Hydrodynamics of filtration drying of wild carrot pomace

dc.citation.epage87
dc.citation.issue1
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage79
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationUniversity of Zagreb
dc.contributor.authorDenysiuk, Alina
dc.contributor.authorAtamanyuk, Volodymyr
dc.contributor.authorHnativ, Zoriana
dc.contributor.authorBoldyryev, Stanislav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:51:07Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractThe paper presents the results of a study on the hydrodynamics of the stationary layer of wild carrot pomace during filtration drying, as a raw material for the production of ecological alternative solid fuel. The main geometric parameters of individual wild carrot pomace particles and the physicomechanical properties of the stationary layer were determined experimentally. A diagram of the experimental setup is provided. The results of the experimental studies are presented in the form of functional dependencies of pressure loss ∆P = f(ʋ0) and Euler’s criterion as a function of Reynolds number and the geometric simplex Eu = f(Re, G). The feasibility of pretreatment of wild carrot pomace for alternative biofuel production is justified. The obtained results allow for predicting energy consumption when developing equipment for the filtration drying of this material.
dc.format.extent79-87
dc.format.pages9
dc.identifier.citationHydrodynamics of filtration drying of wild carrot pomace / Alina Denysiuk, Volodymyr Atamanyuk, Zoriana Hnativ, Stanislav Boldyryev // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 79–87.
dc.identifier.citationenHydrodynamics of filtration drying of wild carrot pomace / Alina Denysiuk, Volodymyr Atamanyuk, Zoriana Hnativ, Stanislav Boldyryev // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 79–87.
dc.identifier.doidoi.org/10.23939/ep2025.01.079
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120439
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 1 (10), 2025
dc.relation.ispartofEnvironmental Problems, 1 (10), 2025
dc.relation.referencesAtamanyuk, V. M., & Humnytskyi, Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Vydavnytstvo Natsionalnoho universytetu "Lvivska politekhnika", Lviv.
dc.relation.referencesAtamanyuk, V., Gnativ, Z., Kindzera, D., Janabayev, D., & Khusanov, A. (2020). Hydrodynamics of cotton filtration drying. Chemistry & Chemical Technology, 14(3), 426–432. doi: https://doi.org/10.23939/chcht14.03
dc.relation.referencesAtamanyuk, V., Huzova, I., & Gnativ, Z. (2018). Intensification of drying process during activated carbon regeneration. Chemistry & Chemical Technology, 12(2), 263–271. doi: https://doi.org/10.23939/chcht12.02.263
dc.relation.referencesBoadi, N. O., Badu, M., Kortei, N. K., Saah, S. A., Annor, B., Mensah, M. B., & Fiebor, A. (2021). Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Scientific African, 12, e00801. doi: https://doi.org/10.1016/j.sciaf.2021.e00801
dc.relation.referencesGuibunda, F. A., Waita, S., Nyongesa, F. W., Snyder, G. J., & Chaciga, J. (2024). Optimizing biomass briquette drying: A computational fluid dynamics approach with a case study in Mozambique. Energy, 360, 100012. doi: https://doi.org/10.1016/j.energ.2024.100012
dc.relation.referencesIsmail, J., Shebaby, W. N., Daher, J., Boulos, J. C., Taleb, R., Daher, C. F., & Mroueh, M. (2024). The wild carrot (Daucus carota): A phytochemical and pharmacological review. Plants, 13(1), 93. doi: https://doi.org/10.3390/plants13010093
dc.relation.referencesIvashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., & Sobechko, I. B. (2022). Preparation of an alternate solid fuel from alcohol distillery stillage. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 54–59. doi: https://doi.org/10.32434/0321-4095-2022-140-1-54-59
dc.relation.referencesIvashchuk, O., Atamanyuk, V., Chyzhovych, R., Bacho, S., & Boldyryev, S. (2024). Investigation of the efficiency of a beet pulp filtration drying process. Journal of Environmental Problems, 9(4), 268–274. doi: https://doi.org/10.23939/ep2024.04.268
dc.relation.referencesIvashchuk, O., Atamanyuk, V., Chyzhovych, R., Manastyrska, V. A., Barabakh, S. A., & Hnativ, Z. (2024). Kinetic regularities of the filtration drying of barley brewer’s spent grain. Chemistry & Chemical Technology, 18(1), 66. doi: https://doi.org/10.23939/chcht18.01.066
dc.relation.referencesIvashchuk, O., Chyzhovych, R., & Atamanyuk, V. (2024). Simulation of the thermal agent movement hydrodynamics through the stationary layer of the alcohol distillery stillage. Case Studies in Chemical and Environmental Engineering, 9, 100566. doi: https://doi.org/10.1016/j.cscee.2023.100566
dc.relation.referencesKindzera, D. P., Atamanyuk, V. M., Helesh, A. B., & Tsiura, N. Y. (2024). Hydrodynamic and kinetic patterns of yellow iron oxide pigment filtration drying. Chemistry, Technology and Application of Substances, 7(1). doi: https://doi.org/10.23939/ctas2024.01.188
dc.relation.referencesKindzera, D., Hosovskyi, R., Atamanyuk, V., & Symak, D. (2021). Heat transfer process during filtration drying of grinded sunflower biomass. Chemistry & Chemical Technology, 15(1), 118. doi: https://doi.org/10.23939/chcht15.01.118
dc.relation.referencesKobeyeva, Z., Khussanov, A., Atamanyuk, V., Hnativ, Z., Kaldybayeva, B., Janabayev, D., & Gnylianska, L. (2022). Analyzing the kinetics in the filtration drying of crushed cotton stalks. Eastern-European Journal of Enterprise Technologies, 1(8(115)), 55–66. doi: https://doi.org/10.15587/1729-4061.2022.252352
dc.relation.referencesKumar Sarangi, P., Subudhi, S., & Bhatia, L. (2023). Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 30, 8526–8539. doi: https://doi.org/10.1007/s11356-022-20669-1
dc.relation.referencesSrivastava, R. K., Shetti, N. P., Reddy, K. R., Kwon, E. E., Nadagouda, M. N., & Aminabhavi, T. M. (2021). Biomass utilization and production of biofuels from carbon-neutral materials. Environmental Pollution, 276, 116731. doi: https://doi.org/10.1016/j.envpol.2021.116731
dc.relation.referencesStanojević, K., Milenković, A., Pavlović, D., Matejić, J., Gajić, I., Dinić, A., & Stanojević, L. (2023). Anti-inflammatory activity of wild carrot (Daucus carota L.) umbels ethanolic extracts from Serbia and Greece. Archives of Pharmacy, 73(Suppl. 4), S71–S72. doi: https://doi.org/10.1016/j.envpol.2021.116731
dc.relation.referencesZhou, C., Fan, X., Duan, C., & Zhao, Y. (2019). A method to improve fluidization quality in gas–solid fluidized bed for fine coal beneficiation. Particuology, 43, 181–192. doi: https://doi.org/10.1016/j.partic.2017.12.012
dc.relation.referencesenAtamanyuk, V. M., & Humnytskyi, Ya. M. (2013). Naukovi osnovy filtratsiinoho sushinnia dyspersnykh materialiv. Vydavnytstvo Natsionalnoho universytetu "Lvivska politekhnika", Lviv.
dc.relation.referencesenAtamanyuk, V., Gnativ, Z., Kindzera, D., Janabayev, D., & Khusanov, A. (2020). Hydrodynamics of cotton filtration drying. Chemistry & Chemical Technology, 14(3), 426–432. doi: https://doi.org/10.23939/chcht14.03
dc.relation.referencesenAtamanyuk, V., Huzova, I., & Gnativ, Z. (2018). Intensification of drying process during activated carbon regeneration. Chemistry & Chemical Technology, 12(2), 263–271. doi: https://doi.org/10.23939/chcht12.02.263
dc.relation.referencesenBoadi, N. O., Badu, M., Kortei, N. K., Saah, S. A., Annor, B., Mensah, M. B., & Fiebor, A. (2021). Nutritional composition and antioxidant properties of three varieties of carrot (Daucus carota). Scientific African, 12, e00801. doi: https://doi.org/10.1016/j.sciaf.2021.e00801
dc.relation.referencesenGuibunda, F. A., Waita, S., Nyongesa, F. W., Snyder, G. J., & Chaciga, J. (2024). Optimizing biomass briquette drying: A computational fluid dynamics approach with a case study in Mozambique. Energy, 360, 100012. doi: https://doi.org/10.1016/j.energ.2024.100012
dc.relation.referencesenIsmail, J., Shebaby, W. N., Daher, J., Boulos, J. C., Taleb, R., Daher, C. F., & Mroueh, M. (2024). The wild carrot (Daucus carota): A phytochemical and pharmacological review. Plants, 13(1), 93. doi: https://doi.org/10.3390/plants13010093
dc.relation.referencesenIvashchuk, O. S., Atamanyuk, V. M., Chyzhovych, R. A., Kiiaieva, S. S., Zherebetskyi, R. R., & Sobechko, I. B. (2022). Preparation of an alternate solid fuel from alcohol distillery stillage. Voprosy Khimii i Khimicheskoi Tekhnologii, 1, 54–59. doi: https://doi.org/10.32434/0321-4095-2022-140-1-54-59
dc.relation.referencesenIvashchuk, O., Atamanyuk, V., Chyzhovych, R., Bacho, S., & Boldyryev, S. (2024). Investigation of the efficiency of a beet pulp filtration drying process. Journal of Environmental Problems, 9(4), 268–274. doi: https://doi.org/10.23939/ep2024.04.268
dc.relation.referencesenIvashchuk, O., Atamanyuk, V., Chyzhovych, R., Manastyrska, V. A., Barabakh, S. A., & Hnativ, Z. (2024). Kinetic regularities of the filtration drying of barley brewer’s spent grain. Chemistry & Chemical Technology, 18(1), 66. doi: https://doi.org/10.23939/chcht18.01.066
dc.relation.referencesenIvashchuk, O., Chyzhovych, R., & Atamanyuk, V. (2024). Simulation of the thermal agent movement hydrodynamics through the stationary layer of the alcohol distillery stillage. Case Studies in Chemical and Environmental Engineering, 9, 100566. doi: https://doi.org/10.1016/j.cscee.2023.100566
dc.relation.referencesenKindzera, D. P., Atamanyuk, V. M., Helesh, A. B., & Tsiura, N. Y. (2024). Hydrodynamic and kinetic patterns of yellow iron oxide pigment filtration drying. Chemistry, Technology and Application of Substances, 7(1). doi: https://doi.org/10.23939/ctas2024.01.188
dc.relation.referencesenKindzera, D., Hosovskyi, R., Atamanyuk, V., & Symak, D. (2021). Heat transfer process during filtration drying of grinded sunflower biomass. Chemistry & Chemical Technology, 15(1), 118. doi: https://doi.org/10.23939/chcht15.01.118
dc.relation.referencesenKobeyeva, Z., Khussanov, A., Atamanyuk, V., Hnativ, Z., Kaldybayeva, B., Janabayev, D., & Gnylianska, L. (2022). Analyzing the kinetics in the filtration drying of crushed cotton stalks. Eastern-European Journal of Enterprise Technologies, 1(8(115)), 55–66. doi: https://doi.org/10.15587/1729-4061.2022.252352
dc.relation.referencesenKumar Sarangi, P., Subudhi, S., & Bhatia, L. (2023). Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environmental Science and Pollution Research, 30, 8526–8539. doi: https://doi.org/10.1007/s11356-022-20669-1
dc.relation.referencesenSrivastava, R. K., Shetti, N. P., Reddy, K. R., Kwon, E. E., Nadagouda, M. N., & Aminabhavi, T. M. (2021). Biomass utilization and production of biofuels from carbon-neutral materials. Environmental Pollution, 276, 116731. doi: https://doi.org/10.1016/j.envpol.2021.116731
dc.relation.referencesenStanojević, K., Milenković, A., Pavlović, D., Matejić, J., Gajić, I., Dinić, A., & Stanojević, L. (2023). Anti-inflammatory activity of wild carrot (Daucus carota L.) umbels ethanolic extracts from Serbia and Greece. Archives of Pharmacy, 73(Suppl. 4), S71–S72. doi: https://doi.org/10.1016/j.envpol.2021.116731
dc.relation.referencesenZhou, C., Fan, X., Duan, C., & Zhao, Y. (2019). A method to improve fluidization quality in gas–solid fluidized bed for fine coal beneficiation. Particuology, 43, 181–192. doi: https://doi.org/10.1016/j.partic.2017.12.012
dc.relation.urihttps://doi.org/10.23939/chcht14.03
dc.relation.urihttps://doi.org/10.23939/chcht12.02.263
dc.relation.urihttps://doi.org/10.1016/j.sciaf.2021.e00801
dc.relation.urihttps://doi.org/10.1016/j.energ.2024.100012
dc.relation.urihttps://doi.org/10.3390/plants13010093
dc.relation.urihttps://doi.org/10.32434/0321-4095-2022-140-1-54-59
dc.relation.urihttps://doi.org/10.23939/ep2024.04.268
dc.relation.urihttps://doi.org/10.23939/chcht18.01.066
dc.relation.urihttps://doi.org/10.1016/j.cscee.2023.100566
dc.relation.urihttps://doi.org/10.23939/ctas2024.01.188
dc.relation.urihttps://doi.org/10.23939/chcht15.01.118
dc.relation.urihttps://doi.org/10.15587/1729-4061.2022.252352
dc.relation.urihttps://doi.org/10.1007/s11356-022-20669-1
dc.relation.urihttps://doi.org/10.1016/j.envpol.2021.116731
dc.relation.urihttps://doi.org/10.1016/j.partic.2017.12.012
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Denysiuk A., Atamanyuk V., Hnativ Z., Boldyryev S., 2025
dc.subjectwild carrot pomace
dc.subjectstationary layer
dc.subjecthydrodynamics
dc.subjectfiltration drying
dc.subjectsustainable development
dc.titleHydrodynamics of filtration drying of wild carrot pomace
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v10n1_Denysiuk_A-Hydrodynamics_of_filtration_79-87.pdf
Size:
2.3 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v10n1_Denysiuk_A-Hydrodynamics_of_filtration_79-87__COVER.png
Size:
1.1 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: