Сонохімічний синтез наноматеріалу СuМn2О4 шпінельного типу
| dc.citation.epage | 39 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 35 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Сухацький, Ю. В. | |
| dc.contributor.author | Цимбалюк, В. В. | |
| dc.contributor.author | Sukhatskyi, Yu. V. | |
| dc.contributor.author | Tsymbaliuk, V. V. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-15T13:53:25Z | |
| dc.date.created | 2024-10-10 | |
| dc.date.issued | 2024-10-10 | |
| dc.description.abstract | Частинки наноматеріалу CuMn2O4 шпінельного типу було синтезовано методом співосадження в ультразвуковому кавітаційному полі. На основі результатів рент- генівської дифракції розраховано теоретичну густину (5 548 кг/м3) шпінелі CuMn2O4 із кубічною структурою і середній розмір кристаліту, який становив ~21 нм. Елементний склад та функціональні групи хімічних зв’язків синтезованого матеріалу було ідентифіковано, відповідно, методами енергодисперсійного рентгенівського аналізу та ІЧ спектроскопії з фур’є-перетворенням. Методом сканівної електронної мікроскопії встановлено, що частинки шпінелі CuMn2O4 мають квазісферичну форму і схильні до незначної агломерації. | |
| dc.description.abstract | Spinel-type CuMn2O4 nanomaterial particles were synthesized by co-precipitation in an ultrasonic cavitation field. Based on the results of X-ray diffraction, the theoretical density (5 548 kg/m3) of CuMn2O4 spinel with a cubic structure and the average crystallite size, which was ~21 nm, were calculated. The elemental composition and functional groups of chemical bonds of the synthesized material were identified, respectively, by the methods of energy dispersive X-ray analysis and IR spectroscopy with Fourier transform. Using the method of scanning electron microscopy, it was established that CuMn2O4 spinel particles have a quasi-spherical shape and are prone to slight agglomeration. | |
| dc.format.extent | 35-39 | |
| dc.format.pages | 5 | |
| dc.identifier.citation | Сухацький Ю. В. Сонохімічний синтез наноматеріалу СuМn2О4 шпінельного типу / Ю. В. Сухацький, В. В. Цимбалюк // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2024. — Том 7. — № 2. — С. 35–39. | |
| dc.identifier.citation2015 | Сухацький Ю. В., Цимбалюк В. В. Сонохімічний синтез наноматеріалу СuМn2О4 шпінельного типу // Chemistry, Technology and Application of Substances, Львів. 2024. Том 7. № 2. С. 35–39. | |
| dc.identifier.citationenAPA | Sukhatskyi, Yu. V., & Tsymbaliuk, V. V. (2024). Sonokhimichnyi syntez nanomaterialu SuMn2O4 shpinelnoho typu [Sonochemical synthesis of spine-type СuMn2O4 nanomaterial]. Chemistry, Technology and Application of Substances, 7(2), 35-39. Lviv Politechnic Publishing House. [in Ukrainian]. | |
| dc.identifier.citationenCHICAGO | Sukhatskyi Yu. V., Tsymbaliuk V. V. (2024) Sonokhimichnyi syntez nanomaterialu SuMn2O4 shpinelnoho typu [Sonochemical synthesis of spine-type СuMn2O4 nanomaterial]. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 35-39 [in Ukrainian]. | |
| dc.identifier.doi | https://doi.org/10.23939/ctas2024.02.035 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124465 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (7), 2024 | |
| dc.relation.references | 1. Yousef, R., Nassif, A., Al-Zoubi, A., & Al- Din, N. S. (2021). Synthesis and characterisation of structural and electrical properties of CuMn2O4 spinel compound. The Scientific Journal of King Faisal University, 22(2), 47–50. DOI: 10.37575/b/sci/210028 | |
| dc.relation.references | 2. Afriani, F., Ciswandi, Hermanto, B., & Sudiro, T. (2018). Synthesis of CuMn2O4 spinel and its magnetic properties characterization. Metallurgy and Advanced Material Technology for Sustainable Development (ISMM2017), 02016. DOI: 10.1063/1.5038298 | |
| dc.relation.references | 3. Sobhani, A. (2022). Hydrothermal synthesis of CuMn2O4/CuO nanocomposite without capping agent and study its photocatalytic activity for elimination of dye pollution. International Journal of Hydrogen Energy, 47(46),20138–20152. DOI: 10.1016/j.ijhydene.2022.04.149 | |
| dc.relation.references | 4. Sobhani-Nasab, A., Eghbali-Arani, M., Hosseinpour-Mashkani, S. M., Ahmadi, F., Rahimi- Nasrabadi, M., & Ameri, V. (2020). Eco-friendly preparation and characterization of CuMn2O4 nanoparticles with the green capping agent and their photocatalytic and photovoltaic applications. Iranian Journal of Catalysis, 10(2), 91–99. | |
| dc.relation.references | 5. Ye, Z., Giraudon, J.-M., Nuns, N., Simon, P., De Geyter, N., Morent, R., & Lamonier, J.-F. (2018). Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Applied Catalysis B: Environmental, 223, 154–166. DOI:10.1016/j.apcatb.2017.06.072 | |
| dc.relation.references | 6. Enhessari, M., Salehabadi, A., Maarofian, K., & Khanahmadzadeh, S. (2016). Synthesis and physicochemical properties of CuMn2O4 nanoparticles; a potential semiconductor for photoelectric devices. International Journal of Bio-Inorganic Hybrid Nanomaterials, 5(2), 115–120. | |
| dc.relation.references | 7. Abel, M. J., Pramothkumar, A., Senthilkumar, N., Jothivenkatachalam, Inbaraj, P. F. H., & Joseph prince J. (2019). Flake-like CuMn2O4 nanoparticles synthesizedvia co-precipitation method for photocatalytic activity. Physica B: Condensed Matter, 572, 117–124.DOI: 10.1016/j.physb.2019.07.047 | |
| dc.relation.references | 8. Rahnamabaghy, M., Shojaei, A. F, & Moradi- Shoeili, Z. (2021). Triple-enzymatic activity of CuMn2O4 nanoparticles: Analytical applications for H2O2 and Lcysteine detection. Scientia Iranica C, 28(3), 1366–1377.DOI: 10.24200/sci.2021.55071.4059 | |
| dc.relation.references | 9. Gao, Y., Li, B., Zhang, Z., Zhang, X., Deng, Z., Huo, L., & Gao, S. (2021). CuMn2O4 spinel nanoflakes for amperometric detection of hydrogen peroxide. ACS Applied Nano Materials, 4(7), 6832–6843. DOI:10.1021/acsanm.1c00898 | |
| dc.relation.references | 10. Wan, X., Tang, N., Xie, Q., Zhao, S., Zhou, C., Dai, Y., & Yang, Y. (2021). A CuMn2O4 spinel oxide as a superior catalyst for the aerobic oxidation of 5- hydroxymethylfurfural toward 2,5-furandicarboxylic acid in aqueous solvent. Catalysis Science & Technology, 11,1497–1509. DOI: 10.1039/D0CY01649G | |
| dc.relation.references | 11. Godse, J. S., Pawar, S. V., Gaikwad, S. B., Bhise, V. B., Dhotre, S. S., Ubale, S. B., & Pawar, R. P.(2023). Citric acid mediated synthesis of spinel binary copper manganese oxide (CuMn2O4) nanomaterial using sol-gel method. Letters in Applied NanoBioScience, 12(4),180. DOI: 10.33263/LIANBS124.180 | |
| dc.relation.references | 12. Yousef, R., Al-Zoubi, A., & Sad-Din, N.(2018). A study of structural properties of CuMn2O4 synthesized by solid state method. Advances in Physics Theories and Applications, 71, 24–30. | |
| dc.relation.references | 13. Sukhatskiy, Y. V., Shepida, M. V., & Korniy, S. A. (2023). Sonochemical synthesis of MnFe2O4 spinel nanoparticles. Materials Science, 59(4), 487–493.DOI: 10.1007/s11003-024-00802-w | |
| dc.relation.references | 14. Waśkowska, A., Gerward, L., Olsen, J. S., Steenstrup, S., & Talik, E. (2001). CuMn2O4: Properties and the high-pressure induced Jahn-Teller phase transition. Journal of Physics: Condensed Matter, 13(11), 2549–2562. DOI: 10.1088/0953-8984/13/11/311 | |
| dc.relation.referencesen | 1. Yousef, R., Nassif, A., Al-Zoubi, A., & Al- Din, N. S. (2021). Synthesis and characterisation of structural and electrical properties of CuMn2O4 spinel compound. The Scientific Journal of King Faisal University, 22(2), 47–50. DOI: 10.37575/b/sci/210028 | |
| dc.relation.referencesen | 2. Afriani, F., Ciswandi, Hermanto, B., & Sudiro, T. (2018). Synthesis of CuMn2O4 spinel and its magnetic properties characterization. Metallurgy and Advanced Material Technology for Sustainable Development (ISMM2017), 02016. DOI: 10.1063/1.5038298 | |
| dc.relation.referencesen | 3. Sobhani, A. (2022). Hydrothermal synthesis of CuMn2O4/CuO nanocomposite without capping agent and study its photocatalytic activity for elimination of dye pollution. International Journal of Hydrogen Energy, 47(46),20138–20152. DOI: 10.1016/j.ijhydene.2022.04.149 | |
| dc.relation.referencesen | 4. Sobhani-Nasab, A., Eghbali-Arani, M., Hosseinpour-Mashkani, S. M., Ahmadi, F., Rahimi- Nasrabadi, M., & Ameri, V. (2020). Eco-friendly preparation and characterization of CuMn2O4 nanoparticles with the green capping agent and their photocatalytic and photovoltaic applications. Iranian Journal of Catalysis, 10(2), 91–99. | |
| dc.relation.referencesen | 5. Ye, Z., Giraudon, J.-M., Nuns, N., Simon, P., De Geyter, N., Morent, R., & Lamonier, J.-F. (2018). Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Applied Catalysis B: Environmental, 223, 154–166. DOI:10.1016/j.apcatb.2017.06.072 | |
| dc.relation.referencesen | 6. Enhessari, M., Salehabadi, A., Maarofian, K., & Khanahmadzadeh, S. (2016). Synthesis and physicochemical properties of CuMn2O4 nanoparticles; a potential semiconductor for photoelectric devices. International Journal of Bio-Inorganic Hybrid Nanomaterials, 5(2), 115–120. | |
| dc.relation.referencesen | 7. Abel, M. J., Pramothkumar, A., Senthilkumar, N., Jothivenkatachalam, Inbaraj, P. F. H., & Joseph prince J. (2019). Flake-like CuMn2O4 nanoparticles synthesizedvia co-precipitation method for photocatalytic activity. Physica B: Condensed Matter, 572, 117–124.DOI: 10.1016/j.physb.2019.07.047 | |
| dc.relation.referencesen | 8. Rahnamabaghy, M., Shojaei, A. F, & Moradi- Shoeili, Z. (2021). Triple-enzymatic activity of CuMn2O4 nanoparticles: Analytical applications for H2O2 and Lcysteine detection. Scientia Iranica C, 28(3), 1366–1377.DOI: 10.24200/sci.2021.55071.4059 | |
| dc.relation.referencesen | 9. Gao, Y., Li, B., Zhang, Z., Zhang, X., Deng, Z., Huo, L., & Gao, S. (2021). CuMn2O4 spinel nanoflakes for amperometric detection of hydrogen peroxide. ACS Applied Nano Materials, 4(7), 6832–6843. DOI:10.1021/acsanm.1c00898 | |
| dc.relation.referencesen | 10. Wan, X., Tang, N., Xie, Q., Zhao, S., Zhou, C., Dai, Y., & Yang, Y. (2021). A CuMn2O4 spinel oxide as a superior catalyst for the aerobic oxidation of 5- hydroxymethylfurfural toward 2,5-furandicarboxylic acid in aqueous solvent. Catalysis Science & Technology, 11,1497–1509. DOI: 10.1039/D0CY01649G | |
| dc.relation.referencesen | 11. Godse, J. S., Pawar, S. V., Gaikwad, S. B., Bhise, V. B., Dhotre, S. S., Ubale, S. B., & Pawar, R. P.(2023). Citric acid mediated synthesis of spinel binary copper manganese oxide (CuMn2O4) nanomaterial using sol-gel method. Letters in Applied NanoBioScience, 12(4),180. DOI: 10.33263/LIANBS124.180 | |
| dc.relation.referencesen | 12. Yousef, R., Al-Zoubi, A., & Sad-Din, N.(2018). A study of structural properties of CuMn2O4 synthesized by solid state method. Advances in Physics Theories and Applications, 71, 24–30. | |
| dc.relation.referencesen | 13. Sukhatskiy, Y. V., Shepida, M. V., & Korniy, S. A. (2023). Sonochemical synthesis of MnFe2O4 spinel nanoparticles. Materials Science, 59(4), 487–493.DOI: 10.1007/s11003-024-00802-w | |
| dc.relation.referencesen | 14. Waśkowska, A., Gerward, L., Olsen, J. S., Steenstrup, S., & Talik, E. (2001). CuMn2O4: Properties and the high-pressure induced Jahn-Teller phase transition. Journal of Physics: Condensed Matter, 13(11), 2549–2562. DOI: 10.1088/0953-8984/13/11/311 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.subject | шпінель CuMn2O4 | |
| dc.subject | сонохімічний синтез | |
| dc.subject | наночастинки | |
| dc.subject | розмір кристаліту | |
| dc.subject | густина матеріалу | |
| dc.subject | рентгенівська дифракція | |
| dc.subject | інфрачервона спектроскопія | |
| dc.subject | CuMn2O4 spinel | |
| dc.subject | sonochemical synthesis | |
| dc.subject | nanoparticles | |
| dc.subject | crystallite size | |
| dc.subject | material density | |
| dc.subject | X-ray diffraction | |
| dc.subject | infrared spectroscopy | |
| dc.title | Сонохімічний синтез наноматеріалу СuМn2О4 шпінельного типу | |
| dc.title.alternative | Sonochemical synthesis of spine-type СuMn2O4 nanomaterial | |
| dc.type | Article |