Analysis of the radioisotopes recognition possibility by means of the absorbed dose measurement with dosimetric detectors of different density

dc.citation.epage162
dc.citation.issue1
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage153
dc.citation.volume3
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут фізики, Польська академія наук
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Physics, Polish Academy of Sciences
dc.contributor.authorУбізський, С.
dc.contributor.authorПошивак, О.
dc.contributor.authorЖидачевський, Я.
dc.contributor.authorUbizskii, S.
dc.contributor.authorPoshyvak, O.
dc.contributor.authorZhydachevskii, Ya.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-22T10:58:34Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractРобота присвячена проблемі ідентифікації невідомого джерела γ-випромінювання як задачі екстреної аварійної дозиметрії у разі використання у терористичних цілях радіаційно-дисперсійних засобів відомих також як “брудна бомба”. Можливість ідентифікації невідомого γ-джерела розглядається на основі енергетичних залежностей поглинання іонізуючого фотонного випромінювання, яка у пасивній дозиметрії проявляє себе як дозиметрична чутливість. Аналізується розпізнавання радіоізотопів за відношенням дозиметричних чутливостей важкого (з високим значенням ефективного атомного номера Zeff) дозиметричного детектора та легкого (з низьким значенням Zeff), для значень енергій γ-випромінювання тих радіоізотопів, які вірогідно можуть бути використані для створення брудної бомби. Як легкий дозиметричний детектор розглядається кераміка BeO, а як важкий – дозиметричний детектор на основі ітрій-алюмінієвого перовськиту (YAlO3) або лютецій-алюмінієвого перовськиту (LuAlO3). Обговорюється вплив точності вимірювання поглиненої дози на надійність ідентифікації радіоізотопу та пропонуються підходи для її практичної реалізації.
dc.description.abstractThe work is devoted to the problem of identifying an unknown source of γ-radiation as a task of emergency dosimetry in the case of the use for terrorist purposes of the radiation-dispersive devices, known also as dirty bomb. The possibility of identifying an unknown γ-source is considered based on the energy dependence of the absorption of ionizing photon radiation, which in passive dosimetry manifests itself as dosimetric sensitivity. Radioisotope recognition is analyzed by the ratio of dosimetric sensitivities of heavy (with a high value of the effective atomic number Zeff) and light (with a low Zeff value) dosimetric detectors, for the values of γ-radiation energies of those radioisotopes that can probably be used to create a dirty bomb. As a light dosimetric detector, BeO ceramics is considered, and as a heavy one, a dosimetric detector based on single crystalline yttrium-aluminum perovskite (YAlO3) or lutetium-aluminum perovskite (LuAlO3). The influence of the accuracy of the absorbed dose measurement on the reliability of radioisotope identification is discussed and approaches for its practical implementation are proposed.
dc.format.extent153-162
dc.format.pages10
dc.identifier.citationUbizskii S. Analysis of the radioisotopes recognition possibility by means of the absorbed dose measurement with dosimetric detectors of different density / S. Ubizskii, O. Poshyvak, Ya. Zhydachevskii // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 1. — P. 153–162.
dc.identifier.citationenUbizskii S. Analysis of the radioisotopes recognition possibility by means of the absorbed dose measurement with dosimetric detectors of different density / S. Ubizskii, O. Poshyvak, Ya. Zhydachevskii // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 1. — P. 153–162.
dc.identifier.doidoi.org/10.23939/ictee2023.01.153
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111431
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 1 (3), 2023
dc.relation.ispartofInfocommunication Technologies and Electronic Engineering, 1 (3), 2023
dc.relation.references[1] Management of Terrorist Events Involving Radioactive Material, NCRP Report No. 138 (2001). Available at: https://ncrponline.org/shop/reports/report-no-138-management-of-terrorist-events-involving-radioactive-material-2001/ [Accessed 11 February 2023].
dc.relation.references[2] Protective Action Guides for Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) Incidents, Department of Homeland Security, Preparedness Directorate Notice // Federal Register, Vol. 71, No. 1 (2006), pp. 174–196. Available at: https://www.govinfo.gov/content/pkg/FR-2006-01-03/pdf/05-24521.pdf [Accessed 11 February 2023].
dc.relation.references[3] Radiological attack dirty bombs and other devices. A fact sheet from the National Academies and the U.S. Department of Homeland Security. Available at: https://www.dhs.gov/sites/default/files/publications/prep_radiological_fact_sheet.pdf [Accessed 11 February 2023].
dc.relation.references[4] Handbook for Responding to a Radiological Dispersal Device First Responder’s Guide – the First 12 Hours. Available at: https://tools.niehs.nih.gov/wetp/public/hasl_get_blob.cfm?ID=6229 [Accessed 11 February 2023].
dc.relation.references[5] Preliminary Report on Operational Guidelines Developed for Use in Emergency Preparedness and Response to a Radiological Dispersal Device Incident, US Department of Energy, Office of Heals, Safety and Security (2009– 416 p.). Available at: https://resrad.evs.anl.gov/docs/ogt_manual_doe_hs_0001_2_24_2009c.pdf [Accessed 11 February 2023].
dc.relation.references[6] Protective Action Guides and Planning Guidance for Radiological Incidents. Final PAG Manual, Environmental Protection Agency (2016). Available at: https://downloads.regulations.gov/EPA-HQ-OAR-2007-0268-2178/content.pdf [Accessed 11 February 2023].
dc.relation.references[7] Planning Guidance for Protection and Recovery Following Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) Incidents, Federal Emergency Management Agency (2008). Available at: https://www.regulations.gov/document/FEMA-2004-0004-0088 [Accessed 11 February 2023].
dc.relation.references[8] Chumak V., Morgun A., Zhydachevskii Ya., Ubizskii S., Voloskiy V., Bakhanova O. (2017). Passive system characterizing the spectral composition of high dose rate workplace fields: Potential application of high Z OSL phosphors, Radiat. Meas., Vol. 106, pp. 638–643. http://dx.doi.org/10.1016/j.radmeas.2017.07.008.
dc.relation.references[9] Spurný Z. (1980). Some new materials for TLD, Nucl. Instr. Meth., Vol. 175, pp. 71–73. https://doi.org/10.1016/0029-554X(80)90257-8.
dc.relation.references[10] Sommer M., Jahn A., Henniger J. (2008). Beryllium oxide as optically stimulated luminescence dosimeter, Radiat. Meas., Vol. 43, pp. 353–356. https://doi.org/10.1016/j.radmeas.2007.11.018.
dc.relation.references[11] Jahn A., Sommer M., Ullrich W., Wickert M., Henniger J. (2013). The BeOmax system – Dosimetry using OSL of BeO for several applications, Radiat. Meas., Vol. 56, pp. 324–327. https://doi.org/10.1016/j.radmeas.2013.01.069.
dc.relation.references[12] Yukihara E. G., Bos A. J. J., Bilski P., McKeever S. W. S. (2022). The quest for new thermoluminescence and optically stimulated luminescence materials: Needs, strategies and pitfalls, Radiat. Meas., Vol. 158 106846, 19 p. https://doi.org/10.1016/j.radmeas.2022.106846.
dc.relation.references[13] Zhydachevskii Ya., Durygin A., Suchocki A., Matkovskii A., Sugak D., Bilski P., Warchol S. (2005). Mn-doped YAlO3 crystal: a new potential TLD phosphor. Nucl. Instr. Meth. Phys. Res. (B), Vol. 227, pp. 545–550. https://doi.org/10.1016/j.nimb.2004.09.013.
dc.relation.references[14] Zhydachevskii Ya., Suchocki A., Berkowski M., Bilski P., Warchol S. (2010). Characterization of YAlO3:Mn2+thermoluminescent detectors, Radiat. Meas., Vol. 45, pp. 516–518. https://doi.org/10.1016/j.radmeas.2009.12.035.
dc.relation.references[15] Zhydachevskii Ya., Luchechko A., Maraba D., Martynyuk N., Glowacki M., Bulur E., Ubizskii S., Berkowski M., Suchocki A. (2016). Time-resolved OSL studies of YAlO3:Mn2+ crystals, Radiat. Meas., Vol. 94, pp. 18–22. https://doi.org/10.1016/j.radmeas.2016.08.007.
dc.relation.references[16] Ubizskii S., Poshyvak O., Afanassyev D., Luchechko A., Rabyk V., Zhydachevskyy Ya. (2022). Role of Afterglow in the Optically Stimulated Luminescence of YAP:Mn, Acta Physica Polonica A, Vol. 141, No. 4, pp. 379–385. http://dx.doi.org/10.12693/APhysPolA.141.379.
dc.relation.references[17] Zhydachevskyy Ya., Glowacki M., Martynyuk N., Ubizskii S., Berkowski M., Suchocki A. (2018). Effect of lutetium co-doping on the main dosimetric peak of YAP:Mn2+ TL detectors, Acta Phys. Pol. A, Vol. 133, pp. 973–976. http://dx.doi.org/10.12693/APhysPolA.133.973.
dc.relation.references[18] Zhydachevskii Ya., Morgun A., Glowacki M., Ubizskii S., Chumak V., Berkowski M., Suchocki A. (2016). Energy response of the lutetium-containing oxides, 18th International Conference on Solid State Dosimetry (SSD 18), Munich, Germany, July 3–8 2016, Abstracts, MAT-P-12.
dc.relation.references[19] Zhydachevskii Ya., Morgun A., Dubinski S., Yan Yu, Glowacki M., Ubizskii S., Chumak V., Berkowski M., Suchocki A. (2016). Energy response of the TL detectors based on YAlO3:Mn crystals, Radiat. Meas., Vol. 90, pp. 262–264. https://doi.org/10.1016/j.radmeas.2015.12.001.
dc.relation.references[20] Chumak V., Zhydachevskyy Ya., Voloskyi V., Bakhanova E., Stasiv V., Gieszczyk W., Ubizskii S., Berkowski M., Suchocki A. Experimental validation of energy dependences of YAlO3:Mn TL detectors: Irradiation to ISO radiation qualities, accepted for publication to Radiation Protection Dosimetry.
dc.relation.references[21] Radiological Dispersal Devices: An Initial Study to Identify Radioactive Materials of Greatest Concern and Approaches to Their Tracking, Tagging, and Disposition, Report to the Nuclear Regulatory Commission and the Secretary of Energy Prepared by The DOE/NRC Interagency Working Group on Radiological Dispersal Devices (2003). Available at: https://www.nrc.gov/docs/ML0703/ML070380440.pdf [Accessed 11 February 2023].
dc.relation.references[22] Protective Action Guides and Planning Guidance for Radiological Incidents. Final PAG Manual, Environmental Protection Agency (2016). Available at: https://www.regulations.gov/document/EPA-HQ-OAR-2007-0268-2178 [Accessed 11 February 2023].
dc.relation.references[23] Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas, Argonne National Laboratory in collaboration with U.S. Department of Energy (2007). Available at: https://remm.hhs.gov/ANL_ContaminantFactSheets_All_070418.pdf [Accessed 11 February 2023].
dc.relation.references[24] Managing Internal Radiation Contamination. Isotopes of Interest: Properties, Treatment, and Fact Sheets // U. S. Department of Health and Human Services, Radiation Emergency Medical Management. Available at: https://remm.hhs.gov/int_contamination.htm#isotopestable [Accessed 11 February 2023].
dc.relation.referencesen[1] Management of Terrorist Events Involving Radioactive Material, NCRP Report No. 138 (2001). Available at: https://ncrponline.org/shop/reports/report-no-138-management-of-terrorist-events-involving-radioactive-material-2001/ [Accessed 11 February 2023].
dc.relation.referencesen[2] Protective Action Guides for Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) Incidents, Department of Homeland Security, Preparedness Directorate Notice, Federal Register, Vol. 71, No. 1 (2006), pp. 174–196. Available at: https://www.govinfo.gov/content/pkg/FR-2006-01-03/pdf/05-24521.pdf [Accessed 11 February 2023].
dc.relation.referencesen[3] Radiological attack dirty bombs and other devices. A fact sheet from the National Academies and the U.S. Department of Homeland Security. Available at: https://www.dhs.gov/sites/default/files/publications/prep_radiological_fact_sheet.pdf [Accessed 11 February 2023].
dc.relation.referencesen[4] Handbook for Responding to a Radiological Dispersal Device First Responder’s Guide – the First 12 Hours. Available at: https://tools.niehs.nih.gov/wetp/public/hasl_get_blob.cfm?ID=6229 [Accessed 11 February 2023].
dc.relation.referencesen[5] Preliminary Report on Operational Guidelines Developed for Use in Emergency Preparedness and Response to a Radiological Dispersal Device Incident, US Department of Energy, Office of Heals, Safety and Security (2009– 416 p.). Available at: https://resrad.evs.anl.gov/docs/ogt_manual_doe_hs_0001_2_24_2009c.pdf [Accessed 11 February 2023].
dc.relation.referencesen[6] Protective Action Guides and Planning Guidance for Radiological Incidents. Final PAG Manual, Environmental Protection Agency (2016). Available at: https://downloads.regulations.gov/EPA-HQ-OAR-2007-0268-2178/content.pdf [Accessed 11 February 2023].
dc.relation.referencesen[7] Planning Guidance for Protection and Recovery Following Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) Incidents, Federal Emergency Management Agency (2008). Available at: https://www.regulations.gov/document/FEMA-2004-0004-0088 [Accessed 11 February 2023].
dc.relation.referencesen[8] Chumak V., Morgun A., Zhydachevskii Ya., Ubizskii S., Voloskiy V., Bakhanova O. (2017). Passive system characterizing the spectral composition of high dose rate workplace fields: Potential application of high Z OSL phosphors, Radiat. Meas., Vol. 106, pp. 638–643. http://dx.doi.org/10.1016/j.radmeas.2017.07.008.
dc.relation.referencesen[9] Spurný Z. (1980). Some new materials for TLD, Nucl. Instr. Meth., Vol. 175, pp. 71–73. https://doi.org/10.1016/0029-554X(80)90257-8.
dc.relation.referencesen[10] Sommer M., Jahn A., Henniger J. (2008). Beryllium oxide as optically stimulated luminescence dosimeter, Radiat. Meas., Vol. 43, pp. 353–356. https://doi.org/10.1016/j.radmeas.2007.11.018.
dc.relation.referencesen[11] Jahn A., Sommer M., Ullrich W., Wickert M., Henniger J. (2013). The BeOmax system – Dosimetry using OSL of BeO for several applications, Radiat. Meas., Vol. 56, pp. 324–327. https://doi.org/10.1016/j.radmeas.2013.01.069.
dc.relation.referencesen[12] Yukihara E. G., Bos A. J. J., Bilski P., McKeever S. W. S. (2022). The quest for new thermoluminescence and optically stimulated luminescence materials: Needs, strategies and pitfalls, Radiat. Meas., Vol. 158 106846, 19 p. https://doi.org/10.1016/j.radmeas.2022.106846.
dc.relation.referencesen[13] Zhydachevskii Ya., Durygin A., Suchocki A., Matkovskii A., Sugak D., Bilski P., Warchol S. (2005). Mn-doped YAlO3 crystal: a new potential TLD phosphor. Nucl. Instr. Meth. Phys. Res. (B), Vol. 227, pp. 545–550. https://doi.org/10.1016/j.nimb.2004.09.013.
dc.relation.referencesen[14] Zhydachevskii Ya., Suchocki A., Berkowski M., Bilski P., Warchol S. (2010). Characterization of YAlO3:Mn2+thermoluminescent detectors, Radiat. Meas., Vol. 45, pp. 516–518. https://doi.org/10.1016/j.radmeas.2009.12.035.
dc.relation.referencesen[15] Zhydachevskii Ya., Luchechko A., Maraba D., Martynyuk N., Glowacki M., Bulur E., Ubizskii S., Berkowski M., Suchocki A. (2016). Time-resolved OSL studies of YAlO3:Mn2+ crystals, Radiat. Meas., Vol. 94, pp. 18–22. https://doi.org/10.1016/j.radmeas.2016.08.007.
dc.relation.referencesen[16] Ubizskii S., Poshyvak O., Afanassyev D., Luchechko A., Rabyk V., Zhydachevskyy Ya. (2022). Role of Afterglow in the Optically Stimulated Luminescence of YAP:Mn, Acta Physica Polonica A, Vol. 141, No. 4, pp. 379–385. http://dx.doi.org/10.12693/APhysPolA.141.379.
dc.relation.referencesen[17] Zhydachevskyy Ya., Glowacki M., Martynyuk N., Ubizskii S., Berkowski M., Suchocki A. (2018). Effect of lutetium co-doping on the main dosimetric peak of YAP:Mn2+ TL detectors, Acta Phys. Pol. A, Vol. 133, pp. 973–976. http://dx.doi.org/10.12693/APhysPolA.133.973.
dc.relation.referencesen[18] Zhydachevskii Ya., Morgun A., Glowacki M., Ubizskii S., Chumak V., Berkowski M., Suchocki A. (2016). Energy response of the lutetium-containing oxides, 18th International Conference on Solid State Dosimetry (SSD 18), Munich, Germany, July 3–8 2016, Abstracts, MAT-P-12.
dc.relation.referencesen[19] Zhydachevskii Ya., Morgun A., Dubinski S., Yan Yu, Glowacki M., Ubizskii S., Chumak V., Berkowski M., Suchocki A. (2016). Energy response of the TL detectors based on YAlO3:Mn crystals, Radiat. Meas., Vol. 90, pp. 262–264. https://doi.org/10.1016/j.radmeas.2015.12.001.
dc.relation.referencesen[20] Chumak V., Zhydachevskyy Ya., Voloskyi V., Bakhanova E., Stasiv V., Gieszczyk W., Ubizskii S., Berkowski M., Suchocki A. Experimental validation of energy dependences of YAlO3:Mn TL detectors: Irradiation to ISO radiation qualities, accepted for publication to Radiation Protection Dosimetry.
dc.relation.referencesen[21] Radiological Dispersal Devices: An Initial Study to Identify Radioactive Materials of Greatest Concern and Approaches to Their Tracking, Tagging, and Disposition, Report to the Nuclear Regulatory Commission and the Secretary of Energy Prepared by The DOE/NRC Interagency Working Group on Radiological Dispersal Devices (2003). Available at: https://www.nrc.gov/docs/ML0703/ML070380440.pdf [Accessed 11 February 2023].
dc.relation.referencesen[22] Protective Action Guides and Planning Guidance for Radiological Incidents. Final PAG Manual, Environmental Protection Agency (2016). Available at: https://www.regulations.gov/document/EPA-HQ-OAR-2007-0268-2178 [Accessed 11 February 2023].
dc.relation.referencesen[23] Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas, Argonne National Laboratory in collaboration with U.S. Department of Energy (2007). Available at: https://remm.hhs.gov/ANL_ContaminantFactSheets_All_070418.pdf [Accessed 11 February 2023].
dc.relation.referencesen[24] Managing Internal Radiation Contamination. Isotopes of Interest: Properties, Treatment, and Fact Sheets, U. S. Department of Health and Human Services, Radiation Emergency Medical Management. Available at: https://remm.hhs.gov/int_contamination.htm#isotopestable [Accessed 11 February 2023].
dc.relation.urihttps://ncrponline.org/shop/reports/report-no-138-management-of-terrorist-events-involving-radioactive-material-2001/
dc.relation.urihttps://www.govinfo.gov/content/pkg/FR-2006-01-03/pdf/05-24521.pdf
dc.relation.urihttps://www.dhs.gov/sites/default/files/publications/prep_radiological_fact_sheet.pdf
dc.relation.urihttps://tools.niehs.nih.gov/wetp/public/hasl_get_blob.cfm?ID=6229
dc.relation.urihttps://resrad.evs.anl.gov/docs/ogt_manual_doe_hs_0001_2_24_2009c.pdf
dc.relation.urihttps://downloads.regulations.gov/EPA-HQ-OAR-2007-0268-2178/content.pdf
dc.relation.urihttps://www.regulations.gov/document/FEMA-2004-0004-0088
dc.relation.urihttp://dx.doi.org/10.1016/j.radmeas.2017.07.008
dc.relation.urihttps://doi.org/10.1016/0029-554X(80)90257-8
dc.relation.urihttps://doi.org/10.1016/j.radmeas.2007.11.018
dc.relation.urihttps://doi.org/10.1016/j.radmeas.2013.01.069
dc.relation.urihttps://doi.org/10.1016/j.radmeas.2022.106846
dc.relation.urihttps://doi.org/10.1016/j.nimb.2004.09.013
dc.relation.urihttps://doi.org/10.1016/j.radmeas.2009.12.035
dc.relation.urihttps://doi.org/10.1016/j.radmeas.2016.08.007
dc.relation.urihttp://dx.doi.org/10.12693/APhysPolA.141.379
dc.relation.urihttp://dx.doi.org/10.12693/APhysPolA.133.973
dc.relation.urihttps://doi.org/10.1016/j.radmeas.2015.12.001
dc.relation.urihttps://www.nrc.gov/docs/ML0703/ML070380440.pdf
dc.relation.urihttps://www.regulations.gov/document/EPA-HQ-OAR-2007-0268-2178
dc.relation.urihttps://remm.hhs.gov/ANL_ContaminantFactSheets_All_070418.pdf
dc.relation.urihttps://remm.hhs.gov/int_contamination.htm#isotopestable
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectаварійна дозиметрія
dc.subjectрадіаційно-дисперсійні засоби
dc.subject“брудна бомба”
dc.subjectідентифікація радіоізотопів
dc.subjectпасивна дозиметрія
dc.subjectпоглинена доза
dc.subjectдозиметричні матеріали
dc.subjectоптимальне розпізнавання
dc.subjectвіршувальне правило
dc.subjectаналіз похибок
dc.subjectemergency dosimetry
dc.subjectradiation dispersal device
dc.subjectdirty bomb
dc.subjectradioisotope identification
dc.subjectpassive dosimetry
dc.subjectabsorbed dose
dc.subjectdosimetric materials
dc.subjectoptimal recognition
dc.subjectdecisionmaking rule
dc.subjecterror analysis
dc.subject.udc53.072
dc.subject.udc53
dc.subject.udc004
dc.titleAnalysis of the radioisotopes recognition possibility by means of the absorbed dose measurement with dosimetric detectors of different density
dc.title.alternativeАналіз можливості розпізнавання радіоізотопів за допомогою вимірювання поглиненої дози дозиметричними детекторами різної густини
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v3n1_Ubizskii_S-Analysis_of_the_radioisotopes_153-162.pdf
Size:
890.72 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v3n1_Ubizskii_S-Analysis_of_the_radioisotopes_153-162__COVER.png
Size:
1.11 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: