Cyber-Physical System for Diagnostics Along the Controlled Section of the Oil Pipeline
dc.citation.epage | 73 | |
dc.citation.issue | 1 | |
dc.citation.spage | 66 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Obshta, Anatoliy | |
dc.contributor.author | Biliak, Yurii | |
dc.contributor.author | Shugai, Vladyslav | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-13T09:56:57Z | |
dc.date.available | 2024-02-13T09:56:57Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | The purpose of the work is to develop an experimental model of the control system for compliance with turns along the control length of the pipeline. The open issue of detecting oil product leaks along the controlled section of the pipeline. Preliminary analysis of leak detection methods and principles of operation of hardware and software security diagnostics of the state of pipe transport networks has been considered. A method of studying experimental data and presenting results has been developed. Different literature sources have been analyzed, these literature sources provide information about real cases of pipeline system diagnostics and leak or defect detection. The software and hardware part of the control systems for conducting checks along the control part of the pipeline have been developed, and checks and evaluations of the results of the system checks have been carried out. | |
dc.format.extent | 66-73 | |
dc.format.pages | 8 | |
dc.identifier.citation | Obshta A. Cyber-Physical System for Diagnostics Along the Controlled Section of the Oil Pipeline / Anatoliy Obshta, Yurii Biliak, Vladyslav Shugai // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 1. — P. 66–73. | |
dc.identifier.citationen | Obshta A. Cyber-Physical System for Diagnostics Along the Controlled Section of the Oil Pipeline / Anatoliy Obshta, Yurii Biliak, Vladyslav Shugai // Advances in Cyber-Physical Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 8. — No 1. — P. 66–73. | |
dc.identifier.doi | doi.org/10.23939/acps2023.01.066 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61330 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Advances in Cyber-Physical Systems, 1 (8), 2023 | |
dc.relation.references | Bliznyuk I., (2020). Features of committing crimes in the process of extraction, transportation, gas storage, and supply. Access Press, 2020. pp. 26–33. URL: https://openarchive.nure.ua/items/3ef645c7-f8e0-4b01-8583-263bba65ee8e/full | |
dc.relation.references | Manon Servais, Stéphane Benichou, Arnaud Lemaire, (2022). Illegal hot tapings – qualification stages of an innovative inline inspection tool. Proceedings of Pipeline Technology Conference 2022. URL: https://www.pipeline-journal.net/articles/illegal-hot-tappings-qualifica... | |
dc.relation.references | Dyachkova N.A., Kolisnykov A.V., (2022). Istoryko-Pravovi aspekty stanovlennya truboprovidnogo transport. Proceedings of the International Scientific-Practical Conference “A person, a society, communicative technologies”. pp. 140–144. URL: https://iris.unive.it/retrieve/34d88a95-98b2-49af-a72a-d8273837e980/X.%2... | |
dc.relation.references | Kuchin, N.L., Vishnyakov, Y.M. & Emel’yanov, S.I., (2019). Radiation Diagnostics of Pipelines and Equipment of Oil and Gas Production Complexes. At Energy 127, pp. 115–119. https://doi.org/10.1007/s10512-019-00595-1 | |
dc.relation.references | Zhao-Dong Xu, Chen Zhu, Ling-Wei Shao, (2021). Damage Identification of Pipeline Based on Ultrasonic Guided Wave and Wavelet Denoising. Journal of Pipeline Systems Engineering and Practice / Volume 12 Issue 4. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000600 | |
dc.relation.references | Juan Li, Qiang Zheng, Zhihong Qian, Xiaoping Yang, (2019). A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process Safety and Environmental Protection, volume 123, pp. 306–316. https://doi.org/10.1016/j.psep.2019.01.010 | |
dc.relation.references | P. D. Ndalila, Y. Li, C. Liu, A. H. A. Nasser, E. A. Mawugbe, (2021). Modeling Dynamic Pressure of Gas Pipeline With Single and Double Leakage. IEEE Sensors Journal, vol. 21, no. 9, pp. 10804–10810. DOI: 10.1109/JSEN.2021.3058507 | |
dc.relation.references | Ling, Kegang, Han, Guoqing, Ni, Xiao, Xu, Chunming, He, Jun, Pei, Peng, Jun Ge., (2015). A New Method for Leak Detection in Gas Pipelines. Oil & Gas Fac 4 2015: 097–106. DOI: https://doi.org/10.2118/2014-1891568-PA | |
dc.relation.references | Marco Marino, Fabio Chiappa, Giuseppe Giunta, (2021). A vibroacoustic integrated technology for the detection of a wide spectrum of illegal activities. Proceedings of Pipeline Technology Conference 2021. URL: https://www.pipeline-conference.com/abstracts/vibroacoustic-integrated-t... | |
dc.relation.references | C.J.W.Y. Thiberville, P. Waltrich, W.C. Williams, S.I Kam, (2018). Evaluation of Software-Based Early Leak-Warning System in Gulf of Mexico Subsea Flowlines. pp. 802–828, DOI: https://doi.org/10.2118/187417-pa | |
dc.relation.references | M.A. Adegboye, A. Karnik, W.-K. Fung, (2021). Numerical study of pipeline leak detection for gas-liquid stratified flow Journal of Natural Gas Science and Engineering, 94. DOI: https://doi.org/10.1016/j.jngse.2021.104054 | |
dc.relation.references | Vladimirsky A., Vladimirsky I., (2021). Correlation parametric methods for determining the coordinates of leaks of underground pipelines. Electronic modeling, 2021 43,3. pp. 3–16. DOI: 10.15407/emodel.43.03.003 | |
dc.relation.references | Grudz V. Y., (2012). Modern software products as a means of diagnosing non-isothermal oil pipelines. Exploration and Development of Oil and Gas Fields. № 1 2012. pp. 7–16. | |
dc.relation.references | H. Fu, L. Yang, H. Liang, S. Wang, K. Ling, (2020). Diagnosis of the single leakage in the fluid pipeline through experimental study and CFD simulation. Journal of Petroleum Science and Engineering, 193. DOI: https://doi.org/10.1016/j.petrol.2020.107437 | |
dc.relation.references | Ofitsiinyi dystrybiutor ICP-DAS v Ukraini. [Electronic resource]. – Available at: http://icpdas.com.ua/ (Accessed: 04 March 2023). | |
dc.relation.references | Yokogawa electric. [Electronic resource]. – Available at: https://www.yokogawa.com/ (Accessed: 04 March 2023). | |
dc.relation.references | Schneider Electric. [Electronic resource]. – Available at: https://www.se.com/in/en/ (Accessed: 04 March 2023). | |
dc.relation.references | Ivasiv В. М., Deineha О. Р., Faflei О. Я., Mykhailiuk В. В., Bui В. В., & Hovdiak Р. М., (2020). Investigation of the influence of corrosion defects on the durability of main oil pipelines. Oil and Gas Power Engineering, (2(34). pp. 67–74. https://doi.org/10.31471/1993-9868-2020-2(34)-67-74 | |
dc.relation.references | ROSEN Group [Electronic resource].– Available at: www.RosenInspection.net (Accessed: 04 March 2023). | |
dc.relation.references | Naga Venkata Saidileep Korlapati, Faisal Khan, Quddus Noor, Saadat Mirza, Sreeram Vaddiraju, (2022). Review and analysis of pipeline leak detection methods. Journal of Pipeline Science and Engineering, Volume 2, Issue 4, 2022. DOI: https://doi.org/10.1016/j.jpse.2022.100074 | |
dc.relation.references | Akhand Rai, Jong-Myon Kim, (2021). A novel pipeline leak detection approach independent of prior failure information. Measurement, Volume 167, 2021. DOI: https://doi.org/10.1016/j.measurement.2020.108284 | |
dc.relation.references | Zhang, Jun & Hoffman, Andy & Kane, Adrian & Lewis, John., (2014). Development of Pipeline Leak Detection Technologies. DOI: https://doi.org/10.1115/IPC2014-33619. | |
dc.relation.references | Adegboye, Mutiu Adesina, Wai-Keung Fung, and Aditya Karnik, (2019). Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors 19, no. 11: 2548. https://doi.org/10.3390/s19112548 | |
dc.relation.references | Seshu Kumar Vandrangi, Tamiru Alemu Lemma, Syed Muhammad Mujtaba, Titus N. Ofei, (2022). Developments of leak detection, diagnostics, and prediction algorithms in multiphase flows. Chemical Engineering Science, Volume 248, Part B, 2022. DOI: https://doi.org/10.1016/j.ces.2021.117205 | |
dc.relation.references | Anselemi B. Lukonge, Xuewen Cao, (2020). Leak Detection System for Long-Distance Onshore and Offshore Gas Pipeline Using Acoustic Emission Technology. A Review. Transactions of the Indian Institute of Metals 73(7) June 2020. DOI: 10.1007/s12666-020-02002-x | |
dc.relation.references | Characteristic ICP-DAS I-7520 [Electronic resource].– Available at: https://ipc2u.ua/catalog/i-7520 (Accessed: 04 March 2023). | |
dc.relation.references | Characteristic ICP-DAS I-7017 [Electronic resource].– Available at: https://ipc2u.ua/catalog/i-7017 (Accessed: 04 March 2023). | |
dc.relation.references | Nazar Repianskyi, Taras Rak, (2022). Client-Server Library index Automation System. ACPS, Vol. 7, Num. 2. pp. 147–155. DOI: https://doi.org/10.23939/acps2022.02.147 | |
dc.relation.referencesen | Bliznyuk I., (2020). Features of committing crimes in the process of extraction, transportation, gas storage, and supply. Access Press, 2020. pp. 26–33. URL: https://openarchive.nure.ua/items/3ef645c7-f8e0-4b01-8583-263bba65ee8e/full | |
dc.relation.referencesen | Manon Servais, Stéphane Benichou, Arnaud Lemaire, (2022). Illegal hot tapings – qualification stages of an innovative inline inspection tool. Proceedings of Pipeline Technology Conference 2022. URL: https://www.pipeline-journal.net/articles/illegal-hot-tappings-qualifica... | |
dc.relation.referencesen | Dyachkova N.A., Kolisnykov A.V., (2022). Istoryko-Pravovi aspekty stanovlennya truboprovidnogo transport. Proceedings of the International Scientific-Practical Conference "A person, a society, communicative technologies". pp. 140–144. URL: https://iris.unive.it/retrieve/34d88a95-98b2-49af-a72a-d8273837e980/X.%2... | |
dc.relation.referencesen | Kuchin, N.L., Vishnyakov, Y.M. & Emel’yanov, S.I., (2019). Radiation Diagnostics of Pipelines and Equipment of Oil and Gas Production Complexes. At Energy 127, pp. 115–119. https://doi.org/10.1007/s10512-019-00595-1 | |
dc.relation.referencesen | Zhao-Dong Xu, Chen Zhu, Ling-Wei Shao, (2021). Damage Identification of Pipeline Based on Ultrasonic Guided Wave and Wavelet Denoising. Journal of Pipeline Systems Engineering and Practice, Volume 12 Issue 4. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000600 | |
dc.relation.referencesen | Juan Li, Qiang Zheng, Zhihong Qian, Xiaoping Yang, (2019). A novel location algorithm for pipeline leakage based on the attenuation of negative pressure wave. Process Safety and Environmental Protection, volume 123, pp. 306–316. https://doi.org/10.1016/j.psep.2019.01.010 | |
dc.relation.referencesen | P. D. Ndalila, Y. Li, C. Liu, A. H. A. Nasser, E. A. Mawugbe, (2021). Modeling Dynamic Pressure of Gas Pipeline With Single and Double Leakage. IEEE Sensors Journal, vol. 21, no. 9, pp. 10804–10810. DOI: 10.1109/JSEN.2021.3058507 | |
dc.relation.referencesen | Ling, Kegang, Han, Guoqing, Ni, Xiao, Xu, Chunming, He, Jun, Pei, Peng, Jun Ge., (2015). A New Method for Leak Detection in Gas Pipelines. Oil & Gas Fac 4 2015: 097–106. DOI: https://doi.org/10.2118/2014-1891568-PA | |
dc.relation.referencesen | Marco Marino, Fabio Chiappa, Giuseppe Giunta, (2021). A vibroacoustic integrated technology for the detection of a wide spectrum of illegal activities. Proceedings of Pipeline Technology Conference 2021. URL: https://www.pipeline-conference.com/abstracts/vibroacoustic-integrated-t... | |
dc.relation.referencesen | C.J.W.Y. Thiberville, P. Waltrich, W.C. Williams, S.I Kam, (2018). Evaluation of Software-Based Early Leak-Warning System in Gulf of Mexico Subsea Flowlines. pp. 802–828, DOI: https://doi.org/10.2118/187417-pa | |
dc.relation.referencesen | M.A. Adegboye, A. Karnik, W.-K. Fung, (2021). Numerical study of pipeline leak detection for gas-liquid stratified flow Journal of Natural Gas Science and Engineering, 94. DOI: https://doi.org/10.1016/j.jngse.2021.104054 | |
dc.relation.referencesen | Vladimirsky A., Vladimirsky I., (2021). Correlation parametric methods for determining the coordinates of leaks of underground pipelines. Electronic modeling, 2021 43,3. pp. 3–16. DOI: 10.15407/emodel.43.03.003 | |
dc.relation.referencesen | Grudz V. Y., (2012). Modern software products as a means of diagnosing non-isothermal oil pipelines. Exploration and Development of Oil and Gas Fields. No 1 2012. pp. 7–16. | |
dc.relation.referencesen | H. Fu, L. Yang, H. Liang, S. Wang, K. Ling, (2020). Diagnosis of the single leakage in the fluid pipeline through experimental study and CFD simulation. Journal of Petroleum Science and Engineering, 193. DOI: https://doi.org/10.1016/j.petrol.2020.107437 | |
dc.relation.referencesen | Ofitsiinyi dystrybiutor ICP-DAS v Ukraini. [Electronic resource], Available at: http://icpdas.com.ua/ (Accessed: 04 March 2023). | |
dc.relation.referencesen | Yokogawa electric. [Electronic resource], Available at: https://www.yokogawa.com/ (Accessed: 04 March 2023). | |
dc.relation.referencesen | Schneider Electric. [Electronic resource], Available at: https://www.se.com/in/en/ (Accessed: 04 March 2023). | |
dc.relation.referencesen | Ivasiv V. M., Deineha O. R., Faflei O. Ia., Mykhailiuk V. V., Bui V. V., & Hovdiak R. M., (2020). Investigation of the influence of corrosion defects on the durability of main oil pipelines. Oil and Gas Power Engineering, (2(34). pp. 67–74. https://doi.org/10.31471/1993-9868-2020-2(34)-67-74 | |
dc.relation.referencesen | ROSEN Group [Electronic resource], Available at: www.RosenInspection.net (Accessed: 04 March 2023). | |
dc.relation.referencesen | Naga Venkata Saidileep Korlapati, Faisal Khan, Quddus Noor, Saadat Mirza, Sreeram Vaddiraju, (2022). Review and analysis of pipeline leak detection methods. Journal of Pipeline Science and Engineering, Volume 2, Issue 4, 2022. DOI: https://doi.org/10.1016/j.jpse.2022.100074 | |
dc.relation.referencesen | Akhand Rai, Jong-Myon Kim, (2021). A novel pipeline leak detection approach independent of prior failure information. Measurement, Volume 167, 2021. DOI: https://doi.org/10.1016/j.measurement.2020.108284 | |
dc.relation.referencesen | Zhang, Jun & Hoffman, Andy & Kane, Adrian & Lewis, John., (2014). Development of Pipeline Leak Detection Technologies. DOI: https://doi.org/10.1115/IPC2014-33619. | |
dc.relation.referencesen | Adegboye, Mutiu Adesina, Wai-Keung Fung, and Aditya Karnik, (2019). Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors 19, no. 11: 2548. https://doi.org/10.3390/s19112548 | |
dc.relation.referencesen | Seshu Kumar Vandrangi, Tamiru Alemu Lemma, Syed Muhammad Mujtaba, Titus N. Ofei, (2022). Developments of leak detection, diagnostics, and prediction algorithms in multiphase flows. Chemical Engineering Science, Volume 248, Part B, 2022. DOI: https://doi.org/10.1016/j.ces.2021.117205 | |
dc.relation.referencesen | Anselemi B. Lukonge, Xuewen Cao, (2020). Leak Detection System for Long-Distance Onshore and Offshore Gas Pipeline Using Acoustic Emission Technology. A Review. Transactions of the Indian Institute of Metals 73(7) June 2020. DOI: 10.1007/s12666-020-02002-x | |
dc.relation.referencesen | Characteristic ICP-DAS I-7520 [Electronic resource], Available at: https://ipc2u.ua/catalog/i-7520 (Accessed: 04 March 2023). | |
dc.relation.referencesen | Characteristic ICP-DAS I-7017 [Electronic resource], Available at: https://ipc2u.ua/catalog/i-7017 (Accessed: 04 March 2023). | |
dc.relation.referencesen | Nazar Repianskyi, Taras Rak, (2022). Client-Server Library index Automation System. ACPS, Vol. 7, Num. 2. pp. 147–155. DOI: https://doi.org/10.23939/acps2022.02.147 | |
dc.relation.uri | https://openarchive.nure.ua/items/3ef645c7-f8e0-4b01-8583-263bba65ee8e/full | |
dc.relation.uri | https://www.pipeline-journal.net/articles/illegal-hot-tappings-qualifica.. | |
dc.relation.uri | https://iris.unive.it/retrieve/34d88a95-98b2-49af-a72a-d8273837e980/X.%2.. | |
dc.relation.uri | https://doi.org/10.1007/s10512-019-00595-1 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)PS.1949-1204.0000600 | |
dc.relation.uri | https://doi.org/10.1016/j.psep.2019.01.010 | |
dc.relation.uri | https://doi.org/10.2118/2014-1891568-PA | |
dc.relation.uri | https://www.pipeline-conference.com/abstracts/vibroacoustic-integrated-t.. | |
dc.relation.uri | https://doi.org/10.2118/187417-pa | |
dc.relation.uri | https://doi.org/10.1016/j.jngse.2021.104054 | |
dc.relation.uri | https://doi.org/10.1016/j.petrol.2020.107437 | |
dc.relation.uri | http://icpdas.com.ua/ | |
dc.relation.uri | https://www.yokogawa.com/ | |
dc.relation.uri | https://www.se.com/in/en/ | |
dc.relation.uri | https://doi.org/10.31471/1993-9868-2020-2(34)-67-74 | |
dc.relation.uri | https://doi.org/10.1016/j.jpse.2022.100074 | |
dc.relation.uri | https://doi.org/10.1016/j.measurement.2020.108284 | |
dc.relation.uri | https://doi.org/10.1115/IPC2014-33619 | |
dc.relation.uri | https://doi.org/10.3390/s19112548 | |
dc.relation.uri | https://doi.org/10.1016/j.ces.2021.117205 | |
dc.relation.uri | https://ipc2u.ua/catalog/i-7520 | |
dc.relation.uri | https://ipc2u.ua/catalog/i-7017 | |
dc.relation.uri | https://doi.org/10.23939/acps2022.02.147 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Biliak Y., Obshta A., Shugai V., 2023 | |
dc.subject | leak detection system | |
dc.subject | negative pressure wave method | |
dc.subject | registration of mechanical effects on the pipeline | |
dc.subject | flowmeasurement | |
dc.title | Cyber-Physical System for Diagnostics Along the Controlled Section of the Oil Pipeline | |
dc.type | Article |
Files
License bundle
1 - 1 of 1