Increase of Ventilation Systems Procurement and Installation Works Efficiency

dc.citation.epage83
dc.citation.issue2
dc.citation.spage77
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorВозняк, О. Т.
dc.contributor.authorМиронюк, Х. В.
dc.contributor.authorСухолова, І. Є.
dc.contributor.authorДовбуш, О. М.
dc.contributor.authorКасинець, М. Є.
dc.contributor.authorVoznyak, Orest
dc.contributor.authorMyroniuk, Khrystyna
dc.contributor.authorSukholova, Iryna
dc.contributor.authorDovbush, Oleksandr
dc.contributor.authorKasynets, Mariana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2021-12-21T13:15:56Z
dc.date.available2021-12-21T13:15:56Z
dc.date.created2020-03-23
dc.date.issued2020-03-23
dc.description.abstractУ статті представлені результати теоретичних досліджень отримання максимального прибутку монтажно-заготівельним підприємством в процесі виготовлення та реалізації трубної заготовки для монтажу системи вентиляції у виробничому приміщенні невеликого об’єму. Наведено графічні та аналітичні залежності процесу. Результатами досліджень обґрунтовано отримання максимального прибутку під час виготовлення та реалізації вентиляційної трубної заготовки цілого спектру діаметрів монтажно-заготівельним підприємством. Метою роботи є підвищити ефективність монтажу системи вентиляції у виробничих приміщеннях невеликого об’єму, визначити максимальний прибуток для монтажно-заготівельного підприємства в процесі виготовлення та реалізації трубної заготовки різних діаметрів вентиляційної системи за наявності декількох обмежень – за матеріалами та трудовими ресурсами, а також виявити шляхи підвищення ефективності монтажу системи вентиляції у виробничих приміщеннях невеликого об’єму та обґрунтувати методику їхнього розрахунку. Встановлено кількісні характеристики цільової функції при заданих вихідних умовах та отримано розрахункові залежності для визначення параметрів цільової функції. Отримані результати дають змогу визначити оптимальні параметри величин при заданих обмеженнях щодо матеріалів та трудоємності процесу виробництва. Застосування графічного методу та симплекс-методу для визначення необхідних параметрів заготовки дозволяє значно підвищити критерії ефективності проведення заготівельно-монтажних робіт і тим самим зменшити кількість трудових ресурсів та витрату матеріалів для виготовлення і монтажу вентиляційної системи загалом.
dc.description.abstractThe article presents the results of theoretical research on obtaining of the maximum profit by the installation and procurement company in the manufacture and sale of pipe billets for the installation of ventilation systems in the production premise. Graphical and analytical dependences are given. The results of research substantiate the receipt of the maximum profit in the manufacture and sale of the ventilation pipe billets of the different diameters by the installation and procurement enterprise. The purpose of the work is to increase the efficiency of ventilation system installationin production facilities, to determine the maximum profit for the installation and procurement company in the manufacture and sale of pipe billets of the different diameters of ventilation system in the presence of several restrictions on materials and manpower, identify ways to improve installation of ventilation system in production facilities of small volume and justification of the calculation method. Quantitative characteristics of the objective function under given initial conditions are established. The calculated dependences for determining the parameters of the objective function are obtained. The obtained results allow to determine the optimal parameters of the values at the given restrictions on materials and labor intensity of production. The maximum profit in the manufacture and sale of ventilation pipe billets of different diameters by the procurement and installation company is determined. Using of the graphical method and the simplex method to determine the required parameters can significantly increase the efficiency criteria for procurement and installation work and thus reduce the amount of labor and material consumption for the manufacture and installation of ventilation systems.
dc.format.extent77-83
dc.format.pages7
dc.identifier.citationIncrease of Ventilation Systems Procurement and Installation Works Efficiency / Orest Voznyak, Khrystyna Myroniuk, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 77–83.
dc.identifier.citationenIncrease of Ventilation Systems Procurement and Installation Works Efficiency / Orest Voznyak, Khrystyna Myroniuk, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 2. — No 2. — P. 77–83.
dc.identifier.doidoi.org/10.23939/jtbp2020.02.077
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/56575
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (2), 2020
dc.relation.referencesKapalo, P., Domnita, F., Bacotiu, C., & Spodyniuk, N. (2018). The impact of carbon dioxide concentration
dc.relation.referenceson the human health – case study, Journal of Applied Engineering Sciences, Vol. 8, no. 1, 61–66. ISSN 2284-7197,
dc.relation.referencesdoi:10.2478/jaes-2018-0008
dc.relation.referencesKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019). Investigation
dc.relation.referencesof CO2 production depending on physical activity of students. International Journal of Environmental Health
dc.relation.referencesResearch. Vol. 29, Issue 1, 31–44. ISSN:09603123. doi:10.1080/09603123.2018.1506570
dc.relation.referencesKapalo, P., Sedláková, A., Košicanová, D., Voznyak, O., Lojkovics, J., & Siroczki, P. (2014). Effect of ventilation
dc.relation.referenceson indoor environmental quality in buildings. The 9th International Conference “Environmental Engineering”, 22–23
dc.relation.referencesMay 2014, Vilnius, Lithuania SELECTED PAPERS, eISSN 2029-7092 / eISBN 978-609-457-640-9 Section:
dc.relation.referencesEnergy for Buildings.
dc.relation.referencesKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort
dc.relation.referencesmicroclimate in the classrooms under condition of the required air exchange, Eastern European Journal of
dc.relation.referencesEnterprise Technologies, Vol. 5/10 (95), 6–14.
dc.relation.referencesKapalo, P., Vilcekova, S., & Voznyak, O. (2014).Using experimental measurements the concentrations of
dc.relation.referencescarbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions,
dc.relation.referencesVol. 39, 1789–1794. ISBN 978-88-95608-30-3; ISSN 2283-9216
dc.relation.referencesKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referencesinside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations – Case Study, The 10th
dc.relation.referencesInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35.
dc.relation.referencesVoznyak, O., Korbut, V., Davydenko, B., & Sukholova, I. (2019). Air distribution efficiency in a room by a
dc.relation.referencestwo-flow device. Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and
dc.relation.referencesEnvironmental Engineering, Springer, Vol. 47, 526–533.
dc.relation.referencesVoznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesIndoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue. Technical
dc.relation.referencesUniversity of Kosice. 148–152.
dc.relation.referencesGumen, O. M., Dovhaliuk, V. B., & Міleikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencespremises in compressed conditions, Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2008).Estimated model of non-isothermal stream, which is laid out
dc.relation.referenceson a convex cylindrical surface.Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesCollection, Issue 12, Kyiv, KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2013). Analytical studies of the macrostructure of jet currents for
dc.relation.referencescalculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11–32 (in Ukrainian).
dc.relation.referencesZhelykh, V. M, Voznyak, O. T, Dovbush, O. M, Yurkevich, Yu. S., Savchenko, O. O. (2019). Technologies
dc.relation.referencesof procurement and installation of heating and ventilation systems. Lviv: Lviv Polytechnic Publishing House (in
dc.relation.referencesUkrainian).
dc.relation.referencesGass, S. (1961). Linear programming (methods and applications. Moscow, M: Fizmatgiz (in Russian).
dc.relation.referencesDanzig, J. (1966). Linear programming, its applications and generalizations. Translation from English.
dc.relation.referencesMoscow, M: Progress (in Russian).
dc.relation.referencesLyashenko, I. N., et al. (1975). Linear and nonlinear programming. Kyiv: High School (in Russian).
dc.relation.referencesPupkov, K. A. (1974). Fundamentals of Cybernetics. Mathematical foundations of cybernetics. M.: High
dc.relation.referencesSchool (in Russian).
dc.relation.referencesenKapalo, P., Domnita, F., Bacotiu, C., & Spodyniuk, N. (2018). The impact of carbon dioxide concentration
dc.relation.referencesenon the human health – case study, Journal of Applied Engineering Sciences, Vol. 8, no. 1, 61–66. ISSN 2284-7197,
dc.relation.referencesendoi:10.2478/jaes-2018-0008
dc.relation.referencesenKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019). Investigation
dc.relation.referencesenof CO2 production depending on physical activity of students. International Journal of Environmental Health
dc.relation.referencesenResearch. Vol. 29, Issue 1, 31–44. ISSN:09603123. doi:10.1080/09603123.2018.1506570
dc.relation.referencesenKapalo, P., Sedláková, A., Košicanová, D., Voznyak, O., Lojkovics, J., & Siroczki, P. (2014). Effect of ventilation
dc.relation.referencesenon indoor environmental quality in buildings. The 9th International Conference "Environmental Engineering", 22–23
dc.relation.referencesenMay 2014, Vilnius, Lithuania SELECTED PAPERS, eISSN 2029-7092, eISBN 978-609-457-640-9 Section:
dc.relation.referencesenEnergy for Buildings.
dc.relation.referencesenKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort
dc.relation.referencesenmicroclimate in the classrooms under condition of the required air exchange, Eastern European Journal of
dc.relation.referencesenEnterprise Technologies, Vol. 5/10 (95), 6–14.
dc.relation.referencesenKapalo, P., Vilcekova, S., & Voznyak, O. (2014).Using experimental measurements the concentrations of
dc.relation.referencesencarbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions,
dc.relation.referencesenVol. 39, 1789–1794. ISBN 978-88-95608-30-3; ISSN 2283-9216
dc.relation.referencesenKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referenceseninside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations – Case Study, The 10th
dc.relation.referencesenInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35.
dc.relation.referencesenVoznyak, O., Korbut, V., Davydenko, B., & Sukholova, I. (2019). Air distribution efficiency in a room by a
dc.relation.referencesentwo-flow device. Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and
dc.relation.referencesenEnvironmental Engineering, Springer, Vol. 47, 526–533.
dc.relation.referencesenVoznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesenIndoor Climate. Selected scientific Papers 10th Rzeszow-Lviv-Kosice Conference 2005 Supplementary Issue. Technical
dc.relation.referencesenUniversity of Kosice. 148–152.
dc.relation.referencesenGumen, O. M., Dovhaliuk, V. B., & Mileikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesenof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesenLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencesenpremises in compressed conditions, Journal: Building of Ukraine, No. 3, 36. (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2008).Estimated model of non-isothermal stream, which is laid out
dc.relation.referencesenon a convex cylindrical surface.Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesenCollection, Issue 12, Kyiv, KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2013). Analytical studies of the macrostructure of jet currents for
dc.relation.referencesencalculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11–32 (in Ukrainian).
dc.relation.referencesenZhelykh, V. M, Voznyak, O. T, Dovbush, O. M, Yurkevich, Yu. S., Savchenko, O. O. (2019). Technologies
dc.relation.referencesenof procurement and installation of heating and ventilation systems. Lviv: Lviv Polytechnic Publishing House (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenGass, S. (1961). Linear programming (methods and applications. Moscow, M: Fizmatgiz (in Russian).
dc.relation.referencesenDanzig, J. (1966). Linear programming, its applications and generalizations. Translation from English.
dc.relation.referencesenMoscow, M: Progress (in Russian).
dc.relation.referencesenLyashenko, I. N., et al. (1975). Linear and nonlinear programming. Kyiv: High School (in Russian).
dc.relation.referencesenPupkov, K. A. (1974). Fundamentals of Cybernetics. Mathematical foundations of cybernetics. M., High
dc.relation.referencesenSchool (in Russian).
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.rights.holder© Voznyak O., Myroniuk Kh., Sukholova I., Dovbush O., Kasynets M., 2020
dc.subjectзаготівельно-монтажні роботи
dc.subjectсистема вентиляції
dc.subjectвитрата матеріалів
dc.subjectтрудові ресурси
dc.subjectприбуток
dc.subjectсимплекс-метод
dc.subjectprocurement and installation work
dc.subjectventilation system
dc.subjectmaterial consumption
dc.subjectlabor resources
dc.subjectprofit
dc.subjectsimplex method
dc.titleIncrease of Ventilation Systems Procurement and Installation Works Efficiency
dc.title.alternativeПідвищення ефективності заготівельно-монтажних робіт систем вентиляції
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v2n2_Voznyak_O-Increase_of_Ventilation_Systems_77-83.pdf
Size:
531.25 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v2n2_Voznyak_O-Increase_of_Ventilation_Systems_77-83__COVER.png
Size:
437.09 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.13 KB
Format:
Plain Text
Description: