Smart heat tariffs in transition to free market

dc.citation.epage14
dc.citation.issue1
dc.citation.spage1
dc.contributor.affiliationРизький технічний університет
dc.contributor.affiliationRiga Technical University
dc.contributor.authorПакере, І.
dc.contributor.authorБлумберга, Д.
dc.contributor.authorPakere, I.
dc.contributor.authorBlumberga, D.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-05-23T07:59:27Z
dc.date.available2024-05-23T07:59:27Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractІнноваційні механізми ціноутворення мають мотивувати постачальників і споживачів теплової енергії переходити до більш стійких енергетичних систем, впроваджувати низькотемпературні системи централізованого теплопостачання та об’єднувати сектори у розумних енергетичних системах. Для стимулювання вказаних трансформацій в енергетиці необхідно змінити систему нормативного регулювання у системах централізованого теплопостачання Тарифи на послуги з централізованого теплопостачання залежать від багатьох факторів, зокрема: цін на паливо, робочих параметрів, податків, інвестицій та інших критерії. Тому було здійснено аналіз тарифів на теплову енергію, щоб знайти рішення для мотивації підприємств централізованого теплопостачання до енергоефективності та кліматичної нейтральності. Результати аналізу базуються на підході до оцінки прийняття рішень шляхом вибору різних критеріїв та їх оцінювання за п’ятьма важливими аспектами: інженерним, екологічним, кліматичним, економічним та соціально-економічним. Центральними елементами розробленої моделі нечіткого когнітивного відображення є інвестиційні витрати, витрати на виробництво тепла та споживання первинної енергії. Враховуючи встановлені граничні умови, найвигіднішим методом для визначення розумного тарифу на тепло може бути порівняльний аналіз тарифів на тепло з інтегрованими стандартами енергоефективності для операторів централізованого теплопостачання.
dc.description.abstractInnovative pricing mechanisms should motivate heat suppliers and consumers to move toward more sustainable energy systems and introduce low-temperature district heating systems and sector coupling in smart energy systems. Therefore, district heating regulation regimes should also be changed to stimulate transformations in the energy sector. The district heating tariffs depend on many factors, including fuel prices, operational parameters, taxes, investments, and other criteria. Therefore, an analysis of the DH tariffs has been implemented to find solutions to motivate DH enterprises towards energy efficiency and climate neutrality. The analysis results are based on the decision-making assessment approach by selecting various criteria and evaluating them from five significant aspects: engineering, environmental, climate, economic and socioeconomic. The central elements within the developed fuzzy cognitive mapping model are investment costs, heat production costs, and primary energy consumption. Considering the set boundary conditions, the most beneficial method for smart heat tariff definition could be heat tariff benchmarking with integrated energy efficiency standards for DH operators.
dc.format.extent1-14
dc.format.pages14
dc.identifier.citationPakere I. Smart heat tariffs in transition to free market / I. Pakere, D. Blumberga // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 1–14.
dc.identifier.citationenPakere I. Smart heat tariffs in transition to free market / I. Pakere, D. Blumberga // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 1–14.
dc.identifier.doidoi.org/10.23939/jtbp2023.01.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/62064
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (5), 2023
dc.relation.referencesAverfalk, H., & Werner, S. (2020a). Economic benefits of fourth generation district heating. Energy, 193, 116727. https://doi.org/10.1016/j.energy.2019.116727
dc.relation.referencesAverfalk, H., & Werner, S. (2020b). Economic benefits of fourth generation district heating. Energy, 193. https://doi.org/10.1016/J.ENERGY.2019.116727
dc.relation.referencesBalioti, V., Tzimopoulos, C., & Evangelides, C. (2018). Multi-Criteria Decision Making Using TOPSIS Method Under Fuzzy Environment. Application in Spillway Selection. In Proceedings (Vol. 2, Issue 11). https://doi.org/10.3390/proceedings2110637
dc.relation.referencesBarrella, R., Linares, J. I., Romero, J. C., Arenas, E., & Centeno, E. (2021). Does cash money solve energy poverty? Assessing the impact of household heating allowances in Spain. Energy Research & Social Science, 80, 102216. https://doi.org/https://doi.org/10.1016/j.erss.2021.102216
dc.relation.referencesBoscan, L., & Söderberg, M. (2021). A theoretical and empirical analysis of district heating cost in Denmark. Energy Economics, 99(April 2016). https://doi.org/10.1016/j.eneco.2021.105304
dc.relation.referencesCabinet of Ministers. (2016). Regulations Regarding the Energy Efficiency Requirements for Centralised Heating Supply Systems in the Possession of a Licensed or Registered Energy Supply Merchant, and the Procedures for Conformity Examination Thereof. https://likumi.lv/ta/en/en/id/281914
dc.relation.referencesChanges to the heat tariff scheme in Poland. (2020). December 2018.
dc.relation.referencesDesvallées, L. (2022). Low-carbon retrofits in social housing: Energy efficiency, multidimensional energy poverty, and domestic comfort strategies in southern Europe. Energy Research & Social Science, 85, 102413. https://doi.org/https://doi.org/10.1016/j.erss.2021.102413
dc.relation.referencesDjørup, S., Sperling, K., Nielsen, S., Østergaard, P. A., Thellufsen, J. Z., Sorknæs, P., Lund, H., & Drysdale, D. (2020). District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change, Energies 2020, Vol. 13, Page 1172, 13(5), 1172. https://doi.org/10.3390/EN13051172
dc.relation.referencesEgüez, A. (2021). District heating network ownership and prices: The case of an unregulated natural monopoly. Utilities Policy, 72(July), 101252. https://doi.org/10.1016/j.jup.2021.101252
dc.relation.referencesGalindo Fernandez, M., Bacquet, A., Bensadi, S., Morisot, P., & Oger, A. (2021). Integrating renewable and waste heat and cold sources into district heating and cooling systems - Case studies analysis , replicable key success factors and potential policy implications. In Publications Office of the European Union. https://doi.org/10.2760/111509
dc.relation.referencesGorroño-Albizu, L., & de Godoy, J. (2021). Getting fair institutional conditions for district heating consumers: Insights from Denmark and Sweden. Energy, 237. https://doi.org/10.1016/j.energy.2021.121615
dc.relation.referencesHvelplund, F., Krog, L., Nielsen, S., Terkelsen, E., & Madsen, K. B. (2019). Policy paradigms for optimal residential heat savings in a transition to 100% renewable energy systems. Energy Policy, 134, 110944. https://doi.org/10.1016/J.ENPOL.2019.110944
dc.relation.referencesLecomte, T., Ferrería de la Fuente, J. F., Neuwahl, F., Canova, M., Pinasseau, A., Jankov, I., Brinkmann Serge Roudier, T., & Delgado Sancho, L. (2017). Best Available Techniques (BAT) Reference Document for Large Combustion Plants.
dc.relation.referencesLi, H., Sun, Q., Zhang, Q., & Wallin, F. (2015). A review of the pricing mechanisms for district heating systems. Renewable and Sustainable Energy Reviews, 42, 56-65. https://doi.org/10.1016/j.rser.2014.10.003
dc.relation.referencesLund, H., Østergaard, P. A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., Thorsen, J. E., Hvelplund, F., Mortensen, B. O. G., Mathiesen, B. V., Bojesen, C., Duic, N., Zhang, X., & Möller, B. (2018). The status of 4th generation district heating: Research and results. Energy, 164, 147-159. https://doi.org/10.1016/J.ENERGY.2018.08.206
dc.relation.referencesNozari, M. A., Ghadikolaei, A. S., Govindan, K., & Akbari, V. (2021). Analysis of the sharing economy effect on sustainability in the transportation sector using fuzzy cognitive mapping. Journal of Cleaner Production, 311, 127331. https://doi.org/10.1016/J.JCLEPRO.2021.127331
dc.relation.referencesÖzesmi, U., & Özesmi, S. L. (2004). Ecological models based on people's knowledge: a multi-step fuzzy cognitive mapping approach. Ecological Modelling, 176(1), 43-64. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2003.10.027
dc.relation.referencesPakere, I., Blumberga, D., Kamenders, A., & Vı̄toliņš, V. (2021). Does district heating tariff motivate energy efficiency improvement? Energy Reports, 7, 410-418. https://doi.org/https://doi.org/10.1016/j.egyr.2021.08.087
dc.relation.referencesPakere, I., Gravelsins, A., Lauka, D., & Blumberga, D. (2021). Will there be the waste heat and boiler house competition in Latvia? Assessment of industrial waste heat. Smart Energy, 3. https://doi.org/10.1016/J.SEGY.2021.100023
dc.relation.referencesPatronen, J., Kaura, E., & Torvestad, C. (2017). Nordic heating and cooling : Nordic approach to EU's Heating and Cooling Strategy. In TemaNord NV - 2017:532. Nordisk Ministerråd. https://doi.org/10.6027/TN2017-532
dc.relation.referencesPelda, J., Holler, S., & Persson, U. (2021). District heating atlas - Analysis of the German district heating sector. Energy, 233, 121018. https://doi.org/10.1016/j.energy.2021.121018
dc.relation.referencesRezaie, B., & Rosen, M. A. (2012). District heating and cooling: Review of technology and potential enhancements. Applied Energy, 93, 2-10. https://doi.org/10.1016/j.apenergy.2011.04.020
dc.relation.referencesRiigikogu. (2017). District Heating Act. https://www.riigiteataja.ee/en/eli/ee/520062017016/consolide/current
dc.relation.referencesSchmidt, D. (2021). Digitalization of district heating and cooling systems. Energy Reports, 7, 458-464. https://doi.org/10.1016/J.EGYR.2021.08.082
dc.relation.referencesSelvakkumaran, S., Axelsson, L., & Svensson, I.-L. (2021). Drivers and barriers for prosumer integration in the Swedish district heating sector. Energy Reports, 7, 193-202. https://doi.org/10.1016/J.EGYR.2021.08.155
dc.relation.referencesSelvakkumaran, S., Eriksson, L., Ottosson, J., Lygnerud, K., & Svensson, I.-L. (2021). How are business models capturing flexibility in the District Energy (DE) grid? Energy Reports, 7(September), 263-272. https://doi.org/10.1016/j.egyr.2021.08.146
dc.relation.referencesSonga, J., Wallina, F., Lia, H., & Karlssona, B. (2016). Price models of district heating in Sweden. Energy Procedia, 88, 100-105. https://doi.org/10.1016/j.egypro.2016.06.031.
dc.relation.referencesenAverfalk, H., & Werner, S. (2020a). Economic benefits of fourth generation district heating. Energy, 193, 116727. https://doi.org/10.1016/j.energy.2019.116727
dc.relation.referencesenAverfalk, H., & Werner, S. (2020b). Economic benefits of fourth generation district heating. Energy, 193. https://doi.org/10.1016/J.ENERGY.2019.116727
dc.relation.referencesenBalioti, V., Tzimopoulos, C., & Evangelides, C. (2018). Multi-Criteria Decision Making Using TOPSIS Method Under Fuzzy Environment. Application in Spillway Selection. In Proceedings (Vol. 2, Issue 11). https://doi.org/10.3390/proceedings2110637
dc.relation.referencesenBarrella, R., Linares, J. I., Romero, J. C., Arenas, E., & Centeno, E. (2021). Does cash money solve energy poverty? Assessing the impact of household heating allowances in Spain. Energy Research & Social Science, 80, 102216. https://doi.org/https://doi.org/10.1016/j.erss.2021.102216
dc.relation.referencesenBoscan, L., & Söderberg, M. (2021). A theoretical and empirical analysis of district heating cost in Denmark. Energy Economics, 99(April 2016). https://doi.org/10.1016/j.eneco.2021.105304
dc.relation.referencesenCabinet of Ministers. (2016). Regulations Regarding the Energy Efficiency Requirements for Centralised Heating Supply Systems in the Possession of a Licensed or Registered Energy Supply Merchant, and the Procedures for Conformity Examination Thereof. https://likumi.lv/ta/en/en/id/281914
dc.relation.referencesenChanges to the heat tariff scheme in Poland. (2020). December 2018.
dc.relation.referencesenDesvallées, L. (2022). Low-carbon retrofits in social housing: Energy efficiency, multidimensional energy poverty, and domestic comfort strategies in southern Europe. Energy Research & Social Science, 85, 102413. https://doi.org/https://doi.org/10.1016/j.erss.2021.102413
dc.relation.referencesenDjørup, S., Sperling, K., Nielsen, S., Østergaard, P. A., Thellufsen, J. Z., Sorknæs, P., Lund, H., & Drysdale, D. (2020). District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change, Energies 2020, Vol. 13, Page 1172, 13(5), 1172. https://doi.org/10.3390/EN13051172
dc.relation.referencesenEgüez, A. (2021). District heating network ownership and prices: The case of an unregulated natural monopoly. Utilities Policy, 72(July), 101252. https://doi.org/10.1016/j.jup.2021.101252
dc.relation.referencesenGalindo Fernandez, M., Bacquet, A., Bensadi, S., Morisot, P., & Oger, A. (2021). Integrating renewable and waste heat and cold sources into district heating and cooling systems - Case studies analysis , replicable key success factors and potential policy implications. In Publications Office of the European Union. https://doi.org/10.2760/111509
dc.relation.referencesenGorroño-Albizu, L., & de Godoy, J. (2021). Getting fair institutional conditions for district heating consumers: Insights from Denmark and Sweden. Energy, 237. https://doi.org/10.1016/j.energy.2021.121615
dc.relation.referencesenHvelplund, F., Krog, L., Nielsen, S., Terkelsen, E., & Madsen, K. B. (2019). Policy paradigms for optimal residential heat savings in a transition to 100% renewable energy systems. Energy Policy, 134, 110944. https://doi.org/10.1016/J.ENPOL.2019.110944
dc.relation.referencesenLecomte, T., Ferrería de la Fuente, J. F., Neuwahl, F., Canova, M., Pinasseau, A., Jankov, I., Brinkmann Serge Roudier, T., & Delgado Sancho, L. (2017). Best Available Techniques (BAT) Reference Document for Large Combustion Plants.
dc.relation.referencesenLi, H., Sun, Q., Zhang, Q., & Wallin, F. (2015). A review of the pricing mechanisms for district heating systems. Renewable and Sustainable Energy Reviews, 42, 56-65. https://doi.org/10.1016/j.rser.2014.10.003
dc.relation.referencesenLund, H., Østergaard, P. A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., Thorsen, J. E., Hvelplund, F., Mortensen, B. O. G., Mathiesen, B. V., Bojesen, C., Duic, N., Zhang, X., & Möller, B. (2018). The status of 4th generation district heating: Research and results. Energy, 164, 147-159. https://doi.org/10.1016/J.ENERGY.2018.08.206
dc.relation.referencesenNozari, M. A., Ghadikolaei, A. S., Govindan, K., & Akbari, V. (2021). Analysis of the sharing economy effect on sustainability in the transportation sector using fuzzy cognitive mapping. Journal of Cleaner Production, 311, 127331. https://doi.org/10.1016/J.JCLEPRO.2021.127331
dc.relation.referencesenÖzesmi, U., & Özesmi, S. L. (2004). Ecological models based on people's knowledge: a multi-step fuzzy cognitive mapping approach. Ecological Modelling, 176(1), 43-64. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2003.10.027
dc.relation.referencesenPakere, I., Blumberga, D., Kamenders, A., & Vı̄toliņš, V. (2021). Does district heating tariff motivate energy efficiency improvement? Energy Reports, 7, 410-418. https://doi.org/https://doi.org/10.1016/j.egyr.2021.08.087
dc.relation.referencesenPakere, I., Gravelsins, A., Lauka, D., & Blumberga, D. (2021). Will there be the waste heat and boiler house competition in Latvia? Assessment of industrial waste heat. Smart Energy, 3. https://doi.org/10.1016/J.SEGY.2021.100023
dc.relation.referencesenPatronen, J., Kaura, E., & Torvestad, C. (2017). Nordic heating and cooling : Nordic approach to EU's Heating and Cooling Strategy. In TemaNord NV - 2017:532. Nordisk Ministerråd. https://doi.org/10.6027/TN2017-532
dc.relation.referencesenPelda, J., Holler, S., & Persson, U. (2021). District heating atlas - Analysis of the German district heating sector. Energy, 233, 121018. https://doi.org/10.1016/j.energy.2021.121018
dc.relation.referencesenRezaie, B., & Rosen, M. A. (2012). District heating and cooling: Review of technology and potential enhancements. Applied Energy, 93, 2-10. https://doi.org/10.1016/j.apenergy.2011.04.020
dc.relation.referencesenRiigikogu. (2017). District Heating Act. https://www.riigiteataja.ee/en/eli/ee/520062017016/consolide/current
dc.relation.referencesenSchmidt, D. (2021). Digitalization of district heating and cooling systems. Energy Reports, 7, 458-464. https://doi.org/10.1016/J.EGYR.2021.08.082
dc.relation.referencesenSelvakkumaran, S., Axelsson, L., & Svensson, I.-L. (2021). Drivers and barriers for prosumer integration in the Swedish district heating sector. Energy Reports, 7, 193-202. https://doi.org/10.1016/J.EGYR.2021.08.155
dc.relation.referencesenSelvakkumaran, S., Eriksson, L., Ottosson, J., Lygnerud, K., & Svensson, I.-L. (2021). How are business models capturing flexibility in the District Energy (DE) grid? Energy Reports, 7(September), 263-272. https://doi.org/10.1016/j.egyr.2021.08.146
dc.relation.referencesenSonga, J., Wallina, F., Lia, H., & Karlssona, B. (2016). Price models of district heating in Sweden. Energy Procedia, 88, 100-105. https://doi.org/10.1016/j.egypro.2016.06.031.
dc.relation.urihttps://doi.org/10.1016/j.energy.2019.116727
dc.relation.urihttps://doi.org/10.1016/J.ENERGY.2019.116727
dc.relation.urihttps://doi.org/10.3390/proceedings2110637
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.erss.2021.102216
dc.relation.urihttps://doi.org/10.1016/j.eneco.2021.105304
dc.relation.urihttps://likumi.lv/ta/en/en/id/281914
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.erss.2021.102413
dc.relation.urihttps://doi.org/10.3390/EN13051172
dc.relation.urihttps://doi.org/10.1016/j.jup.2021.101252
dc.relation.urihttps://doi.org/10.2760/111509
dc.relation.urihttps://doi.org/10.1016/j.energy.2021.121615
dc.relation.urihttps://doi.org/10.1016/J.ENPOL.2019.110944
dc.relation.urihttps://doi.org/10.1016/j.rser.2014.10.003
dc.relation.urihttps://doi.org/10.1016/J.ENERGY.2018.08.206
dc.relation.urihttps://doi.org/10.1016/J.JCLEPRO.2021.127331
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.ecolmodel.2003.10.027
dc.relation.urihttps://doi.org/https://doi.org/10.1016/j.egyr.2021.08.087
dc.relation.urihttps://doi.org/10.1016/J.SEGY.2021.100023
dc.relation.urihttps://doi.org/10.6027/TN2017-532
dc.relation.urihttps://doi.org/10.1016/j.energy.2021.121018
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2011.04.020
dc.relation.urihttps://www.riigiteataja.ee/en/eli/ee/520062017016/consolide/current
dc.relation.urihttps://doi.org/10.1016/J.EGYR.2021.08.082
dc.relation.urihttps://doi.org/10.1016/J.EGYR.2021.08.155
dc.relation.urihttps://doi.org/10.1016/j.egyr.2021.08.146
dc.relation.urihttps://doi.org/10.1016/j.egypro.2016.06.031
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Pakere I., Blumberga D., 2023
dc.subjectнормативне регулювання централізованого теплопостачання
dc.subjectрозумні енергетичні системи
dc.subjectкерування попитом
dc.subjectенергоефективність
dc.subjectdistrict heating regulation
dc.subjectsmart energy systems
dc.subjectdemand-side management
dc.subjectenergy efficiency
dc.titleSmart heat tariffs in transition to free market
dc.title.alternativeРозумні тарифи на теплову енергію в умовах переходу до вільного ринку
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v5n1_Pakere_I-Smart_heat_tariffs_in_transition_1-14.pdf
Size:
581.43 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v5n1_Pakere_I-Smart_heat_tariffs_in_transition_1-14__COVER.png
Size:
436.36 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: