On the interval game-theoretic solutions and their axiomatizations
dc.citation.conference | Litteris et Artibus | |
dc.contributor.affiliation | Süleyman Demirel University | uk_UA |
dc.contributor.author | Palancı, Osman | |
dc.contributor.author | Sırma Zeynep Alparslan Gök | |
dc.contributor.author | Ayşen Gül Yılmaz Büyükyağcı | |
dc.coverage.country | UA | uk_UA |
dc.coverage.placename | Lviv | uk_UA |
dc.date.accessioned | 2018-04-11T12:10:19Z | |
dc.date.available | 2018-04-11T12:10:19Z | |
dc.date.issued | 2016 | |
dc.description.abstract | Natural questions for people or businesses that face interval uncertainty in their data when dealing with cooperation are: Which coalitions should form? How to distribute the collective gains or costs? The theory of cooperative interval games is a suitable tool for answering these questions. In this paper, we introduced and characterizated the new interval solutions concepts, i.e. interval CIS-value, interval ENSC-value and interval equal division solution by using cooperative interval games. Finally, we characterizd these interval solutions for two-player games. | uk_UA |
dc.format.pages | 67-70 | |
dc.identifier.citation | Palancı O. On the interval game-theoretic solutions and their axiomatizations / Osman Palancı, Sırma Zeynep Alparslan Gök, Ayşen Gül Yılmaz Büyükyağcı // Litteris et Artibus : proceedings of the 6th International youth science forum, November 24–26, 2016, Lviv, Ukraine / Lviv Polytechnic National University. – Lviv : Lviv Polytechnic Publishing House, 2016. – P. 67–70. – Bibliography: 9 titles. | uk_UA |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/40254 | |
dc.language.iso | en | uk_UA |
dc.publisher | Lviv Polytechnic Publishing House | uk_UA |
dc.relation.referencesen | [1] Alparslan Gök, S.Z., Branzei, R., Tijs, S., 2009. Convex Interval Games. Journal of Applied Mathematics and Decision Sciences, Article ID 342089, 14 pages. [2] Alparslan Gök, S.Z., Branzei, R., Tijs, S., 2010. The interval Shapley value: an axiomatization. Central Euro-pean Journal of Operations Research, 18(2), 131-140. [3] Alparslan Gök, S.Z., Miquel, S., Tijs, S., 2009. Cooperation under interval uncertainty. Mathematical Methods of Operations Research, 69, 99-109. [4] Branzei, R., Dimitrov, D., Tijs, S., 2008. Models in Cooperative Game Theory. Springer-Verlag, 204 pages, Berlin. [5] Driessen, T.S.H., Funaki, Y., 1991. Coincidence of and collinearity between game theoretic solutions. OR Spektrum, 13, 15-30. [6] Hans, P., 2008. Game Theory: A Multi-Leveled Approach. Springer-Verlag, Berlin Heidelberg, 494 pages, Berlin. [7] Moore, R., 1979. Methods and Applications of Interval Analysis. SIAM Studies in Applied Mathematics, 190 pages, Philadelphia. [8] Shapley, L.S., 1953. A value for n-person games. Annals of Mathematics Studies, 28, 307-317. [9] van den Brink, R., Funaki, Y., 2009. Axiomatizations of a class of equal surplus sharing solutions for cooperative games with transferable utility, Theory and Decision, 67, 303-340. | uk_UA |
dc.subject | cooperative game theory | uk_UA |
dc.subject | uncertainty | uk_UA |
dc.subject | CIS-value | uk_UA |
dc.subject | ENSC-value | uk_UA |
dc.subject | ED-value | uk_UA |
dc.title | On the interval game-theoretic solutions and their axiomatizations | uk_UA |
dc.type | Conference Abstract | uk_UA |