Сонохімічний синтез наноматеріалу СuМn2О4 шпінельного типу

dc.citation.epage39
dc.citation.issue2
dc.citation.spage35
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСухацький, Ю. В.
dc.contributor.authorЦимбалюк, В. В.
dc.contributor.authorSukhatskyi, Yu. V.
dc.contributor.authorTsymbaliuk, V. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:25Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractЧастинки наноматеріалу CuMn2O4 шпінельного типу було синтезовано методом співосадження в ультразвуковому кавітаційному полі. На основі результатів рент- генівської дифракції розраховано теоретичну густину (5 548 кг/м3) шпінелі CuMn2O4 із кубічною структурою і середній розмір кристаліту, який становив ~21 нм. Елементний склад та функціональні групи хімічних зв’язків синтезованого матеріалу було ідентифіковано, відповідно, методами енергодисперсійного рентгенівського аналізу та ІЧ спектроскопії з фур’є-перетворенням. Методом сканівної електронної мікроскопії встановлено, що частинки шпінелі CuMn2O4 мають квазісферичну форму і схильні до незначної агломерації.
dc.description.abstractSpinel-type CuMn2O4 nanomaterial particles were synthesized by co-precipitation in an ultrasonic cavitation field. Based on the results of X-ray diffraction, the theoretical density (5 548 kg/m3) of CuMn2O4 spinel with a cubic structure and the average crystallite size, which was ~21 nm, were calculated. The elemental composition and functional groups of chemical bonds of the synthesized material were identified, respectively, by the methods of energy dispersive X-ray analysis and IR spectroscopy with Fourier transform. Using the method of scanning electron microscopy, it was established that CuMn2O4 spinel particles have a quasi-spherical shape and are prone to slight agglomeration.
dc.format.extent35-39
dc.format.pages5
dc.identifier.citationСухацький Ю. В. Сонохімічний синтез наноматеріалу СuМn2О4 шпінельного типу / Ю. В. Сухацький, В. В. Цимбалюк // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2024. — Том 7. — № 2. — С. 35–39.
dc.identifier.citation2015Сухацький Ю. В., Цимбалюк В. В. Сонохімічний синтез наноматеріалу СuМn2О4 шпінельного типу // Chemistry, Technology and Application of Substances, Львів. 2024. Том 7. № 2. С. 35–39.
dc.identifier.citationenAPASukhatskyi, Yu. V., & Tsymbaliuk, V. V. (2024). Sonokhimichnyi syntez nanomaterialu SuMn2O4 shpinelnoho typu [Sonochemical synthesis of spine-type СuMn2O4 nanomaterial]. Chemistry, Technology and Application of Substances, 7(2), 35-39. Lviv Politechnic Publishing House. [in Ukrainian].
dc.identifier.citationenCHICAGOSukhatskyi Yu. V., Tsymbaliuk V. V. (2024) Sonokhimichnyi syntez nanomaterialu SuMn2O4 shpinelnoho typu [Sonochemical synthesis of spine-type СuMn2O4 nanomaterial]. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 35-39 [in Ukrainian].
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.035
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124465
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Yousef, R., Nassif, A., Al-Zoubi, A., & Al- Din, N. S. (2021). Synthesis and characterisation of structural and electrical properties of CuMn2O4 spinel compound. The Scientific Journal of King Faisal University, 22(2), 47–50. DOI: 10.37575/b/sci/210028
dc.relation.references2. Afriani, F., Ciswandi, Hermanto, B., & Sudiro, T. (2018). Synthesis of CuMn2O4 spinel and its magnetic properties characterization. Metallurgy and Advanced Material Technology for Sustainable Development (ISMM2017), 02016. DOI: 10.1063/1.5038298
dc.relation.references3. Sobhani, A. (2022). Hydrothermal synthesis of CuMn2O4/CuO nanocomposite without capping agent and study its photocatalytic activity for elimination of dye pollution. International Journal of Hydrogen Energy, 47(46),20138–20152. DOI: 10.1016/j.ijhydene.2022.04.149
dc.relation.references4. Sobhani-Nasab, A., Eghbali-Arani, M., Hosseinpour-Mashkani, S. M., Ahmadi, F., Rahimi- Nasrabadi, M., & Ameri, V. (2020). Eco-friendly preparation and characterization of CuMn2O4 nanoparticles with the green capping agent and their photocatalytic and photovoltaic applications. Iranian Journal of Catalysis, 10(2), 91–99.
dc.relation.references5. Ye, Z., Giraudon, J.-M., Nuns, N., Simon, P., De Geyter, N., Morent, R., & Lamonier, J.-F. (2018). Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Applied Catalysis B: Environmental, 223, 154–166. DOI:10.1016/j.apcatb.2017.06.072
dc.relation.references6. Enhessari, M., Salehabadi, A., Maarofian, K., & Khanahmadzadeh, S. (2016). Synthesis and physicochemical properties of CuMn2O4 nanoparticles; a potential semiconductor for photoelectric devices. International Journal of Bio-Inorganic Hybrid Nanomaterials, 5(2), 115–120.
dc.relation.references7. Abel, M. J., Pramothkumar, A., Senthilkumar, N., Jothivenkatachalam, Inbaraj, P. F. H., & Joseph prince J. (2019). Flake-like CuMn2O4 nanoparticles synthesizedvia co-precipitation method for photocatalytic activity. Physica B: Condensed Matter, 572, 117–124.DOI: 10.1016/j.physb.2019.07.047
dc.relation.references8. Rahnamabaghy, M., Shojaei, A. F, & Moradi- Shoeili, Z. (2021). Triple-enzymatic activity of CuMn2O4 nanoparticles: Analytical applications for H2O2 and Lcysteine detection. Scientia Iranica C, 28(3), 1366–1377.DOI: 10.24200/sci.2021.55071.4059
dc.relation.references9. Gao, Y., Li, B., Zhang, Z., Zhang, X., Deng, Z., Huo, L., & Gao, S. (2021). CuMn2O4 spinel nanoflakes for amperometric detection of hydrogen peroxide. ACS Applied Nano Materials, 4(7), 6832–6843. DOI:10.1021/acsanm.1c00898
dc.relation.references10. Wan, X., Tang, N., Xie, Q., Zhao, S., Zhou, C., Dai, Y., & Yang, Y. (2021). A CuMn2O4 spinel oxide as a superior catalyst for the aerobic oxidation of 5- hydroxymethylfurfural toward 2,5-furandicarboxylic acid in aqueous solvent. Catalysis Science & Technology, 11,1497–1509. DOI: 10.1039/D0CY01649G
dc.relation.references11. Godse, J. S., Pawar, S. V., Gaikwad, S. B., Bhise, V. B., Dhotre, S. S., Ubale, S. B., & Pawar, R. P.(2023). Citric acid mediated synthesis of spinel binary copper manganese oxide (CuMn2O4) nanomaterial using sol-gel method. Letters in Applied NanoBioScience, 12(4),180. DOI: 10.33263/LIANBS124.180
dc.relation.references12. Yousef, R., Al-Zoubi, A., & Sad-Din, N.(2018). A study of structural properties of CuMn2O4 synthesized by solid state method. Advances in Physics Theories and Applications, 71, 24–30.
dc.relation.references13. Sukhatskiy, Y. V., Shepida, M. V., & Korniy, S. A. (2023). Sonochemical synthesis of MnFe2O4 spinel nanoparticles. Materials Science, 59(4), 487–493.DOI: 10.1007/s11003-024-00802-w
dc.relation.references14. Waśkowska, A., Gerward, L., Olsen, J. S., Steenstrup, S., & Talik, E. (2001). CuMn2O4: Properties and the high-pressure induced Jahn-Teller phase transition. Journal of Physics: Condensed Matter, 13(11), 2549–2562. DOI: 10.1088/0953-8984/13/11/311
dc.relation.referencesen1. Yousef, R., Nassif, A., Al-Zoubi, A., & Al- Din, N. S. (2021). Synthesis and characterisation of structural and electrical properties of CuMn2O4 spinel compound. The Scientific Journal of King Faisal University, 22(2), 47–50. DOI: 10.37575/b/sci/210028
dc.relation.referencesen2. Afriani, F., Ciswandi, Hermanto, B., & Sudiro, T. (2018). Synthesis of CuMn2O4 spinel and its magnetic properties characterization. Metallurgy and Advanced Material Technology for Sustainable Development (ISMM2017), 02016. DOI: 10.1063/1.5038298
dc.relation.referencesen3. Sobhani, A. (2022). Hydrothermal synthesis of CuMn2O4/CuO nanocomposite without capping agent and study its photocatalytic activity for elimination of dye pollution. International Journal of Hydrogen Energy, 47(46),20138–20152. DOI: 10.1016/j.ijhydene.2022.04.149
dc.relation.referencesen4. Sobhani-Nasab, A., Eghbali-Arani, M., Hosseinpour-Mashkani, S. M., Ahmadi, F., Rahimi- Nasrabadi, M., & Ameri, V. (2020). Eco-friendly preparation and characterization of CuMn2O4 nanoparticles with the green capping agent and their photocatalytic and photovoltaic applications. Iranian Journal of Catalysis, 10(2), 91–99.
dc.relation.referencesen5. Ye, Z., Giraudon, J.-M., Nuns, N., Simon, P., De Geyter, N., Morent, R., & Lamonier, J.-F. (2018). Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Applied Catalysis B: Environmental, 223, 154–166. DOI:10.1016/j.apcatb.2017.06.072
dc.relation.referencesen6. Enhessari, M., Salehabadi, A., Maarofian, K., & Khanahmadzadeh, S. (2016). Synthesis and physicochemical properties of CuMn2O4 nanoparticles; a potential semiconductor for photoelectric devices. International Journal of Bio-Inorganic Hybrid Nanomaterials, 5(2), 115–120.
dc.relation.referencesen7. Abel, M. J., Pramothkumar, A., Senthilkumar, N., Jothivenkatachalam, Inbaraj, P. F. H., & Joseph prince J. (2019). Flake-like CuMn2O4 nanoparticles synthesizedvia co-precipitation method for photocatalytic activity. Physica B: Condensed Matter, 572, 117–124.DOI: 10.1016/j.physb.2019.07.047
dc.relation.referencesen8. Rahnamabaghy, M., Shojaei, A. F, & Moradi- Shoeili, Z. (2021). Triple-enzymatic activity of CuMn2O4 nanoparticles: Analytical applications for H2O2 and Lcysteine detection. Scientia Iranica C, 28(3), 1366–1377.DOI: 10.24200/sci.2021.55071.4059
dc.relation.referencesen9. Gao, Y., Li, B., Zhang, Z., Zhang, X., Deng, Z., Huo, L., & Gao, S. (2021). CuMn2O4 spinel nanoflakes for amperometric detection of hydrogen peroxide. ACS Applied Nano Materials, 4(7), 6832–6843. DOI:10.1021/acsanm.1c00898
dc.relation.referencesen10. Wan, X., Tang, N., Xie, Q., Zhao, S., Zhou, C., Dai, Y., & Yang, Y. (2021). A CuMn2O4 spinel oxide as a superior catalyst for the aerobic oxidation of 5- hydroxymethylfurfural toward 2,5-furandicarboxylic acid in aqueous solvent. Catalysis Science & Technology, 11,1497–1509. DOI: 10.1039/D0CY01649G
dc.relation.referencesen11. Godse, J. S., Pawar, S. V., Gaikwad, S. B., Bhise, V. B., Dhotre, S. S., Ubale, S. B., & Pawar, R. P.(2023). Citric acid mediated synthesis of spinel binary copper manganese oxide (CuMn2O4) nanomaterial using sol-gel method. Letters in Applied NanoBioScience, 12(4),180. DOI: 10.33263/LIANBS124.180
dc.relation.referencesen12. Yousef, R., Al-Zoubi, A., & Sad-Din, N.(2018). A study of structural properties of CuMn2O4 synthesized by solid state method. Advances in Physics Theories and Applications, 71, 24–30.
dc.relation.referencesen13. Sukhatskiy, Y. V., Shepida, M. V., & Korniy, S. A. (2023). Sonochemical synthesis of MnFe2O4 spinel nanoparticles. Materials Science, 59(4), 487–493.DOI: 10.1007/s11003-024-00802-w
dc.relation.referencesen14. Waśkowska, A., Gerward, L., Olsen, J. S., Steenstrup, S., & Talik, E. (2001). CuMn2O4: Properties and the high-pressure induced Jahn-Teller phase transition. Journal of Physics: Condensed Matter, 13(11), 2549–2562. DOI: 10.1088/0953-8984/13/11/311
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectшпінель CuMn2O4
dc.subjectсонохімічний синтез
dc.subjectнаночастинки
dc.subjectрозмір кристаліту
dc.subjectгустина матеріалу
dc.subjectрентгенівська дифракція
dc.subjectінфрачервона спектроскопія
dc.subjectCuMn2O4 spinel
dc.subjectsonochemical synthesis
dc.subjectnanoparticles
dc.subjectcrystallite size
dc.subjectmaterial density
dc.subjectX-ray diffraction
dc.subjectinfrared spectroscopy
dc.titleСонохімічний синтез наноматеріалу СuМn2О4 шпінельного типу
dc.title.alternativeSonochemical synthesis of spine-type СuMn2O4 nanomaterial
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Sukhatskyi_Yu_V-Sonochemical_synthesis_35-39.pdf
Size:
694.56 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.8 KB
Format:
Plain Text
Description: