Overview of damage factors of reinforced concrete structures and their impact on load-bearing capacity

dc.citation.epage81
dc.citation.issue1
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage73
dc.citation.volume7
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКлим, А. Б.
dc.contributor.authorБліхарський, Я. З.
dc.contributor.authorКириляк, М. В.
dc.contributor.authorБабій, Я. С.
dc.contributor.authorKlym, Andrii
dc.contributor.authorBlikharskyy, Yaroslav
dc.contributor.authorKyryliak, Mariia
dc.contributor.authorBabii, Yana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-26T08:05:25Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractЗалізобетонні конструкції зазнають впливу численних факторів пошкодження, що безпосередньо впливають на їхню несучу здатність і довговічність. Основними причинами пошкоджень є корозія арматури, тріщиноутворення, механічні навантаження, вплив агресивного середовища, температурні коливання та довготривалі експлуатаційні процеси. Корозія арматури, спричинена проникненням хлоридів або карбонізацією, призводить до тріщин і руйнування бетонного прошарку, що змінює напружено-деформований стан конструкцій. Циклічні навантаження та повзучість бетону зумовлюють поступову деградацію матеріалу та виникнення мікротріщин, що в довгостроковій перспективі знижує несучу здатність конструкцій. Додатково негативно впливають агресивні середовища, зокрема сульфатна і кислотна атаки, які спричиняють хімічну корозію бетону, що зрештою порушує його структуру. Унаслідок високих температур, особливо під час пожежі, бетон втрачає міцність через руйнування його мікроструктури та спонтанне відколювання. Аналіз сучасних досліджень показує, що комп’ютерне моделювання пошкоджень – ефективний інструмент для прогнозування процесів деградації та для розроблення підходів до їх мінімізації. Визначено, що використання методів кінцевих елементів дає змогу враховувати широкий спектр чинників та точно оцінювати вплив пошкоджень на стан конструкцій. У статті наведено огляд основних механізмів та причин руйнування залізобетонних конструкцій та їхнього впливу на несучу здатність, що допомагає краще розуміти й оцінювати процеси, що відбуваються у матеріалах під дією експлуатаційних навантажень. Результати досліджень можуть бути використані для вдосконалення методів проєктування та розроблення ефективних стратегій (технологій) для підсилення, відновлення і ремонту залізобетонних конструкцій.
dc.description.abstractThis review analyzes key factors contributing to damage in reinforced concrete (RC) structures, including reinforcement corrosion, chemical attacks, cyclic and long-term mechanical loads, and extreme temperature effects. The study highlights crack formation as a primary damage mechanism, leading to structural degradation. Advanced computational modeling techniques, such as finite element analysis, offer valuable insights into crack propagation and corrosion processes but require further refinement. Future research should focus on developing high-performance materials, improving corrosion protection methods, and refining predictive models. Additionally, sustainable rehabilitation techniques and experimental validation of damage mechanisms are essential for enhancing the durability and serviceability of RC structures.
dc.format.extent73-81
dc.format.pages9
dc.identifier.citationOverview of damage factors of reinforced concrete structures and their impact on load-bearing capacity / Andrii Klym, Yaroslav Blikharskyy, Mariia Kyryliak, Yana Babii // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 73–81.
dc.identifier.citationenOverview of damage factors of reinforced concrete structures and their impact on load-bearing capacity / Andrii Klym, Yaroslav Blikharskyy, Mariia Kyryliak, Yana Babii // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 73–81.
dc.identifier.doidoi.org/10.23939/jtbp2025.01.073
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124472
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 1 (7), 2025
dc.relation.ispartofTheory and Building Practice, 1 (7), 2025
dc.relation.referencesAngst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51(4), 1-20. https://doi.org/10.1617/s11527-017-1131-6
dc.relation.referencesBastidas, D. M., & Bastidas, J. M. (2020). Corrosion of reinforced concrete structures. Frontiers in Materials, 7, 170. https://doi.org/10.3389/fmats.2020.00170
dc.relation.referencesBastidas-Arteaga, E., Bressolette, P., Chateauneuf, A., & Sánchez-Silva, M. (2009). Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes. Structural Safety, 31(1), 84-96. https://doi.org/10.1016/j.strusafe.2008.04.001
dc.relation.referencesBazant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materials. CRC Press. https://doi.org/10.1201/9780203756799
dc.relation.referencesBlikharskyy, Y. (2020). Calculation of damage RC constructions according to deformation model. Theory and Building Practice, 2(2), 99-106. https://doi.org/10.23939/jtbp2020.02.099
dc.relation.referencesBlikharskyy, Y. (2021). Experimental results of damaged RC beams. Theory and Building Practice, 3(1), 100-105. https://doi.org/10.23939/jtbp2021.01.100
dc.relation.referencesBlikharskyy, Y. Z., & Kopiika, N. S. (2019). Research of damaged reinforced concrete elements, main methods of their restoration and strengthening. Resource-Saving Materials, Structures, Buildings and Structures, 37, 316-322. http://nbuv.gov.ua/UJRN/rmkbs_2019_37_40
dc.relation.referencesBlikharskyy, Y. Z., & Kopiika, N. S. (2021). Comparative analysis of approaches to assessing the reliability of building structures. Ukrainian Journal of Construction and Architecture, 3, 46-55. https://doi.org/10.30838/J.BPSA CEA.2312.010721.46.766
dc.relation.referencesBlikharskyy, Z. Ya. (2005). Stress-strain state of reinforced concrete structures in an aggressive environment under load (Doctoral dissertation), Kyiv https://uacademic.info/en/document/0505U000494
dc.relation.referencesBobalo, T., Blikharskyy, Y., Kopiika, N., & Volynets, M. (2019). Serviceability of RC beams reinforced with high strength rebar's and steel plate. Lecture Notes in Civil Engineering, 47, 25-33. https://doi.org/10.1007/978-3-030-27011-7_4
dc.relation.referencesBroomfield, J. P. (2007). Corrosion of steel in concrete: Understanding, investigation and repair. CRC Press. https://doi.org/10.1201/9781003223016
dc.relation.referencesChen, F., Li, C. Q., Baji, H., & Ma, B. (2019). Effect of design parameters on microstructure of steel-concrete interface in reinforced concrete. Cement and Concrete Research, 119, 1-10. https://doi.org/10.1016/j.cemconres.2019.01.005
dc.relation.referencesChiu, C. K., Sung, H. F., Chi, K. N., & Hsiao, F. P. (2019). Experimental quantification on the residual seismic capacity of damaged RC column members. International Journal of Concrete Structures and Materials, 13(1), 1-22. https://doi.org/10.1186/s40069-019-0338-z
dc.relation.referencesChrysafi, A. P., Athanasopoulos, N., & Siakavellas, N. J. (2017). Damage detection on composite materials with active thermography and digital image processing. International Journal of Thermal Sciences, 116, 242-253. https://doi.org/10.1016/j.ijthermalsci.2017.02.017
dc.relation.referencesCohen, M., Monteleone, A., & Potapenko, S. (2018). Finite element analysis of intermediate crack debonding in fibre reinforced polymer strengthened reinforced concrete beams. Canadian Journal of Civil Engineering, 45(10), 840-851. https://doi.org/10.1139/cjce-2017-0439
dc.relation.referencesCorral-Higuera, R., Arredondo-Rea, S. P., Neri-Flores, M. A., Gómez-Soberón, J. M., Calderón, F. A., Castorena-González, J. H., & Almaral-Sánchez, J. L. (2011). Sulfate attack and reinforcement corrosion in concrete with recycled concrete aggregates and supplementary cementing materials. International Journal of Electrochemical Science, 6(3), 613-621. https://doi.org/10.1016/S1452-3981(23)15020-6
dc.relation.referencesErcolani, G. D., Felix, D. H., & Ortega, N. F. (2018). Crack detection in prestressed concrete structures by measuring their natural frequencies. Journal of Civil Structural Health Monitoring, 8, 661-671. https://doi.org/10.1007/s13349-018-0295-2
dc.relation.referencesFagerlund, G. (1977). The significance of critical degrees of saturation at freezing of porous and brittle materials. Durability of Building Materials, 2(3), 217-225. https://lup.lub.lu.se/search/files/4759429/1553671.pdf
dc.relation.referencesFatemi, A., & Yang, L. (1998). Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20(1), 9-34. https://doi.org/10.1016/S0142-1123(97)00081-9
dc.relation.referencesFu, C., Jin, N., Ye, H., Jin, X., & Dai, W. (2017). Corrosion characteristics of a 4-year naturally corroded reinforced concrete beam with load-induced transverse cracks. Corrosion Science, 117, 11-23. https://doi.org/10.1016/j.corsci.2017.01.002
dc.relation.referencesFursa, T. V., Dann, D. D., Petrov, M. V., & Lykov, A. E. (2017). Evaluation of damage in concrete under uniaxial compression by measuring electric response to mechanical impact. Journal of Nondestructive Evaluation, 36(2), Article 30. https://doi.org/10.1007/s10921-017-0411-y
dc.relation.referencesGollop, R. S., & Taylor, H. F. W. (1992). Microstructural and microanalytical studies of sulfate attack. I. Ordinary Portland cement paste. Cement and Concrete Research, 22(6), 1027-1038. https://doi.org/10.1016/0008-8846(92)90033-R
dc.relation.referencesGolos, K., & Ellyin, F. (1987). Generalization of cumulative damage criterion to multilevel cyclic loading. Theoretical and Applied Fracture Mechanics, 7(3), 169-176. https://doi.org/10.1016/0167-8442(87)90032-2
dc.relation.referencesGu, X., Guo, H., Zhou, B., Zhang, W., & Jiang, C. (2018). Corrosion non-uniformity of steel bars and reliability of corroded RC beams. Engineering Structures, 167, 188-202. https://doi.org/10.1016/j.engstruct.2018.04.020
dc.relation.referencesHager, I. (2013). Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61, 145-154. . http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.oai-journals-pan-pl-83679/c/oai-journals-pan-pl-83679_full-text_paper_13.pdf
dc.relation.referencesHibner, D. R. (2017). Residual axial capacity of fire exposed reinforced concrete columns (Master's thesis). Michigan State University. https://www.proquest.com/openview/928d94f115983c0c02629b4754e7710c/1?pqorigsite=gscholar&cbl=18750
dc.relation.referencesHlavička, V., Biró, A., Tóth, B., & Lublóy, É. (2024). Fire behaviour of hollow core slabs. Construction and Building Materials, 411, Article 134143. https://doi.org/10.1016/j.conbuildmat.2023.134143
dc.relation.referencesJames, A., Bazarchi, E., Chiniforush, A. A., Aghdam, P. P., Hosseini, M. R., Akbarnezhad, A., & Ghodoosi, F. (2019). Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A review. Construction and Building Materials, 224, 1026-1039. https://doi.org/10.1016/j.conbuildmat.2019.07.250
dc.relation.referencesKarpiuk, V., Somina, Y., & Maistrenko, O. (2020). Engineering method of calculation of beam structures inclined sections based on the fatigue fracture model. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 135-144). Springer International Publishing. https://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.referencesKhiem, N. T., & Toan, L. K. (2014). A novel method for crack detection in beam-like structures by measurements of natural frequencies. Journal of Sound and Vibration, 333(18), 4084-4103. https://doi.org/10.1016/j.jsv.2014.04.031
dc.relation.referencesKlymenko, Y. V., & Polyanskyi, K. V. (2019). Experimental studies of the stress-strain state of damaged RC beams. Bulletin of Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. http://nbuv.gov.ua/UJRN/Vodaba_2019_76_5
dc.relation.referencesKwan, A. K. H., & Ma, F. J. (2016). Crack width analysis of reinforced concrete under direct tension by finite element method and crack queuing algorithm. Engineering Structures, 126, 618-627. https://doi.org/10.1016/j.engstruct.2016.08.027
dc.relation.referencesLee, S., Kim, T., Suh, K., Bae, Y., Kim, H., & Lee, J. (2016). Analysis of repair times of marine reinforced-concrete structures considering shape effects and domain discontinuity. Transactions of the ASABE, 59(3), 975-982. https://doi.org/10.13031/trans.59.11342
dc.relation.referencesLin, S. H. (1990). Chloride diffusion in a porous concrete slab. Corrosion (USA), 46(12), 961-967. https://doi.org/10.5006/1.3585052
dc.relation.referencesMahmoodian, M. (2020). Structural reliability assessment of corroded offshore pipelines. Australian Journal of Civil Engineering, 1-11. https://doi.org/10.1080/14488353.2020.1816639
dc.relation.referencesMalumbela, G., Alexander, M., & Moyo, P. (2010). Variation of steel loss and its effect on the ultimate flexural capacity of RC beams corroded and repaired under load. Construction and Building Materials, 24(6), 1051-1059. https://doi.org/10.1016/j.conbuildmat.2009.11.012
dc.relation.referencesMeier, U. (1995). Strengthening of structures using carbon fibre/epoxy composites. Construction and Building Materials, 9(6), 341-351. https://doi.org/10.1016/0950-0618(95)00071-2
dc.relation.referencesMundra, S., Criado, M., Bernal, S. A., & Provis, J. L. (2017). Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes. Cement and Concrete Research, 100, 385-397. https://doi.org/10.1016/j.cemconres.2017.08.006
dc.relation.referencesNuguzhinov, Z., Vatin, N., Bakirov, Z., Khabidolda, O., Zholmagambetov, S., & Kurokhtina, I. (2020). Stress-strain state of bending reinforced beams with cracks. Magazine of Civil Engineering, 96(5), 1-15. https://doi.org/10.18720/MCE.97.1
dc.relation.referencesOehlers, D. J., & Seracino, R. (2004). Design of FRP and steel plated RC structures: Retrofitting beams and slabs for strength, stiffness and ductility. CRC Press. https://books.google.com.ua/books?hl=uk&lr=&id=NuzKo34NRYkC&oi=fnd&pg=PP1
dc.relation.referencesOtieno, M. B., Beushausen, H. D., & Alexander, M. G. (2011). Modelling corrosion propagation in reinforced concrete structures - A critical review. Cement and Concrete Composites, 33(2), 240-245. https://doi.org/10.1016/j.cemconcomp.2010.11.002
dc.relation.referencesPatel, J., & Peralta, P. (2017). Characterization of deformation localization mechanisms in polymer matrix composites: A digital image correlation study. In International Digital Imaging Correlation Society. Springer, Cham. (pp. 243-246). https://doi.org/10.1007/978-3-319-51439-0_58
dc.relation.referencesPeng, H., Chen, Z., Liu, M., Zhao, Y., Fu, W., Liu, J., & Tan, X. (2024). Study on the effect of additives on the performance of cement-based composite anti-corrosion coatings for steel bars in prefabricated construction. Materials, 17(9), 1996. https://doi.org/10.3390/ma17091996
dc.relation.referencesPozzer, S., Rezazadeh Azar, E., Dalla Rosa, F., & Chamberlain Pravia, Z. M. (2021). Semantic segmentation of defects in infrared thermographic images of highly damaged concrete structures. Journal of Performance of Constructed Facilities, 35(1), 04020131. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001541
dc.relation.referencesRezaie, A., Achanta, R., Godio, M., & Beyer, K. (2020). Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials, 261, 120474. https://doi.org/10.1016/j.conbuildmat.2020.120474
dc.relation.referencesRILEM Technical Committees. (1991). Damage classification of concrete structures. Materials and Structures / Matériaux et Constructions, 24, 253-259.
dc.relation.referencesSanthanam, M., Cohen, M. D., & Olek, J. (2002). Sulfate attack research-whither now? Cement and Concrete Research, 32(6), 831-836. https://doi.org/10.1016/S0008-8846(01)00510-5
dc.relation.referencesSavitskyi, M. V. (2003). Fundamentals of reliability calculation, durability, and constructive-technological design of reinforced concrete structures in aggressive environments. Collection of Scientific Papers: Building Structures, 2(59), 235-240.
dc.relation.referencesSmith, R. W. (2007). The effects of corrosion on the performance of reinforced concrete beams (Master's thesis). Ryerson University. https://rshare.library.torontomu.ca/articles/thesis/The_effects_of_corrosion_on_the_performance_of_reinforced_concrete_beams/14656110?file=28137951
dc.relation.referencesSong, J., Li, Y., Xu, W., Liu, H., & Lu, Y. (2019). Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of Colloid and Interface Science, 541, 86-92. https://doi.org/10.1016/j.jcis.2019.01.014
dc.relation.referencesTaylor, H. F. W., Famy, C., & Scrivener, K. L. (2001). Delayed ettringite formation. Cement and Concrete Research, 31(5), 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5
dc.relation.referencesTorres-Acosta, A. A., Navarro-Gutierrez, S., & Terán-Guillén, J. (2007). Residual flexure capacity of corroded reinforced concrete beams. Engineering Structures, 29(6), 1145-1152. https://doi.org/10.1016/j.engstruct.2006.07.018
dc.relation.referencesTriantafillou, T. C. (1998). Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Structural Journal, 95(2), 107-115. https://www.researchgate.net/profile/Thanasis-Triantafillou/publication/247509718_Shear_Strengthening_Of_Reinforced_Concrete_Beams_Using_Epoxy-Bonded_FRP_Composites/links/5a8aecb20f7e9b1a9554c8c4/Shear-Strengthening-Of-Reinforced-Concrete-Beams-Using-Epoxy-Bonded-FRP-Composites.pdf
dc.relation.referencesVatulia, G., Orel, Y., & Kovalov, M. (2014). Carrying capacity definition of steel-concrete beams with external reinforcement under the fire impact. Applied Mechanics and Materials, 617, 167-170. https://doi.org/10.4028/www.scientific.net/AMM.617.167
dc.relation.referencesVerma, S. K., Bhadauria, S. S., & Akhtar, S. (2014). Probabilistic evaluation of service life for reinforced concrete structures. Chinese Journal of Engineering, 2014, 1-8. https://doi.org/10.1155/2014/648438
dc.relation.referencesVoskobiinyk, O. P. (2010). Typological comparison of defects and damages of reinforced concrete, metal, and composite beam structures. Bulletin of Lviv Polytechnic National University, 662, 97-103.
dc.relation.referencesWang, Y. H., Nie, J. G., & Cai, C. S. (2013). Numerical modeling on concrete structures and steel-concrete composite frame structures. Composites Part B: Engineering, 51, 58-67. https://doi.org/10.1016/j.compositesb.2013.02.035
dc.relation.referencesXu, F., Xiao, Y., Wang, S., Li, W., Liu, W., & Du, D. (2018). Numerical model for corrosion rate of steel reinforcement in cracked reinforced concrete structure. Construction and Building Materials, 180, 55-679. https://doi.org/10.1016/j.conbuildmat.2018.05.215
dc.relation.referencesYe, H., Tian, Y., Jin, N., Jin, X., & Fu, C. (2013). Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions. Construction and Building Materials, 47, 66-79. https://doi.org/10.1016/j.conbuildmat.2013.04.024
dc.relation.referencesYuan, S., Zhao, X., Jin, Z., Zhao, Q., Fan, L., Deng, J., & Hou, B. (2024). Design and realization of versatile durable fluorine-free anti-corrosive coating with robust superhydrophobicity. Electrochimica Acta, 495, Article 144428. https://doi.org/10.1016/j.electacta.2024.144428
dc.relation.referencesZhao, L., Wang, J., Gao, P., & Yuan, Y. (2023). Experimental study on the corrosion characteristics of steel bars in concrete considering the effects of multiple factors. Case Studies in Construction Materials, 20, Article e02706. https://doi.org/10.1016/j.cscm.2023.e02706
dc.relation.referencesZhou, H., Tian, X. Q., Wang, Y. S., Lin, H. L., & Chen, H. H. (2024). Experimental investigation of damage and failure modes in stirrupless reinforced concrete beams under varied thermal-mechanical loadings. Journal of Structural Engineering, 150(3), Article 04023240. https://doi.org/10.1061/JSENDH.STENG-12990
dc.relation.referencesenAngst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete. Materials and Structures, 51(4), 1-20. https://doi.org/10.1617/s11527-017-1131-6
dc.relation.referencesenBastidas, D. M., & Bastidas, J. M. (2020). Corrosion of reinforced concrete structures. Frontiers in Materials, 7, 170. https://doi.org/10.3389/fmats.2020.00170
dc.relation.referencesenBastidas-Arteaga, E., Bressolette, P., Chateauneuf, A., & Sánchez-Silva, M. (2009). Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes. Structural Safety, 31(1), 84-96. https://doi.org/10.1016/j.strusafe.2008.04.001
dc.relation.referencesenBazant, Z. P., & Planas, J. (1998). Fracture and size effect in concrete and other quasibrittle materials. CRC Press. https://doi.org/10.1201/9780203756799
dc.relation.referencesenBlikharskyy, Y. (2020). Calculation of damage RC constructions according to deformation model. Theory and Building Practice, 2(2), 99-106. https://doi.org/10.23939/jtbp2020.02.099
dc.relation.referencesenBlikharskyy, Y. (2021). Experimental results of damaged RC beams. Theory and Building Practice, 3(1), 100-105. https://doi.org/10.23939/jtbp2021.01.100
dc.relation.referencesenBlikharskyy, Y. Z., & Kopiika, N. S. (2019). Research of damaged reinforced concrete elements, main methods of their restoration and strengthening. Resource-Saving Materials, Structures, Buildings and Structures, 37, 316-322. http://nbuv.gov.ua/UJRN/rmkbs_2019_37_40
dc.relation.referencesenBlikharskyy, Y. Z., & Kopiika, N. S. (2021). Comparative analysis of approaches to assessing the reliability of building structures. Ukrainian Journal of Construction and Architecture, 3, 46-55. https://doi.org/10.30838/J.BPSA CEA.2312.010721.46.766
dc.relation.referencesenBlikharskyy, Z. Ya. (2005). Stress-strain state of reinforced concrete structures in an aggressive environment under load (Doctoral dissertation), Kyiv https://uacademic.info/en/document/0505U000494
dc.relation.referencesenBobalo, T., Blikharskyy, Y., Kopiika, N., & Volynets, M. (2019). Serviceability of RC beams reinforced with high strength rebar's and steel plate. Lecture Notes in Civil Engineering, 47, 25-33. https://doi.org/10.1007/978-3-030-27011-7_4
dc.relation.referencesenBroomfield, J. P. (2007). Corrosion of steel in concrete: Understanding, investigation and repair. CRC Press. https://doi.org/10.1201/9781003223016
dc.relation.referencesenChen, F., Li, C. Q., Baji, H., & Ma, B. (2019). Effect of design parameters on microstructure of steel-concrete interface in reinforced concrete. Cement and Concrete Research, 119, 1-10. https://doi.org/10.1016/j.cemconres.2019.01.005
dc.relation.referencesenChiu, C. K., Sung, H. F., Chi, K. N., & Hsiao, F. P. (2019). Experimental quantification on the residual seismic capacity of damaged RC column members. International Journal of Concrete Structures and Materials, 13(1), 1-22. https://doi.org/10.1186/s40069-019-0338-z
dc.relation.referencesenChrysafi, A. P., Athanasopoulos, N., & Siakavellas, N. J. (2017). Damage detection on composite materials with active thermography and digital image processing. International Journal of Thermal Sciences, 116, 242-253. https://doi.org/10.1016/j.ijthermalsci.2017.02.017
dc.relation.referencesenCohen, M., Monteleone, A., & Potapenko, S. (2018). Finite element analysis of intermediate crack debonding in fibre reinforced polymer strengthened reinforced concrete beams. Canadian Journal of Civil Engineering, 45(10), 840-851. https://doi.org/10.1139/cjce-2017-0439
dc.relation.referencesenCorral-Higuera, R., Arredondo-Rea, S. P., Neri-Flores, M. A., Gómez-Soberón, J. M., Calderón, F. A., Castorena-González, J. H., & Almaral-Sánchez, J. L. (2011). Sulfate attack and reinforcement corrosion in concrete with recycled concrete aggregates and supplementary cementing materials. International Journal of Electrochemical Science, 6(3), 613-621. https://doi.org/10.1016/S1452-3981(23)15020-6
dc.relation.referencesenErcolani, G. D., Felix, D. H., & Ortega, N. F. (2018). Crack detection in prestressed concrete structures by measuring their natural frequencies. Journal of Civil Structural Health Monitoring, 8, 661-671. https://doi.org/10.1007/s13349-018-0295-2
dc.relation.referencesenFagerlund, G. (1977). The significance of critical degrees of saturation at freezing of porous and brittle materials. Durability of Building Materials, 2(3), 217-225. https://lup.lub.lu.se/search/files/4759429/1553671.pdf
dc.relation.referencesenFatemi, A., & Yang, L. (1998). Cumulative fatigue damage and life prediction theories: A survey of the state of the art for homogeneous materials. International Journal of Fatigue, 20(1), 9-34. https://doi.org/10.1016/S0142-1123(97)00081-9
dc.relation.referencesenFu, C., Jin, N., Ye, H., Jin, X., & Dai, W. (2017). Corrosion characteristics of a 4-year naturally corroded reinforced concrete beam with load-induced transverse cracks. Corrosion Science, 117, 11-23. https://doi.org/10.1016/j.corsci.2017.01.002
dc.relation.referencesenFursa, T. V., Dann, D. D., Petrov, M. V., & Lykov, A. E. (2017). Evaluation of damage in concrete under uniaxial compression by measuring electric response to mechanical impact. Journal of Nondestructive Evaluation, 36(2), Article 30. https://doi.org/10.1007/s10921-017-0411-y
dc.relation.referencesenGollop, R. S., & Taylor, H. F. W. (1992). Microstructural and microanalytical studies of sulfate attack. I. Ordinary Portland cement paste. Cement and Concrete Research, 22(6), 1027-1038. https://doi.org/10.1016/0008-8846(92)90033-R
dc.relation.referencesenGolos, K., & Ellyin, F. (1987). Generalization of cumulative damage criterion to multilevel cyclic loading. Theoretical and Applied Fracture Mechanics, 7(3), 169-176. https://doi.org/10.1016/0167-8442(87)90032-2
dc.relation.referencesenGu, X., Guo, H., Zhou, B., Zhang, W., & Jiang, C. (2018). Corrosion non-uniformity of steel bars and reliability of corroded RC beams. Engineering Structures, 167, 188-202. https://doi.org/10.1016/j.engstruct.2018.04.020
dc.relation.referencesenHager, I. (2013). Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61, 145-154. . http://psjd.icm.edu.pl/psjd/element/bwmeta1.element.oai-journals-pan-pl-83679/c/oai-journals-pan-pl-83679_full-text_paper_13.pdf
dc.relation.referencesenHibner, D. R. (2017). Residual axial capacity of fire exposed reinforced concrete columns (Master's thesis). Michigan State University. https://www.proquest.com/openview/928d94f115983c0c02629b4754e7710c/1?pqorigsite=gscholar&cbl=18750
dc.relation.referencesenHlavička, V., Biró, A., Tóth, B., & Lublóy, É. (2024). Fire behaviour of hollow core slabs. Construction and Building Materials, 411, Article 134143. https://doi.org/10.1016/j.conbuildmat.2023.134143
dc.relation.referencesenJames, A., Bazarchi, E., Chiniforush, A. A., Aghdam, P. P., Hosseini, M. R., Akbarnezhad, A., & Ghodoosi, F. (2019). Rebar corrosion detection, protection, and rehabilitation of reinforced concrete structures in coastal environments: A review. Construction and Building Materials, 224, 1026-1039. https://doi.org/10.1016/j.conbuildmat.2019.07.250
dc.relation.referencesenKarpiuk, V., Somina, Y., & Maistrenko, O. (2020). Engineering method of calculation of beam structures inclined sections based on the fatigue fracture model. In Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering 18 (pp. 135-144). Springer International Publishing. https://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.referencesenKhiem, N. T., & Toan, L. K. (2014). A novel method for crack detection in beam-like structures by measurements of natural frequencies. Journal of Sound and Vibration, 333(18), 4084-4103. https://doi.org/10.1016/j.jsv.2014.04.031
dc.relation.referencesenKlymenko, Y. V., & Polyanskyi, K. V. (2019). Experimental studies of the stress-strain state of damaged RC beams. Bulletin of Odessa State Academy of Civil Engineering and Architecture, 76, 24-30. http://nbuv.gov.ua/UJRN/Vodaba_2019_76_5
dc.relation.referencesenKwan, A. K. H., & Ma, F. J. (2016). Crack width analysis of reinforced concrete under direct tension by finite element method and crack queuing algorithm. Engineering Structures, 126, 618-627. https://doi.org/10.1016/j.engstruct.2016.08.027
dc.relation.referencesenLee, S., Kim, T., Suh, K., Bae, Y., Kim, H., & Lee, J. (2016). Analysis of repair times of marine reinforced-concrete structures considering shape effects and domain discontinuity. Transactions of the ASABE, 59(3), 975-982. https://doi.org/10.13031/trans.59.11342
dc.relation.referencesenLin, S. H. (1990). Chloride diffusion in a porous concrete slab. Corrosion (USA), 46(12), 961-967. https://doi.org/10.5006/1.3585052
dc.relation.referencesenMahmoodian, M. (2020). Structural reliability assessment of corroded offshore pipelines. Australian Journal of Civil Engineering, 1-11. https://doi.org/10.1080/14488353.2020.1816639
dc.relation.referencesenMalumbela, G., Alexander, M., & Moyo, P. (2010). Variation of steel loss and its effect on the ultimate flexural capacity of RC beams corroded and repaired under load. Construction and Building Materials, 24(6), 1051-1059. https://doi.org/10.1016/j.conbuildmat.2009.11.012
dc.relation.referencesenMeier, U. (1995). Strengthening of structures using carbon fibre/epoxy composites. Construction and Building Materials, 9(6), 341-351. https://doi.org/10.1016/0950-0618(95)00071-2
dc.relation.referencesenMundra, S., Criado, M., Bernal, S. A., & Provis, J. L. (2017). Chloride-induced corrosion of steel rebars in simulated pore solutions of alkali-activated concretes. Cement and Concrete Research, 100, 385-397. https://doi.org/10.1016/j.cemconres.2017.08.006
dc.relation.referencesenNuguzhinov, Z., Vatin, N., Bakirov, Z., Khabidolda, O., Zholmagambetov, S., & Kurokhtina, I. (2020). Stress-strain state of bending reinforced beams with cracks. Magazine of Civil Engineering, 96(5), 1-15. https://doi.org/10.18720/MCE.97.1
dc.relation.referencesenOehlers, D. J., & Seracino, R. (2004). Design of FRP and steel plated RC structures: Retrofitting beams and slabs for strength, stiffness and ductility. CRC Press. https://books.google.com.ua/books?hl=uk&lr=&id=NuzKo34NRYkC&oi=fnd&pg=PP1
dc.relation.referencesenOtieno, M. B., Beushausen, H. D., & Alexander, M. G. (2011). Modelling corrosion propagation in reinforced concrete structures - A critical review. Cement and Concrete Composites, 33(2), 240-245. https://doi.org/10.1016/j.cemconcomp.2010.11.002
dc.relation.referencesenPatel, J., & Peralta, P. (2017). Characterization of deformation localization mechanisms in polymer matrix composites: A digital image correlation study. In International Digital Imaging Correlation Society. Springer, Cham. (pp. 243-246). https://doi.org/10.1007/978-3-319-51439-0_58
dc.relation.referencesenPeng, H., Chen, Z., Liu, M., Zhao, Y., Fu, W., Liu, J., & Tan, X. (2024). Study on the effect of additives on the performance of cement-based composite anti-corrosion coatings for steel bars in prefabricated construction. Materials, 17(9), 1996. https://doi.org/10.3390/ma17091996
dc.relation.referencesenPozzer, S., Rezazadeh Azar, E., Dalla Rosa, F., & Chamberlain Pravia, Z. M. (2021). Semantic segmentation of defects in infrared thermographic images of highly damaged concrete structures. Journal of Performance of Constructed Facilities, 35(1), 04020131. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001541
dc.relation.referencesenRezaie, A., Achanta, R., Godio, M., & Beyer, K. (2020). Comparison of crack segmentation using digital image correlation measurements and deep learning. Construction and Building Materials, 261, 120474. https://doi.org/10.1016/j.conbuildmat.2020.120474
dc.relation.referencesenRILEM Technical Committees. (1991). Damage classification of concrete structures. Materials and Structures, Matériaux et Constructions, 24, 253-259.
dc.relation.referencesenSanthanam, M., Cohen, M. D., & Olek, J. (2002). Sulfate attack research-whither now? Cement and Concrete Research, 32(6), 831-836. https://doi.org/10.1016/S0008-8846(01)00510-5
dc.relation.referencesenSavitskyi, M. V. (2003). Fundamentals of reliability calculation, durability, and constructive-technological design of reinforced concrete structures in aggressive environments. Collection of Scientific Papers: Building Structures, 2(59), 235-240.
dc.relation.referencesenSmith, R. W. (2007). The effects of corrosion on the performance of reinforced concrete beams (Master's thesis). Ryerson University. https://rshare.library.torontomu.ca/articles/thesis/The_effects_of_corrosion_on_the_performance_of_reinforced_concrete_beams/14656110?file=28137951
dc.relation.referencesenSong, J., Li, Y., Xu, W., Liu, H., & Lu, Y. (2019). Inexpensive and non-fluorinated superhydrophobic concrete coating for anti-icing and anti-corrosion. Journal of Colloid and Interface Science, 541, 86-92. https://doi.org/10.1016/j.jcis.2019.01.014
dc.relation.referencesenTaylor, H. F. W., Famy, C., & Scrivener, K. L. (2001). Delayed ettringite formation. Cement and Concrete Research, 31(5), 683-693. https://doi.org/10.1016/S0008-8846(01)00466-5
dc.relation.referencesenTorres-Acosta, A. A., Navarro-Gutierrez, S., & Terán-Guillén, J. (2007). Residual flexure capacity of corroded reinforced concrete beams. Engineering Structures, 29(6), 1145-1152. https://doi.org/10.1016/j.engstruct.2006.07.018
dc.relation.referencesenTriantafillou, T. C. (1998). Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Structural Journal, 95(2), 107-115. https://www.researchgate.net/profile/Thanasis-Triantafillou/publication/247509718_Shear_Strengthening_Of_Reinforced_Concrete_Beams_Using_Epoxy-Bonded_FRP_Composites/links/5a8aecb20f7e9b1a9554c8c4/Shear-Strengthening-Of-Reinforced-Concrete-Beams-Using-Epoxy-Bonded-FRP-Composites.pdf
dc.relation.referencesenVatulia, G., Orel, Y., & Kovalov, M. (2014). Carrying capacity definition of steel-concrete beams with external reinforcement under the fire impact. Applied Mechanics and Materials, 617, 167-170. https://doi.org/10.4028/www.scientific.net/AMM.617.167
dc.relation.referencesenVerma, S. K., Bhadauria, S. S., & Akhtar, S. (2014). Probabilistic evaluation of service life for reinforced concrete structures. Chinese Journal of Engineering, 2014, 1-8. https://doi.org/10.1155/2014/648438
dc.relation.referencesenVoskobiinyk, O. P. (2010). Typological comparison of defects and damages of reinforced concrete, metal, and composite beam structures. Bulletin of Lviv Polytechnic National University, 662, 97-103.
dc.relation.referencesenWang, Y. H., Nie, J. G., & Cai, C. S. (2013). Numerical modeling on concrete structures and steel-concrete composite frame structures. Composites Part B: Engineering, 51, 58-67. https://doi.org/10.1016/j.compositesb.2013.02.035
dc.relation.referencesenXu, F., Xiao, Y., Wang, S., Li, W., Liu, W., & Du, D. (2018). Numerical model for corrosion rate of steel reinforcement in cracked reinforced concrete structure. Construction and Building Materials, 180, 55-679. https://doi.org/10.1016/j.conbuildmat.2018.05.215
dc.relation.referencesenYe, H., Tian, Y., Jin, N., Jin, X., & Fu, C. (2013). Influence of cracking on chloride diffusivity and moisture influential depth in concrete subjected to simulated environmental conditions. Construction and Building Materials, 47, 66-79. https://doi.org/10.1016/j.conbuildmat.2013.04.024
dc.relation.referencesenYuan, S., Zhao, X., Jin, Z., Zhao, Q., Fan, L., Deng, J., & Hou, B. (2024). Design and realization of versatile durable fluorine-free anti-corrosive coating with robust superhydrophobicity. Electrochimica Acta, 495, Article 144428. https://doi.org/10.1016/j.electacta.2024.144428
dc.relation.referencesenZhao, L., Wang, J., Gao, P., & Yuan, Y. (2023). Experimental study on the corrosion characteristics of steel bars in concrete considering the effects of multiple factors. Case Studies in Construction Materials, 20, Article e02706. https://doi.org/10.1016/j.cscm.2023.e02706
dc.relation.referencesenZhou, H., Tian, X. Q., Wang, Y. S., Lin, H. L., & Chen, H. H. (2024). Experimental investigation of damage and failure modes in stirrupless reinforced concrete beams under varied thermal-mechanical loadings. Journal of Structural Engineering, 150(3), Article 04023240. https://doi.org/10.1061/JSENDH.STENG-12990
dc.relation.urihttps://doi.org/10.1617/s11527-017-1131-6
dc.relation.urihttps://doi.org/10.3389/fmats.2020.00170
dc.relation.urihttps://doi.org/10.1016/j.strusafe.2008.04.001
dc.relation.urihttps://doi.org/10.1201/9780203756799
dc.relation.urihttps://doi.org/10.23939/jtbp2020.02.099
dc.relation.urihttps://doi.org/10.23939/jtbp2021.01.100
dc.relation.urihttp://nbuv.gov.ua/UJRN/rmkbs_2019_37_40
dc.relation.urihttps://doi.org/10.30838/J.BPSA
dc.relation.urihttps://uacademic.info/en/document/0505U000494
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_4
dc.relation.urihttps://doi.org/10.1201/9781003223016
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2019.01.005
dc.relation.urihttps://doi.org/10.1186/s40069-019-0338-z
dc.relation.urihttps://doi.org/10.1016/j.ijthermalsci.2017.02.017
dc.relation.urihttps://doi.org/10.1139/cjce-2017-0439
dc.relation.urihttps://doi.org/10.1016/S1452-3981(23)15020-6
dc.relation.urihttps://doi.org/10.1007/s13349-018-0295-2
dc.relation.urihttps://lup.lub.lu.se/search/files/4759429/1553671.pdf
dc.relation.urihttps://doi.org/10.1016/S0142-1123(97)00081-9
dc.relation.urihttps://doi.org/10.1016/j.corsci.2017.01.002
dc.relation.urihttps://doi.org/10.1007/s10921-017-0411-y
dc.relation.urihttps://doi.org/10.1016/0008-8846(92)90033-R
dc.relation.urihttps://doi.org/10.1016/0167-8442(87)90032-2
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2018.04.020
dc.relation.urihttp://psjd.icm.edu.pl/psjd/element/bwmeta1.element.oai-journals-pan-pl-83679/c/oai-journals-pan-pl-83679_full-text_paper_13.pdf
dc.relation.urihttps://www.proquest.com/openview/928d94f115983c0c02629b4754e7710c/1?pqorigsite=gscholar&cbl=18750
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2023.134143
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.07.250
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_17
dc.relation.urihttps://doi.org/10.1016/j.jsv.2014.04.031
dc.relation.urihttp://nbuv.gov.ua/UJRN/Vodaba_2019_76_5
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2016.08.027
dc.relation.urihttps://doi.org/10.13031/trans.59.11342
dc.relation.urihttps://doi.org/10.5006/1.3585052
dc.relation.urihttps://doi.org/10.1080/14488353.2020.1816639
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2009.11.012
dc.relation.urihttps://doi.org/10.1016/0950-0618(95)00071-2
dc.relation.urihttps://doi.org/10.1016/j.cemconres.2017.08.006
dc.relation.urihttps://doi.org/10.18720/MCE.97.1
dc.relation.urihttps://books.google.com.ua/books?hl=uk&lr=&id=NuzKo34NRYkC&oi=fnd&pg=PP1
dc.relation.urihttps://doi.org/10.1016/j.cemconcomp.2010.11.002
dc.relation.urihttps://doi.org/10.1007/978-3-319-51439-0_58
dc.relation.urihttps://doi.org/10.3390/ma17091996
dc.relation.urihttps://doi.org/10.1061/(ASCE)CF.1943-5509.0001541
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.120474
dc.relation.urihttps://doi.org/10.1016/S0008-8846(01)00510-5
dc.relation.urihttps://rshare.library.torontomu.ca/articles/thesis/The_effects_of_corrosion_on_the_performance_of_reinforced_concrete_beams/14656110?file=28137951
dc.relation.urihttps://doi.org/10.1016/j.jcis.2019.01.014
dc.relation.urihttps://doi.org/10.1016/S0008-8846(01)00466-5
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2006.07.018
dc.relation.urihttps://www.researchgate.net/profile/Thanasis-Triantafillou/publication/247509718_Shear_Strengthening_Of_Reinforced_Concrete_Beams_Using_Epoxy-Bonded_FRP_Composites/links/5a8aecb20f7e9b1a9554c8c4/Shear-Strengthening-Of-Reinforced-Concrete-Beams-Using-Epoxy-Bonded-FRP-Composites.pdf
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.617.167
dc.relation.urihttps://doi.org/10.1155/2014/648438
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2013.02.035
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.05.215
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2013.04.024
dc.relation.urihttps://doi.org/10.1016/j.electacta.2024.144428
dc.relation.urihttps://doi.org/10.1016/j.cscm.2023.e02706
dc.relation.urihttps://doi.org/10.1061/JSENDH.STENG-12990
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Klym A., Blikharskyy Y., Kyryliak M., Babii Y., 2025
dc.subjectзалізобетонні (RC) конструкції
dc.subjectтріщини
dc.subjectкорозія
dc.subjectнавантаження
dc.subjectнесуча здатність
dc.subjectдовговічність
dc.subjectReinforced concrete (RC) structures
dc.subjectcracking
dc.subjectcorrosion
dc.subjectloading
dc.subjectload-bearing capacity
dc.subjectdurability
dc.titleOverview of damage factors of reinforced concrete structures and their impact on load-bearing capacity
dc.title.alternativeОгляд факторів пошкодження залізобетонних конструкцій та їх вплив на несучу здатність
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v7n1_Klym_A-Overview_of_damage_factors_of_73-81.pdf
Size:
431.36 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v7n1_Klym_A-Overview_of_damage_factors_of_73-81__COVER.png
Size:
466.26 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: