Дослідження гідролітичної деградації полігідроксіалканоатів і їх сумішей з полілактидами

dc.citation.epage244
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage237
dc.citation.volume1
dc.contributor.affiliationІнститут фізико-органічної хімії і вуглехімії ім. Л. М. Литвиненка Національної академії наук України
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationInstitute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСеменюк, І. В.
dc.contributor.authorКорецька, Н. І.
dc.contributor.authorПокиньброда, Т. Я.
dc.contributor.authorКочубей, В. В.
dc.contributor.authorСеменюк, Н. Б.
dc.contributor.authorМельник, Ю. Я.
dc.contributor.authorSemeniuk, I. V.
dc.contributor.authorKoretska, N. I.
dc.contributor.authorPokynbroda, T. Y.
dc.contributor.authorKochubei, V. V.
dc.contributor.authorSemenyuk, N. B.
dc.contributor.authorMelnyk, Y. Y.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T08:00:02Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДосліджено гідролітичну деградацію полігідроксіалканоатів, полілактиду та їх сумішей in vitro у фізіологічному розчині та у фосфатно-сольовому буфері. Інтенсивність гідролізу біополімерів оцінювали за втратою маси, зміною молекулярної маси і водопоглинанням, використовуючи методи інфрачервоної спектроскопії та комплексного термічного аналізу. Встановлено, що плівки на основі досліджуваних біодеградабельних полімерів, термостатовані у фосфатно-сольовому буфері, деградують швидше, ніж у фізіологічному розчині.
dc.description.abstractThe hydrolytic degradation of polyhydroxyalkanoates, polylactide and their mixtures in vitro in physiological solution and phosphate-salt buffer as well was researched. The hydrolysis intensity of biopolymers was evaluated via the mass loss, change in molecular weight as well as the water absorption applying the methods of infrared spectroscopy and complex thermal analysis. It was determined that films based on the researched biodegradable polymers thermostated in a phosphate-salt buffer have been degrading faster than in physiological solution.
dc.format.extent237-244
dc.format.pages8
dc.identifier.citationДослідження гідролітичної деградації полігідроксіалканоатів і їх сумішей з полілактидами / І. В. Семенюк, Н. І. Корецька, Т. Я. Покиньброда, В. В. Кочубей, Н. Б. Семенюк, Ю. Я. Мельник // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 237–244.
dc.identifier.citationenInvestigation of hydrolytic degradation of polyhydroxyalkanoates and their mixtures with polylactides / I. V. Semeniuk, N. I. Koretska, T. Y. Pokynbroda, V. V. Kochubei, N. B. Semenyuk, Y. Y. Melnyk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 237–244.
dc.identifier.doidoi.org/10.23939/ctas2024.01.237
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111752
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Muthuraj, R., Misra, M., Mohanty, A. K. (2015). Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers. In M. Misra, J. K. Pandey, A. K. Mohanty (Eds.), Biocomposites: Design and Mechanical Performance (pp. 93-140). Amsterdam: Elsevier. https://doi.org/10.1016/B978-1-78242-373-7.00014-7
dc.relation.references2. Koronis, G., Silva, A., Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Compos. Part B Eng., 44, 120-127. doi:10.1016/j.compositesb.2012.07.004
dc.relation.references3. Jose, J., George, S. M., Thomas, S. (2011). Recycling of polymer blends. Recent Developments in Polymer Recycling, 37, 187-214.
dc.relation.references4. Murariu, M. Dubois, P. (2016). PLA composites: From production to properties. Adv. Drug Deliv. Rev., 107(15), 17-46. doi:10.1016/j.addr.2016.04.003
dc.relation.references5. Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., Reis, M. A. M. (2017). Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering, 4(2), 55.doi:10.3390/bioengineering4020055
dc.relation.references6. Narancic, T., Verstichel, S., Chaganti, R. S., Morales-Gamez, L., Kenny, S. T., De Wilde, B., Padamati, R. B., O'Connor, K. E. (2018). Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol., 52(18), 10441-10452. doi:10.1021/acs.est.8b02963
dc.relation.references7. Bugnicourt, E., Cinelli, P., Lazzeri, A., Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett., 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82
dc.relation.references8. Koller, M., Marsalek, L., de Sousa Dias, M. M., Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol., 37, 24-38. doi:10.1016/j.nbt.2016.05.001
dc.relation.references9. Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol., 89, 161-174. doi:10.1016/j.ijbiomac.2016.04.069
dc.relation.references10. Volova, T. G., Boyandin, A. N., Vasiliev, A. D., Karpov, V. A., Prudnikova, S. V., Mishukova, O. V., Gitelson, I. I. (2010). Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym. Degrad. Stab., 95(12), 2350-2359. doi: 10.1016/j.polymdegradstab.2010.08.023
dc.relation.references11. Padovani, G., Carlozzi, P., Seggiani, M., Cinelli, P. (2016). PHB-Rich Biomass and BioH2 Production by Means of Photosynthetic Microorganisms. Chem. Eng. Trans., 49, 55-60. doi:10.3303/CET1649010
dc.relation.references12. Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., Bruzaud, S. (2014). Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym. Degrad. Stab.2014, 105(1), 237-247. doi:10.1016/j.polymdegradstab.2014.04.026
dc.relation.references13. Cheng, M., Chen, P., Lan, C., Sun, Y. (2011). Structure, mechanical properties and degradation behaviors of the electrospun fibrous blends of PHBHHx/PDLLA. Polymer 52(6), 1391-1401. doi:10.1016/J.POLYMER.2011.01.039
dc.relation.references14. Aliotta, L., Cinelli, P., Coltelli, M. B., Righetti, M. C., Gazzano, M., Lazzeri, A. (2017). Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). Eur. Polym. J., 93(5), 822-832. doi:10.1016/j.eurpolymj.2017.04.041
dc.relation.references15. Jones, R. G., Kahovec, J., Stepto, R., Wilks, E.S., Hess, M., Kitayama, T., Metanomski, W. V. (Eds.). (2009). Compendium of polymer terminology and nomenclature: IUPAC recommendations. Cambridge: Published by The Royal Society of Chemistry. https://doi.org/10.1039/9781847559425
dc.relation.references16. Müller, R. J. (2005). Biodegradability of polymers: regulations and methods for testing, Biopolymers Online. doi:10.1002/3527600035.bpola012
dc.relation.references17. Gogolewski, S., Javanovic, M., Perren, S.M., Hughes, M.K. (1990). Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/PHV). Biomaterials, 11, 679-685.
dc.relation.references18. Freier, T., Kunze, C., Nischan, C., Kramer, S., Sternberg, K., Sass, M., Hopt, U. T., Schmitz, K. (2002). In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials, 23(13), 2649-57. doi:10.1016/s0142-9612(01)00405-7
dc.relation.references19. Semeniuk, I., Pokynbroda, T., Kochubei, V., Midyana, H., Karpenko, O., Skorokhoda, V. (2020). Biosynthesis and characteristics of polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter vinelandii N-15. Chem. Chem. Technol.,14(4), 463-467. doi:10.23939/chcht14.04.463
dc.relation.references20. Koretska, N., Semeniuk, I., Pokynbroda, T., Shcheglova, N., Karpenko, O., Kytsya, A., Lubenets, V., Polish, N. (2023). Polyhydroxyalkanoates: Biosynthesis Optimization and Design of Antimicrobial Composites. Innov Biosyst Bioeng., 7(2), 32-41. doi:10.20535/ibb.2023.7.2.280017
dc.relation.references21. Jacquel, N., Lo, C., Wu, H., Wei, Y., Wang, S. (2007). Solubility of Polyhydroxyalkanoates by Experiment and Thermodynamic Correlations. AIChE Journal, 53(10), 2704-2714. doi:10.1002/aic.11274
dc.relation.references22. Gordon, A., Ford, R. (1973). The Chemist's Companion: A Handbook of Practical Data, Techniques, and References 1st Edition. Willey.
dc.relation.references23. Semeniuk, I. V., Kocubei, V. V., Karpenko, O. Y., Midyana, H. H., Karpenko, O. V., Serheyev, V. V. (2019). Study of the composition of humic acids of different origins. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 150-156. doi:10.32434/0321-4095-2019-125-4-150-156
dc.relation.references24. Hogan, S. A. (1996). Solution Properties and Molecular Size of Polyhydroxybutyrate from Recombinant Escherichia coli. (Master of Science). Massachusetts Institute of Technology, Department of Mechanical Engineering, Massachusetts.
dc.relation.references25. Akita, S., Einaga, Y., Miyaki, Y., Fujita, H. (1976). Solution Properties of Poly(D-β-hydroxybutyrate). 1. Biosynthesis and characterization. Macromolecules, 9(5), 774-780. doi:10.1021/ma60053a017
dc.relation.referencesen1. Muthuraj, R., Misra, M., Mohanty, A. K. (2015). Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers. In M. Misra, J. K. Pandey, A. K. Mohanty (Eds.), Biocomposites: Design and Mechanical Performance (pp. 93-140). Amsterdam: Elsevier. https://doi.org/10.1016/B978-1-78242-373-7.00014-7
dc.relation.referencesen2. Koronis, G., Silva, A., Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Compos. Part B Eng., 44, 120-127. doi:10.1016/j.compositesb.2012.07.004
dc.relation.referencesen3. Jose, J., George, S. M., Thomas, S. (2011). Recycling of polymer blends. Recent Developments in Polymer Recycling, 37, 187-214.
dc.relation.referencesen4. Murariu, M. Dubois, P. (2016). PLA composites: From production to properties. Adv. Drug Deliv. Rev., 107(15), 17-46. doi:10.1016/j.addr.2016.04.003
dc.relation.referencesen5. Kourmentza, C., Plácido, J., Venetsaneas, N., Burniol-Figols, A., Varrone, C., Gavala, H. N., Reis, M. A. M. (2017). Recent Advances and Challenges towards Sustainable Polyhydroxyalkanoate (PHA) Production. Bioengineering, 4(2), 55.doi:10.3390/bioengineering4020055
dc.relation.referencesen6. Narancic, T., Verstichel, S., Chaganti, R. S., Morales-Gamez, L., Kenny, S. T., De Wilde, B., Padamati, R. B., O'Connor, K. E. (2018). Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol., 52(18), 10441-10452. doi:10.1021/acs.est.8b02963
dc.relation.referencesen7. Bugnicourt, E., Cinelli, P., Lazzeri, A., Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett., 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82
dc.relation.referencesen8. Koller, M., Marsalek, L., de Sousa Dias, M. M., Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol., 37, 24-38. doi:10.1016/j.nbt.2016.05.001
dc.relation.referencesen9. Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol., 89, 161-174. doi:10.1016/j.ijbiomac.2016.04.069
dc.relation.referencesen10. Volova, T. G., Boyandin, A. N., Vasiliev, A. D., Karpov, V. A., Prudnikova, S. V., Mishukova, O. V., Gitelson, I. I. (2010). Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym. Degrad. Stab., 95(12), 2350-2359. doi: 10.1016/j.polymdegradstab.2010.08.023
dc.relation.referencesen11. Padovani, G., Carlozzi, P., Seggiani, M., Cinelli, P. (2016). PHB-Rich Biomass and BioH2 Production by Means of Photosynthetic Microorganisms. Chem. Eng. Trans., 49, 55-60. doi:10.3303/CET1649010
dc.relation.referencesen12. Deroiné, M., Le Duigou, A., Corre, Y.-M., Le Gac, P.-Y., Davies, P., César, G., Bruzaud, S. (2014). Seawater accelerated ageing of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polym. Degrad. Stab.2014, 105(1), 237-247. doi:10.1016/j.polymdegradstab.2014.04.026
dc.relation.referencesen13. Cheng, M., Chen, P., Lan, C., Sun, Y. (2011). Structure, mechanical properties and degradation behaviors of the electrospun fibrous blends of PHBHHx/PDLLA. Polymer 52(6), 1391-1401. doi:10.1016/J.POLYMER.2011.01.039
dc.relation.referencesen14. Aliotta, L., Cinelli, P., Coltelli, M. B., Righetti, M. C., Gazzano, M., Lazzeri, A. (2017). Effect of nucleating agents on crystallinity and properties of poly (lactic acid) (PLA). Eur. Polym. J., 93(5), 822-832. doi:10.1016/j.eurpolymj.2017.04.041
dc.relation.referencesen15. Jones, R. G., Kahovec, J., Stepto, R., Wilks, E.S., Hess, M., Kitayama, T., Metanomski, W. V. (Eds.). (2009). Compendium of polymer terminology and nomenclature: IUPAC recommendations. Cambridge: Published by The Royal Society of Chemistry. https://doi.org/10.1039/9781847559425
dc.relation.referencesen16. Müller, R. J. (2005). Biodegradability of polymers: regulations and methods for testing, Biopolymers Online. doi:10.1002/3527600035.bpola012
dc.relation.referencesen17. Gogolewski, S., Javanovic, M., Perren, S.M., Hughes, M.K. (1990). Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/PHV). Biomaterials, 11, 679-685.
dc.relation.referencesen18. Freier, T., Kunze, C., Nischan, C., Kramer, S., Sternberg, K., Sass, M., Hopt, U. T., Schmitz, K. (2002). In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate). Biomaterials, 23(13), 2649-57. doi:10.1016/s0142-9612(01)00405-7
dc.relation.referencesen19. Semeniuk, I., Pokynbroda, T., Kochubei, V., Midyana, H., Karpenko, O., Skorokhoda, V. (2020). Biosynthesis and characteristics of polyhydroxyalkanoates. 1. Polyhydroxybutyrates of Azotobacter vinelandii N-15. Chem. Chem. Technol.,14(4), 463-467. doi:10.23939/chcht14.04.463
dc.relation.referencesen20. Koretska, N., Semeniuk, I., Pokynbroda, T., Shcheglova, N., Karpenko, O., Kytsya, A., Lubenets, V., Polish, N. (2023). Polyhydroxyalkanoates: Biosynthesis Optimization and Design of Antimicrobial Composites. Innov Biosyst Bioeng., 7(2), 32-41. doi:10.20535/ibb.2023.7.2.280017
dc.relation.referencesen21. Jacquel, N., Lo, C., Wu, H., Wei, Y., Wang, S. (2007). Solubility of Polyhydroxyalkanoates by Experiment and Thermodynamic Correlations. AIChE Journal, 53(10), 2704-2714. doi:10.1002/aic.11274
dc.relation.referencesen22. Gordon, A., Ford, R. (1973). The Chemist's Companion: A Handbook of Practical Data, Techniques, and References 1st Edition. Willey.
dc.relation.referencesen23. Semeniuk, I. V., Kocubei, V. V., Karpenko, O. Y., Midyana, H. H., Karpenko, O. V., Serheyev, V. V. (2019). Study of the composition of humic acids of different origins. Voprosy Khimii i Khimicheskoi Tekhnologii, 4, 150-156. doi:10.32434/0321-4095-2019-125-4-150-156
dc.relation.referencesen24. Hogan, S. A. (1996). Solution Properties and Molecular Size of Polyhydroxybutyrate from Recombinant Escherichia coli. (Master of Science). Massachusetts Institute of Technology, Department of Mechanical Engineering, Massachusetts.
dc.relation.referencesen25. Akita, S., Einaga, Y., Miyaki, Y., Fujita, H. (1976). Solution Properties of Poly(D-b-hydroxybutyrate). 1. Biosynthesis and characterization. Macromolecules, 9(5), 774-780. doi:10.1021/ma60053a017
dc.relation.urihttps://doi.org/10.1016/B978-1-78242-373-7.00014-7
dc.relation.urihttps://doi.org/10.1039/9781847559425
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectполігідроксіалканоат
dc.subjectполілактид
dc.subjectсуміш
dc.subjectплівка
dc.subjectдеградація
dc.subjectгідроліз
dc.subjectpolyhydroxyalkanoate
dc.subjectpolylactide
dc.subjectmixture
dc.subjectfilm
dc.subjectdegradation
dc.subjecthydrolysis
dc.titleДослідження гідролітичної деградації полігідроксіалканоатів і їх сумішей з полілактидами
dc.title.alternativeInvestigation of hydrolytic degradation of polyhydroxyalkanoates and their mixtures with polylactides
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Semeniuk_I_V-Investigation_of_hydrolytic_237-244.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Semeniuk_I_V-Investigation_of_hydrolytic_237-244__COVER.png
Size:
461.97 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.97 KB
Format:
Plain Text
Description: