Analysis of GNSS Observations for GPS Weeks 2106–2237. Kinematics and Physics of Celestial Bodies, 40(1), 47–53. https://doi.org/10.3103/S0884591324010057
dc.relation.referencesKhoda, O., & Ishchenko, M. (2021). Rapid daily processing of observation data at the Ukrainian permanent GNSS stations for monitoring of their stability. In International Conference of Young Professionals «GeoTerrace-2021» (Vol. 2021, No. 1, pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3014
dc.relation.referencesLundberg, E., & Michael, I. (2018). Novel Timing Antennas for Improved GNSS Resilience. In Proceedings of the 49th Annual Precise Time and Time Interval Systems and Applications Meeting, 45–58. https://doi.org/10.33012/2018.15625
dc.relation.referencesMeng L, Yang L, Yang W, Zhang L. (2022) A Survey of GNSS Spoofing and Anti-Spoofing Technology. Remote Sensing, 14(19):4826. https://doi.org/10.3390/rs14194826
dc.relation.referencesNovikova, O., Palamar, A., & Petkov, S. (2020, April). Operator service of GNSS networks of Ukraine. In The 12 th International scientific and practical conference “Impact of modernity on science and practice”, Edmonton, Canada. URL: https://isg-konf.com/wpcontent/uploads/2020/04/XII-Conference-13-14-Edmonton-Canada.pdf (In Ukrainian)
dc.relation.referencesPoisel, R. (2011). Modern communications jamming principles and techniques. Artech house. URL: https://dl.acm.org/doi/abs/10.5555/2024614
dc.relation.referencesPsiaki, M. L., & Humphreys, T. E. (2016). GNSS spoofing and detection. Proceedings of the IEEE, 104(6), 1258–1270. https://doi.org/10.1109/JPROC.2016.2526658.
dc.relation.referencesSavchuk S. Practical aspects of the application of the new USK2000 reference system. International scientific and practical conference GEOFORUM-2012. Lviv-Yavoriv, Ukraine. URL: http://zgt.com.ua (in Ukrainian)
dc.relation.referencesSkolnik, M. I. (1980). Introduction to radar systems(Vol. 3, pp. 81–92). New York: McGraw-hill. URL: https://soaneemrana.org/onewebmedia/INTRODUCATION%20TO%20RADAR%20SYSTEM%20BY%20MERRIL,%20I%20SKLOINK%20(4).pdf
dc.relation.referencesTretyak K., & Brusak I. (2022). Modern deformations of Earth crust of territory of Western Ukraine based on “GEOTERRACE” GNSS network data. Geodynamics, 32(1), 16–25. https://doi.org/10.23939/jgd2022.02.016
dc.relation.referencesTretyak, K., Korliatovych, T., Brusak, I. (2021). Applying the statistical method of GNSS time series analysis for the detection of vertical displacements of Dnister HPP1 dam. In International Conference of Young Professionals “GeoTerrace-2021”. European Association of Geoscientists & Engineers. DOI: 10.3997/2214-4609.20215K3012
dc.relation.referencesTretyak, K., Zayats, O., Hlotov V., Navodych M., & Brusak, I. (2022). Establishment of the automated system of geodetic monitoring for structures of Tereble-Ritska HPP. Geodesy, Cartography, and Aerial Photography, 95(1), 13–21. https://doi.org/10.23939/istcgcap2021.93.027
dc.relation.referencesUkrainian GNSS network (n. d.) Main Astronomical Observatory of the National Academy of Sciences of Ukraine. Retrieved 01.03.2024, from: http://gnss.mao.kiev.ua/?q=node/1
dc.relation.referencesenDach, R., Lutz, S., Walser, P., & Fridez, P. (2015). Bernese GNSS software version 5.2. https://doi.org/10.7892/boris.72297
dc.relation.referencesenDe Wilde, W., Sleewaegen, J. M., Bougard, B., Cuypers, G., Popugaev, A., Landmann, M., ... & Granados, G. S. (2018, September). Authentication by polarization: A powerful anti-spoofing method. In Proceedings of the 31st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2018) (pp. 3643–3658) URL: http://spcomnav.uab.es/docs/conferences/FANTASTIC_GNSS18-0248.pdf
dc.relation.referencesenEUREF Permanent GNSS Network. URL: https://epncb.oma.be/ (Date of appeal: 01.03.2024).
dc.relation.referencesenGoward, Dana A. (July 11, 2017). "Mass GPS Spoofing Attack in Black Sea?". The Maritime Executive. An apparent mass and blatant, GPS spoofing attack involving over 20 vessels in the Black Sea last month has navigation experts and maritime executives scratching their heads. URL: https://maritime-executive.com/editorials/mass-gps-spoofing-attack-in-black-sea
dc.relation.referencesenInternational GNSS Service. URL: https://igs.org/network-resources (Date of appeal: 01.03.2024).
dc.relation.referencesenIshchenko M.V (2009). Review of permanent GNSSstations networks. Astronomical School’s Report. 6 (9), 114–117. URL: http://astro.nau.edu.ua/papers/AstSR_2009_Vol_6_Iss_1_P_114.pdf (In Ukrainian).
dc.relation.referencesenKhoda, O. (2024). Propagation of the IGb14 Reference Frame on the Territory of Ukraine Based on Results of the Analysis of GNSS Observations for GPS Weeks 2106–2237. Kinematics and Physics of Celestial Bodies, 40(1), 47–53. https://doi.org/10.3103/S0884591324010057
dc.relation.referencesenKhoda, O., & Ishchenko, M. (2021). Rapid daily processing of observation data at the Ukrainian permanent GNSS stations for monitoring of their stability. In International Conference of Young Professionals "GeoTerrace-2021" (Vol. 2021, No. 1, pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3014
dc.relation.referencesenLundberg, E., & Michael, I. (2018). Novel Timing Antennas for Improved GNSS Resilience. In Proceedings of the 49th Annual Precise Time and Time Interval Systems and Applications Meeting, 45–58. https://doi.org/10.33012/2018.15625
dc.relation.referencesenMeng L, Yang L, Yang W, Zhang L. (2022) A Survey of GNSS Spoofing and Anti-Spoofing Technology. Remote Sensing, 14(19):4826. https://doi.org/10.3390/rs14194826
dc.relation.referencesenNovikova, O., Palamar, A., & Petkov, S. (2020, April). Operator service of GNSS networks of Ukraine. In The 12 th International scientific and practical conference "Impact of modernity on science and practice", Edmonton, Canada. URL: https://isg-konf.com/wpcontent/uploads/2020/04/XII-Conference-13-14-Edmonton-Canada.pdf (In Ukrainian)
dc.relation.referencesenPoisel, R. (2011). Modern communications jamming principles and techniques. Artech house. URL: https://dl.acm.org/doi/abs/10.5555/2024614
dc.relation.referencesenPsiaki, M. L., & Humphreys, T. E. (2016). GNSS spoofing and detection. Proceedings of the IEEE, 104(6), 1258–1270. https://doi.org/10.1109/JPROC.2016.2526658.
dc.relation.referencesenSavchuk S. Practical aspects of the application of the new USK2000 reference system. International scientific and practical conference GEOFORUM-2012. Lviv-Yavoriv, Ukraine. URL: http://zgt.com.ua (in Ukrainian)
dc.relation.referencesenSkolnik, M. I. (1980). Introduction to radar systems(Vol. 3, pp. 81–92). New York: McGraw-hill. URL: https://soaneemrana.org/onewebmedia/INTRODUCATION%20TO%20RADAR%20SYSTEM%20BY%20MERRIL,%20I%20SKLOINK%20(4).pdf
dc.relation.referencesenTretyak K., & Brusak I. (2022). Modern deformations of Earth crust of territory of Western Ukraine based on "GEOTERRACE" GNSS network data. Geodynamics, 32(1), 16–25. https://doi.org/10.23939/jgd2022.02.016
dc.relation.referencesenTretyak, K., Korliatovych, T., Brusak, I. (2021). Applying the statistical method of GNSS time series analysis for the detection of vertical displacements of Dnister HPP1 dam. In International Conference of Young Professionals "GeoTerrace-2021". European Association of Geoscientists & Engineers. DOI: 10.3997/2214-4609.20215K3012
dc.relation.referencesenTretyak, K., Zayats, O., Hlotov V., Navodych M., & Brusak, I. (2022). Establishment of the automated system of geodetic monitoring for structures of Tereble-Ritska HPP. Geodesy, Cartography, and Aerial Photography, 95(1), 13–21. https://doi.org/10.23939/istcgcap2021.93.027
dc.relation.referencesenUkrainian GNSS network (n. d.) Main Astronomical Observatory of the National Academy of Sciences of Ukraine. Retrieved 01.03.2024, from: http://gnss.mao.kiev.ua/?q=node/1
dc.relation.urihttps://doi.org/10.7892/boris.72297
dc.relation.urihttp://spcomnav.uab.es/docs/conferences/FANTASTIC_GNSS18-0248.pdf
dc.relation.urihttps://epncb.oma.be/
dc.relation.urihttps://maritime-executive.com/editorials/mass-gps-spoofing-attack-in-black-sea
dc.relation.urihttps://igs.org/network-resources
dc.relation.urihttp://astro.nau.edu.ua/papers/AstSR_2009_Vol_6_Iss_1_P_114.pdf
dc.relation.urihttps://doi.org/10.3103/S0884591324010057
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215K3014
dc.relation.urihttps://doi.org/10.33012/2018.15625
dc.relation.urihttps://doi.org/10.3390/rs14194826
dc.relation.urihttps://isg-konf.com/wpcontent/uploads/2020/04/XII-Conference-13-14-Edmonton-Canada.pdf
dc.relation.urihttps://dl.acm.org/doi/abs/10.5555/2024614
dc.relation.urihttps://doi.org/10.1109/JPROC.2016.2526658
dc.relation.urihttp://zgt.com.ua
dc.relation.urihttps://soaneemrana.org/onewebmedia/INTRODUCATION%20TO%20RADAR%20SYSTEM%20BY%20MERRIL,%20I%20SKLOINK%20(4).pdf
dc.relation.urihttps://doi.org/10.23939/jgd2022.02.016
dc.relation.urihttps://doi.org/10.23939/istcgcap2021.93.027
dc.relation.urihttp://gnss.mao.kiev.ua/?q=node/1
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectактивні перманентні ГНСС-станції
dc.subjectГНСС-мережі
dc.subjectУкраїна
dc.subjectопрацювання ГНСС-даних
dc.subjectГНСС-мережа GeoTerrace
dc.subjectГНСС-мережа System.NET
dc.subjectрадіоелектронне подавлення ГНСС-сигналу
dc.subjectГНССспуфінг
dc.subjectContinuously Operating Reference Stations
dc.subjectGNSS networks
dc.subjectUkraine
dc.subjectGNSS data processing
dc.subjectGeoTerrace GNSS network
dc.subjectSystem.NET GNSS network
dc.subjectelectromagnetic warfare of GNSS signal
dc.subjectGNSS spoofing
dc.subject.udc528.2
dc.subject.udc528.3
dc.titleNew challenges for exploitation of continuously operating reference GNSS stations during hostilities. Case study of Ukraine
dc.title.alternativeНові виклики для функціонування активних перманентних ГНСС-станцій під час бойових дій на прикладі України
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024n99_Brusak_I-New_challenges_for_exploitation_28-37.pdf
Size:
500.86 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024n99_Brusak_I-New_challenges_for_exploitation_28-37__COVER.png
Size:
549.73 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.01 KB
Format:
Plain Text
Description: