Reducing the kinetic power of the crank press machine

dc.citation.epage30
dc.citation.issue3
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage21
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationKingston University
dc.contributor.authorPasika, Viacheslav
dc.contributor.authorAugousti, Andy
dc.contributor.authorLanets, Olena
dc.contributor.authorParashchyn, Oleh
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-04-03T07:36:59Z
dc.date.available2024-04-03T07:36:59Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractCrank presses belong to the class of machines in which the payload (stamping force) acts for a short period of time at the end of the working stroke. Since the power of a force is the product of the force times the speed, it is possible to reduce the power of a specific force only by reducing the speed of the point of action of the force. The kinematic characteristics of slider-crank mechanisms (SCMs), which are the main mechanism of crank presses, are qualitatively the same and cannot be changed. The speed of the slider, as a working body, is the most influenced by the rotation frequency and the crank's length. However, reducing the frequency of rotation leads to a decrease in the productivity of the press, and a decrease in the length of the crank is limited by the design possibilities and technological process of stamping. The purpose of this work is to reduce the kinetic power of the main working mechanism of crank presses by redistributing the start-up and run-out phases of the working body and designing the corresponding structural diagram of the SCM. Research methodology. A non-standard approach to reducing the kinetic power of crank presses is proposed. It is suggested to change the distribution of the run-up and run-out phases of the slider (punch) in order to reduce its speed in the range of the punching force to achieve this. To change the run-up and run-out time, a slider-crank mechanism with a programmable change in the length of the crank with a fixed cam is proposed. As a result of this research, an asymmetric cosine law of the movement of the slide was analyzed and it was synthesized into a variable crank length that ensures the movement of the slider according to the determined law. As far as we aware this is the first research that has been carried out on crank presses with the aim of reducing the kinetic power without reducing the value of the stamping force and press productivity. For a given punching force and an asymmetric cosine law for the punch motion, the kinetic power of the press is reduced by 31.4%. This will reduce the mass and/or radius of the flywheel. A list of planned further studies is: the influence of different functions for punch motion, functions for changing the punching force, and an investigation of the value and position of the force interval on the kinetic power of the press.
dc.format.extent21-30
dc.format.pages10
dc.identifier.citationReducing the kinetic power of the crank press machine / Viacheslav Pasika, Andy Augousti, Olena Lanets, Oleh Parashchyn // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 21–30.
dc.identifier.citationenReducing the kinetic power of the crank press machine / Viacheslav Pasika, Andy Augousti, Olena Lanets, Oleh Parashchyn // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 3. — P. 21–30.
dc.identifier.doidoi.org/10.23939/ujmems2023.03.021
dc.identifier.issn2411-8001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61637
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 3 (9), 2023
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 3 (9), 2023
dc.relation.references[1] Recep Halicioglu, L. Canan Dulger, A. Tolga Bozdana, "Mechanisms, classifications, and applications of servo presses: A review with comparisons", Journal of Engineering Manufacture, vol. 230, is. 7, pp.1177-1194, July 2016. https://doi.org/10.1177/0954405415600013
dc.relation.references[2] Hlavac J., Dekastello J., Cechura M., Volejnicek M., Kubec V., "Sawing energy in mechanical crank press drives", Advances in Mechanical Engineering, vol. 14(2), pp.1-12, 2022. https://doi.org/10.1177/16878132221076807
dc.relation.references[3] Raz K., Cechura M., "Usage of topological optimization in design of mechanical forging presses." MM Science Journal, pp. 2581-2584, ISSN: 18031269, DOI:10.17973/MMSJ.2018_11_201877, 2018. https://doi.org/10.17973/MMSJ.2018_11_201877
dc.relation.references[4] Qian Jing, "Dynamic Modelling and Calculation of Crank Slider Mechanism of Multiparameter Friction Model in Wireless Communication", Wireless Communications and Mobile Computing, vol. 2022, Article ID 7449392, 2022. https://doi.org/10.1155/2022/7449392.
dc.relation.references[5] Teng Xu, Qinxiang Xia, Xiaobin Long, Gianluca Buffa, "Vibration Control of a High-Speed Precision Servo Numerically Controlled Punching Press: Multidomain Simulation and Experiments", Shock and Vibration, vol. 2017, Article ID 4593546, 2017. https://doi.org/10.1155/2017/4593546.
dc.relation.references[6] Pasika V.R., Heletiy V. M., Solohub B. V., "Kinematychne syntezuvannya zakoniv periodychnoho rukhu." ["Kinematic synthesis of laws of periodic motion"], V Monohrafiya, L'viv: Levada., 123 s., 2021.
dc.relation.references[7] Pasika R.V., Roman D.A., Kharzhevskyi V.O., Kinematic analysis and synthesis of cutter movement od slotting machine. Problems of Tribology, vol. 27, No 2/104-2022, pp.33-38 , 2022. https://doi.org/10.31891/2079-1372-2022-104-2-87-93
dc.relation.references[8] Rider, M.J., " Design and Analysis of Mechanisms: A Planar Approach", p. 315. Wiley, Hoboken (2015). https://doi.org/10.1002/9781119054344
dc.relation.references[9] Arakelian, V., Briot, S., "Simultaneous inertia force/moment balancing and torque compensation of slider-crank mechanisms.", Mechanics Research Communications 37(2), pp.265-269, March, 2010, DOI: 10.1016/j.mechrescom.2009.11.007. https://doi.org/10.1016/j.mechrescom.2009.11.007
dc.relation.references[10] Huang, M.-S.; Chen, K.-Y.; Fung, R.-F., "Comparison between mathematical modeling and experimental identification of a spatial slider-crank mechanism." Applied Mathematical Modelling, Applied Mathematical Modelling, vol. 34, is. 8, pp.2059-2073, 2010. https://doi.org/10.1016/j.apm.2009.10.018
dc.relation.references[11] Ha, J.-L.; Fung, R.-F.; Chen, K.-Y.; Hsien, S.-C., "Dynamic modeling and identification of a slider-crank mechanism." Journal of Sound and Vibration, vol. 289(4), pp.1019-1044, 2006. https://doi.org/10.1016/j.jsv.2005.03.011
dc.relation.references[12] Akbari, S.; Fallahi, F.; Pirbodaghi, T., "Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators." Journal of Computational Design and Engineering, vol. 3, is. 4, pp.312-321, 2016. https://doi.org/10.1016/j.jcde.2016.05.002
dc.relation.references[13] Daniel, G.B.; Cavalca, K.L., "Analysis of the dynamics of a slider-crank mechanism with hydrodynamic lubrication in the connecting rod-slider joint clearance.", Mechanism and Machine Theory , vol. 46 (10), pp.1434-1452, 2011 https://doi.org/10.1016/j.mechmachtheory.2011.05.007
dc.relation.referencesen[1] Recep Halicioglu, L. Canan Dulger, A. Tolga Bozdana, "Mechanisms, classifications, and applications of servo presses: A review with comparisons", Journal of Engineering Manufacture, vol. 230, is. 7, pp.1177-1194, July 2016. https://doi.org/10.1177/0954405415600013
dc.relation.referencesen[2] Hlavac J., Dekastello J., Cechura M., Volejnicek M., Kubec V., "Sawing energy in mechanical crank press drives", Advances in Mechanical Engineering, vol. 14(2), pp.1-12, 2022. https://doi.org/10.1177/16878132221076807
dc.relation.referencesen[3] Raz K., Cechura M., "Usage of topological optimization in design of mechanical forging presses." MM Science Journal, pp. 2581-2584, ISSN: 18031269, DOI:10.17973/MMSJ.2018_11_201877, 2018. https://doi.org/10.17973/MMSJ.2018_11_201877
dc.relation.referencesen[4] Qian Jing, "Dynamic Modelling and Calculation of Crank Slider Mechanism of Multiparameter Friction Model in Wireless Communication", Wireless Communications and Mobile Computing, vol. 2022, Article ID 7449392, 2022. https://doi.org/10.1155/2022/7449392.
dc.relation.referencesen[5] Teng Xu, Qinxiang Xia, Xiaobin Long, Gianluca Buffa, "Vibration Control of a High-Speed Precision Servo Numerically Controlled Punching Press: Multidomain Simulation and Experiments", Shock and Vibration, vol. 2017, Article ID 4593546, 2017. https://doi.org/10.1155/2017/4593546.
dc.relation.referencesen[6] Pasika V.R., Heletiy V. M., Solohub B. V., "Kinematychne syntezuvannya zakoniv periodychnoho rukhu." ["Kinematic synthesis of laws of periodic motion"], V Monohrafiya, L'viv: Levada., 123 s., 2021.
dc.relation.referencesen[7] Pasika R.V., Roman D.A., Kharzhevskyi V.O., Kinematic analysis and synthesis of cutter movement od slotting machine. Problems of Tribology, vol. 27, No 2/104-2022, pp.33-38 , 2022. https://doi.org/10.31891/2079-1372-2022-104-2-87-93
dc.relation.referencesen[8] Rider, M.J., " Design and Analysis of Mechanisms: A Planar Approach", p. 315. Wiley, Hoboken (2015). https://doi.org/10.1002/9781119054344
dc.relation.referencesen[9] Arakelian, V., Briot, S., "Simultaneous inertia force/moment balancing and torque compensation of slider-crank mechanisms.", Mechanics Research Communications 37(2), pp.265-269, March, 2010, DOI: 10.1016/j.mechrescom.2009.11.007. https://doi.org/10.1016/j.mechrescom.2009.11.007
dc.relation.referencesen[10] Huang, M.-S.; Chen, K.-Y.; Fung, R.-F., "Comparison between mathematical modeling and experimental identification of a spatial slider-crank mechanism." Applied Mathematical Modelling, Applied Mathematical Modelling, vol. 34, is. 8, pp.2059-2073, 2010. https://doi.org/10.1016/j.apm.2009.10.018
dc.relation.referencesen[11] Ha, J.-L.; Fung, R.-F.; Chen, K.-Y.; Hsien, S.-C., "Dynamic modeling and identification of a slider-crank mechanism." Journal of Sound and Vibration, vol. 289(4), pp.1019-1044, 2006. https://doi.org/10.1016/j.jsv.2005.03.011
dc.relation.referencesen[12] Akbari, S.; Fallahi, F.; Pirbodaghi, T., "Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators." Journal of Computational Design and Engineering, vol. 3, is. 4, pp.312-321, 2016. https://doi.org/10.1016/j.jcde.2016.05.002
dc.relation.referencesen[13] Daniel, G.B.; Cavalca, K.L., "Analysis of the dynamics of a slider-crank mechanism with hydrodynamic lubrication in the connecting rod-slider joint clearance.", Mechanism and Machine Theory , vol. 46 (10), pp.1434-1452, 2011 https://doi.org/10.1016/j.mechmachtheory.2011.05.007
dc.relation.urihttps://doi.org/10.1177/0954405415600013
dc.relation.urihttps://doi.org/10.1177/16878132221076807
dc.relation.urihttps://doi.org/10.17973/MMSJ.2018_11_201877
dc.relation.urihttps://doi.org/10.1155/2022/7449392
dc.relation.urihttps://doi.org/10.1155/2017/4593546
dc.relation.urihttps://doi.org/10.31891/2079-1372-2022-104-2-87-93
dc.relation.urihttps://doi.org/10.1002/9781119054344
dc.relation.urihttps://doi.org/10.1016/j.mechrescom.2009.11.007
dc.relation.urihttps://doi.org/10.1016/j.apm.2009.10.018
dc.relation.urihttps://doi.org/10.1016/j.jsv.2005.03.011
dc.relation.urihttps://doi.org/10.1016/j.jcde.2016.05.002
dc.relation.urihttps://doi.org/10.1016/j.mechmachtheory.2011.05.007
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Pasika V., Augousti A., Lanets O., Parashchyn O., 2023
dc.subjectCrank presses
dc.subjectsynthesis of the laws of periodic motion
dc.subjectslider-crank mechanisms
dc.titleReducing the kinetic power of the crank press machine
dc.typeArticle

Files

Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
Name:
2023v9n3_Pasika_V-Reducing_the_kinetic_power_21-30.pdf
Size:
410.52 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
2023v9n3_Pasika_V-Reducing_the_kinetic_power_21-30__COVER.png
Size:
448.28 KB
Format:
Portable Network Graphics
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: