Cyber-Physical System for Diagnostics Along the Controlled Section of the Oil Pipeline

dc.citation.epage73
dc.citation.issue1
dc.citation.spage66
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorObshta, Anatoliy
dc.contributor.authorBiliak, Yurii
dc.contributor.authorShugai, Vladyslav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-13T09:56:57Z
dc.date.available2024-02-13T09:56:57Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractThe purpose of the work is to develop an experimental model of the control system for compliance with turns along the control length of the pipeline. The open issue of detecting oil product leaks along the controlled section of the pipeline. Preliminary analysis of leak detection methods and principles of operation of hardware and software security diagnostics of the state of pipe transport networks has been considered. A method of studying experimental data and presenting results has been developed. Different literature sources have been analyzed, these literature sources provide information about real cases of pipeline system diagnostics and leak or defect detection. The software and hardware part of the control systems for conducting checks along the control part of the pipeline have been developed, and checks and evaluations of the results of the system checks have been carried out.
dc.format.extent66-73
dc.format.pages8
dc.identifier.citationObshta A. Cyber-Physical System for Diagnostics Along the Controlled Section of the Oil Pipeline / Anatoliy Obshta, Yurii Biliak, Vladyslav Shugai // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 1. — P. 66–73.
dc.identifier.citationenObshta A. Cyber-Physical System for Diagnostics Along the Controlled Section of the Oil Pipeline / Anatoliy Obshta, Yurii Biliak, Vladyslav Shugai // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 1. — P. 66–73.
dc.identifier.doidoi.org/10.23939/acps2023.01.066
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61330
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofAdvances in Cyber-Physical Systems, 1 (8), 2023
dc.relation.referencesBliznyuk I., (2020). Features of committing crimes in the process of extraction, transportation, gas storage, and supply. Access Press, 2020. pp. 26–33. URL: https://openarchive.nure.ua/items/3ef645c7-f8e0-4b01-8583-263bba65ee8e/full
dc.relation.referencesManon Servais, Stéphane Benichou, Arnaud Lemaire, (2022). Illegal hot tapings – qualification stages of an innovative inline inspection tool. Proceedings of Pipeline Technology Conference 2022. URL: https://www.pipeline-journal.net/articles/illegal-hot-tappings-qualifica...
dc.relation.referencesDyachkova N.A., Kolisnykov A.V., (2022). Istoryko-Pravovi aspekty stanovlennya truboprovidnogo transport. Proceedings of the International Scientific-Practical Conference “A person, a society, communicative technologies”. pp. 140–144. URL: https://iris.unive.it/retrieve/34d88a95-98b2-49af-a72a-d8273837e980/X.%2...
dc.relation.referencesKuchin, N.L., Vishnyakov, Y.M. & Emel’yanov, S.I., (2019). Radiation Diagnostics of Pipelines and Equipment of Oil and Gas Production Complexes. At Energy 127, pp. 115–119. https://doi.org/10.1007/s10512-019-00595-1
dc.relation.referencesZhao-Dong Xu, Chen Zhu, Ling-Wei Shao, (2021). Damage Identification of Pipeline Based on Ultrasonic Guided Wave and Wavelet Denoising. Journal of Pipeline Systems Engineering and Practice / Volume 12 Issue 4. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000600
dc.relation.referencesJuan Li, Qiang Zheng, Zhihong Qian, Xiaoping Yang, (2019). A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process Safety and Environmental Protection, volume 123, pp. 306–316. https://doi.org/10.1016/j.psep.2019.01.010
dc.relation.referencesP. D. Ndalila, Y. Li, C. Liu, A. H. A. Nasser, E. A. Mawugbe, (2021). Modeling Dynamic Pressure of Gas Pipeline With Single and Double Leakage. IEEE Sensors Journal, vol. 21, no. 9, pp. 10804–10810. DOI: 10.1109/JSEN.2021.3058507
dc.relation.referencesLing, Kegang, Han, Guoqing, Ni, Xiao, Xu, Chunming, He, Jun, Pei, Peng, Jun Ge., (2015). A New Method for Leak Detection in Gas Pipelines. Oil & Gas Fac 4 2015: 097–106. DOI: https://doi.org/10.2118/2014-1891568-PA
dc.relation.referencesMarco Marino, Fabio Chiappa, Giuseppe Giunta, (2021). A vibroacoustic integrated technology for the detection of a wide spectrum of illegal activities. Proceedings of Pipeline Technology Conference 2021. URL: https://www.pipeline-conference.com/abstracts/vibroacoustic-integrated-t...
dc.relation.referencesC.J.W.Y. Thiberville, P. Waltrich, W.C. Williams, S.I Kam, (2018). Evaluation of Software-Based Early Leak-Warning System in Gulf of Mexico Subsea Flowlines. pp. 802–828, DOI: https://doi.org/10.2118/187417-pa
dc.relation.referencesM.A. Adegboye, A. Karnik, W.-K. Fung, (2021). Numerical study of pipeline leak detection for gas-liquid stratified flow Journal of Natural Gas Science and Engineering, 94. DOI: https://doi.org/10.1016/j.jngse.2021.104054
dc.relation.referencesVladimirsky A., Vladimirsky I., (2021). Correlation parametric methods for determining the coordinates of leaks of underground pipelines. Electronic modeling, 2021 43,3. pp. 3–16. DOI: 10.15407/emodel.43.03.003
dc.relation.referencesGrudz V. Y., (2012). Modern software products as a means of diagnosing non-isothermal oil pipelines. Exploration and Development of Oil and Gas Fields. № 1 2012. pp. 7–16.
dc.relation.referencesH. Fu, L. Yang, H. Liang, S. Wang, K. Ling, (2020). Diagnosis of the single leakage in the fluid pipeline through experimental study and CFD simulation. Journal of Petroleum Science and Engineering, 193. DOI: https://doi.org/10.1016/j.petrol.2020.107437
dc.relation.referencesOfitsiinyi dystrybiutor ICP-DAS v Ukraini. [Electronic resource]. – Available at: http://icpdas.com.ua/ (Accessed: 04 March 2023).
dc.relation.referencesYokogawa electric. [Electronic resource]. – Available at: https://www.yokogawa.com/ (Accessed: 04 March 2023).
dc.relation.referencesSchneider Electric. [Electronic resource]. – Available at: https://www.se.com/in/en/ (Accessed: 04 March 2023).
dc.relation.referencesIvasiv В. М., Deineha О. Р., Faflei О. Я., Mykhailiuk В. В., Bui В. В., & Hovdiak Р. М., (2020). Investigation of the influence of corrosion defects on the durability of main oil pipelines. Oil and Gas Power Engineering, (2(34). pp. 67–74. https://doi.org/10.31471/1993-9868-2020-2(34)-67-74
dc.relation.referencesROSEN Group [Electronic resource].– Available at: www.RosenInspection.net (Accessed: 04 March 2023).
dc.relation.referencesNaga Venkata Saidileep Korlapati, Faisal Khan, Quddus Noor, Saadat Mirza, Sreeram Vaddiraju, (2022). Review and analysis of pipeline leak detection methods. Journal of Pipeline Science and Engineering, Volume 2, Issue 4, 2022. DOI: https://doi.org/10.1016/j.jpse.2022.100074
dc.relation.referencesAkhand Rai, Jong-Myon Kim, (2021). A novel pipeline leak detection approach independent of prior failure information. Measurement, Volume 167, 2021. DOI: https://doi.org/10.1016/j.measurement.2020.108284
dc.relation.referencesZhang, Jun & Hoffman, Andy & Kane, Adrian & Lewis, John., (2014). Development of Pipeline Leak Detection Technologies. DOI: https://doi.org/10.1115/IPC2014-33619.
dc.relation.referencesAdegboye, Mutiu Adesina, Wai-Keung Fung, and Aditya Karnik, (2019). Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors 19, no. 11: 2548. https://doi.org/10.3390/s19112548
dc.relation.referencesSeshu Kumar Vandrangi, Tamiru Alemu Lemma, Syed Muhammad Mujtaba, Titus N. Ofei, (2022). Developments of leak detection, diagnostics, and prediction algorithms in multiphase flows. Chemical Engineering Science, Volume 248, Part B, 2022. DOI: https://doi.org/10.1016/j.ces.2021.117205
dc.relation.referencesAnselemi B. Lukonge, Xuewen Cao, (2020). Leak Detection System for Long-Distance Onshore and Offshore Gas Pipeline Using Acoustic Emission Technology. A Review. Transactions of the Indian Institute of Metals 73(7) June 2020. DOI: 10.1007/s12666-020-02002-x
dc.relation.referencesCharacteristic ICP-DAS I-7520 [Electronic resource].– Available at: https://ipc2u.ua/catalog/i-7520 (Accessed: 04 March 2023).
dc.relation.referencesCharacteristic ICP-DAS I-7017 [Electronic resource].– Available at: https://ipc2u.ua/catalog/i-7017 (Accessed: 04 March 2023).
dc.relation.referencesNazar Repianskyi, Taras Rak, (2022). Client-Server Library index Automation System. ACPS, Vol. 7, Num. 2. pp. 147–155. DOI: https://doi.org/10.23939/acps2022.02.147
dc.relation.referencesenBliznyuk I., (2020). Features of committing crimes in the process of extraction, transportation, gas storage, and supply. Access Press, 2020. pp. 26–33. URL: https://openarchive.nure.ua/items/3ef645c7-f8e0-4b01-8583-263bba65ee8e/full
dc.relation.referencesenManon Servais, Stéphane Benichou, Arnaud Lemaire, (2022). Illegal hot tapings – qualification stages of an innovative inline inspection tool. Proceedings of Pipeline Technology Conference 2022. URL: https://www.pipeline-journal.net/articles/illegal-hot-tappings-qualifica...
dc.relation.referencesenDyachkova N.A., Kolisnykov A.V., (2022). Istoryko-Pravovi aspekty stanovlennya truboprovidnogo transport. Proceedings of the International Scientific-Practical Conference "A person, a society, communicative technologies". pp. 140–144. URL: https://iris.unive.it/retrieve/34d88a95-98b2-49af-a72a-d8273837e980/X.%2...
dc.relation.referencesenKuchin, N.L., Vishnyakov, Y.M. & Emel’yanov, S.I., (2019). Radiation Diagnostics of Pipelines and Equipment of Oil and Gas Production Complexes. At Energy 127, pp. 115–119. https://doi.org/10.1007/s10512-019-00595-1
dc.relation.referencesenZhao-Dong Xu, Chen Zhu, Ling-Wei Shao, (2021). Damage Identification of Pipeline Based on Ultrasonic Guided Wave and Wavelet Denoising. Journal of Pipeline Systems Engineering and Practice, Volume 12 Issue 4. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000600
dc.relation.referencesenJuan Li, Qiang Zheng, Zhihong Qian, Xiaoping Yang, (2019). A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process Safety and Environmental Protection, volume 123, pp. 306–316. https://doi.org/10.1016/j.psep.2019.01.010
dc.relation.referencesenP. D. Ndalila, Y. Li, C. Liu, A. H. A. Nasser, E. A. Mawugbe, (2021). Modeling Dynamic Pressure of Gas Pipeline With Single and Double Leakage. IEEE Sensors Journal, vol. 21, no. 9, pp. 10804–10810. DOI: 10.1109/JSEN.2021.3058507
dc.relation.referencesenLing, Kegang, Han, Guoqing, Ni, Xiao, Xu, Chunming, He, Jun, Pei, Peng, Jun Ge., (2015). A New Method for Leak Detection in Gas Pipelines. Oil & Gas Fac 4 2015: 097–106. DOI: https://doi.org/10.2118/2014-1891568-PA
dc.relation.referencesenMarco Marino, Fabio Chiappa, Giuseppe Giunta, (2021). A vibroacoustic integrated technology for the detection of a wide spectrum of illegal activities. Proceedings of Pipeline Technology Conference 2021. URL: https://www.pipeline-conference.com/abstracts/vibroacoustic-integrated-t...
dc.relation.referencesenC.J.W.Y. Thiberville, P. Waltrich, W.C. Williams, S.I Kam, (2018). Evaluation of Software-Based Early Leak-Warning System in Gulf of Mexico Subsea Flowlines. pp. 802–828, DOI: https://doi.org/10.2118/187417-pa
dc.relation.referencesenM.A. Adegboye, A. Karnik, W.-K. Fung, (2021). Numerical study of pipeline leak detection for gas-liquid stratified flow Journal of Natural Gas Science and Engineering, 94. DOI: https://doi.org/10.1016/j.jngse.2021.104054
dc.relation.referencesenVladimirsky A., Vladimirsky I., (2021). Correlation parametric methods for determining the coordinates of leaks of underground pipelines. Electronic modeling, 2021 43,3. pp. 3–16. DOI: 10.15407/emodel.43.03.003
dc.relation.referencesenGrudz V. Y., (2012). Modern software products as a means of diagnosing non-isothermal oil pipelines. Exploration and Development of Oil and Gas Fields. No 1 2012. pp. 7–16.
dc.relation.referencesenH. Fu, L. Yang, H. Liang, S. Wang, K. Ling, (2020). Diagnosis of the single leakage in the fluid pipeline through experimental study and CFD simulation. Journal of Petroleum Science and Engineering, 193. DOI: https://doi.org/10.1016/j.petrol.2020.107437
dc.relation.referencesenOfitsiinyi dystrybiutor ICP-DAS v Ukraini. [Electronic resource], Available at: http://icpdas.com.ua/ (Accessed: 04 March 2023).
dc.relation.referencesenYokogawa electric. [Electronic resource], Available at: https://www.yokogawa.com/ (Accessed: 04 March 2023).
dc.relation.referencesenSchneider Electric. [Electronic resource], Available at: https://www.se.com/in/en/ (Accessed: 04 March 2023).
dc.relation.referencesenIvasiv V. M., Deineha O. R., Faflei O. Ia., Mykhailiuk V. V., Bui V. V., & Hovdiak R. M., (2020). Investigation of the influence of corrosion defects on the durability of main oil pipelines. Oil and Gas Power Engineering, (2(34). pp. 67–74. https://doi.org/10.31471/1993-9868-2020-2(34)-67-74
dc.relation.referencesenROSEN Group [Electronic resource], Available at: www.RosenInspection.net (Accessed: 04 March 2023).
dc.relation.referencesenNaga Venkata Saidileep Korlapati, Faisal Khan, Quddus Noor, Saadat Mirza, Sreeram Vaddiraju, (2022). Review and analysis of pipeline leak detection methods. Journal of Pipeline Science and Engineering, Volume 2, Issue 4, 2022. DOI: https://doi.org/10.1016/j.jpse.2022.100074
dc.relation.referencesenAkhand Rai, Jong-Myon Kim, (2021). A novel pipeline leak detection approach independent of prior failure information. Measurement, Volume 167, 2021. DOI: https://doi.org/10.1016/j.measurement.2020.108284
dc.relation.referencesenZhang, Jun & Hoffman, Andy & Kane, Adrian & Lewis, John., (2014). Development of Pipeline Leak Detection Technologies. DOI: https://doi.org/10.1115/IPC2014-33619.
dc.relation.referencesenAdegboye, Mutiu Adesina, Wai-Keung Fung, and Aditya Karnik, (2019). Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors 19, no. 11: 2548. https://doi.org/10.3390/s19112548
dc.relation.referencesenSeshu Kumar Vandrangi, Tamiru Alemu Lemma, Syed Muhammad Mujtaba, Titus N. Ofei, (2022). Developments of leak detection, diagnostics, and prediction algorithms in multiphase flows. Chemical Engineering Science, Volume 248, Part B, 2022. DOI: https://doi.org/10.1016/j.ces.2021.117205
dc.relation.referencesenAnselemi B. Lukonge, Xuewen Cao, (2020). Leak Detection System for Long-Distance Onshore and Offshore Gas Pipeline Using Acoustic Emission Technology. A Review. Transactions of the Indian Institute of Metals 73(7) June 2020. DOI: 10.1007/s12666-020-02002-x
dc.relation.referencesenCharacteristic ICP-DAS I-7520 [Electronic resource], Available at: https://ipc2u.ua/catalog/i-7520 (Accessed: 04 March 2023).
dc.relation.referencesenCharacteristic ICP-DAS I-7017 [Electronic resource], Available at: https://ipc2u.ua/catalog/i-7017 (Accessed: 04 March 2023).
dc.relation.referencesenNazar Repianskyi, Taras Rak, (2022). Client-Server Library index Automation System. ACPS, Vol. 7, Num. 2. pp. 147–155. DOI: https://doi.org/10.23939/acps2022.02.147
dc.relation.urihttps://openarchive.nure.ua/items/3ef645c7-f8e0-4b01-8583-263bba65ee8e/full
dc.relation.urihttps://www.pipeline-journal.net/articles/illegal-hot-tappings-qualifica..
dc.relation.urihttps://iris.unive.it/retrieve/34d88a95-98b2-49af-a72a-d8273837e980/X.%2..
dc.relation.urihttps://doi.org/10.1007/s10512-019-00595-1
dc.relation.urihttps://doi.org/10.1061/(ASCE)PS.1949-1204.0000600
dc.relation.urihttps://doi.org/10.1016/j.psep.2019.01.010
dc.relation.urihttps://doi.org/10.2118/2014-1891568-PA
dc.relation.urihttps://www.pipeline-conference.com/abstracts/vibroacoustic-integrated-t..
dc.relation.urihttps://doi.org/10.2118/187417-pa
dc.relation.urihttps://doi.org/10.1016/j.jngse.2021.104054
dc.relation.urihttps://doi.org/10.1016/j.petrol.2020.107437
dc.relation.urihttp://icpdas.com.ua/
dc.relation.urihttps://www.yokogawa.com/
dc.relation.urihttps://www.se.com/in/en/
dc.relation.urihttps://doi.org/10.31471/1993-9868-2020-2(34)-67-74
dc.relation.urihttps://doi.org/10.1016/j.jpse.2022.100074
dc.relation.urihttps://doi.org/10.1016/j.measurement.2020.108284
dc.relation.urihttps://doi.org/10.1115/IPC2014-33619
dc.relation.urihttps://doi.org/10.3390/s19112548
dc.relation.urihttps://doi.org/10.1016/j.ces.2021.117205
dc.relation.urihttps://ipc2u.ua/catalog/i-7520
dc.relation.urihttps://ipc2u.ua/catalog/i-7017
dc.relation.urihttps://doi.org/10.23939/acps2022.02.147
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Biliak Y., Obshta A., Shugai V., 2023
dc.subjectleak detection system
dc.subjectnegative pressure wave method
dc.subjectregistration of mechanical effects on the pipeline
dc.subjectflowmeasurement
dc.titleCyber-Physical System for Diagnostics Along the Controlled Section of the Oil Pipeline
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v8n1_Obshta_A-Cyber_Physical_System_for_66-73.pdf
Size:
453.19 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v8n1_Obshta_A-Cyber_Physical_System_for_66-73__COVER.png
Size:
542.86 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: