Метод і модель опрацювання текстової інформації на навченому трансформері для бази знань
dc.citation.epage | 224 | |
dc.citation.issue | 14 | |
dc.citation.journalTitle | Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі | |
dc.citation.spage | 210 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Національна академія сухопутних військ імені гетьмана Петра Сагайдачного | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Hetman Petro Sahaidachnyi National Army Academy | |
dc.contributor.author | Литвин, Василь | |
dc.contributor.author | Тимчук, Володимир | |
dc.contributor.author | Lytvyn, Vasyl | |
dc.contributor.author | Tymchuk, Volodymyr | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-09-12T07:21:53Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Невпорядкована база знань формується із різних множин нестандартизованих документів. У системі підтримки прийняття рішень ключовим є своєчасний доступ до інформації із бази знань. У статті описано модель інформаційно-пошукової системи щодо роботи з множиною знань, поданих у форматі PDF, одному із основних у військово-спеціалізованих базах знань. Модель розроблено на навченому трансформері із забезпеченням міжмовного перекладу, що загалом формує метод обробки текстової інформації. | |
dc.description.abstract | To form a knowledge base is complicated problem traditionally. There are a lot kind of objects that are possibly used for forming a knowledge base. These objects may have different structures, formats, ways of data representation, languages. The simple conjunction is not effective and suitable. In general case the knowledge base has got as an unordered knowledge base. There are uncategorized documents in such unordered knowledge base with different formats that causes the special and particular approaches for recognition, systematization and next processing of some textual information. It’s why the complexes of automation for all stages of processing are complicated. Naturally it is a restriction for some kind of the decision support system, especially in military or other applications with key time factor (to get a quick and exact access to the knowledge base in decision support system). So, we analyzed the mentioned restrictions and conditions for forming a knowledge base in the paper. We depicted that the ontology of knowledge base both in general and specific cases includes such operations as data collection, data regularization, extraction of knowledge, data conversion for matrix representation, data language processing, tokenization, output generation for a request and machine learning for information-retrieval system optimization. There is a model of information-retrieval system for knowledge base with widely- used PDF-documents that is proposed in the paper. We made the model using open learned transformer and Llama Index framework to decrease the time demands in the information-retrieval system. Also, we included the language processing models for translation the specific textual information from Ukrainian into English and back. As a result, we got the method and the model for processing the textual information from PDF-document in Ukrainian that could be effective in any decision support system. The method ensures the reading, tokenization, translation, analysis and retrieve generation of the data in Ukrainian. The model showed its simple, stable and exact estimations, but there are also some disadvantages, high time installation/compilation and little language defaults are some of them. The results encourage us to continue the research and to get the statistics set to analyze the model estimation more properly. | |
dc.format.extent | 210-224 | |
dc.format.pages | 15 | |
dc.identifier.citation | Литвин В. Метод і модель опрацювання текстової інформації на навченому трансформері для бази знань / Василь Литвин, Володимир Тимчук // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2023. — № 14. — С. 210–224. | |
dc.identifier.citationen | Lytvyn V. The method and the model for processing textual information on a learned transformer for information-retrieval system / Vasyl Lytvyn, Volodymyr Tymchuk // Information Systems and Networks. — Lviv : Lviv Politechnic Publishing House, 2023. — No 14. — P. 210–224. | |
dc.identifier.doi | doi.org/10.23939/sisn2023.14.210 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111705 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі, 14, 2023 | |
dc.relation.ispartof | Information Systems and Networks, 14, 2023 | |
dc.relation.references | 1. Вовнянка, Р., Досин, Д., Ковалевич, В. (2014). Метод видобування знань з текстових документів. Вісник Національного університету “Львівська політехніка”. Серія: “Інформаційні системи та мережі”, № 783, 303–312. | |
dc.relation.references | 2. Литвин, В. (2011). Бази знань інтелектуальних систем підтримки прийняття рішень. Львів: Вид-во Нац. ун-ту “Львівська політехніка”. 240 с. | |
dc.relation.references | 3. Вавіленкова, А. (2013). Аналіз методів обробки текстової інформації. Вісник НТУ “ХПІ”, № 39 (1012). | |
dc.relation.references | 4. Литвин, В. (2013). Метод видобування знань з природомовних текстів для автоматизованої розбудови онтологій. Автоматизовані системи управління та прилади автоматики, № 164, 67–72. | |
dc.relation.references | 5. Палагін, О., Петренко М. (2017). Розбудова абстрактної моделі мовно-онтологічної інформаційної системи. Математичні машини і системи, № 1, 42–50. | |
dc.relation.references | 6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. URL: https://www.deeplearningbook.org/. | |
dc.relation.references | 7. Schmidt, Robin M. (2019). Recurrent Neural Networks (RNNs): A gentle Introduction and Overview. Computer Science. Machine Learning. URL: https://arxiv.org/abs/1912.05911v1. | |
dc.relation.references | 8. Rahman, M., Islam, M., Sassi, R. et al. (2019). Convolutional neural networks performance comparison for handwritten Bengali numerals recognition. SN Appl. Sci. 1, 1660. URL: https://doi.org/10.1007/s42452-019-1682-y. | |
dc.relation.references | 9. Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. & others (2020), 'Language models are few-shot learners'. URL: arXiv preprint arXiv:2005.14165. | |
dc.relation.references | 10. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 4171–4186. URL: https://aclanthology.org/N19-1423.pdf. | |
dc.relation.references | 11. Gomez, A. N., Jones, L., Kaiser, Ł., Parmar, N., Polosukhin, I., Shazeer, N., Uszkoreit, J., Vaswani, A. (2017). Attention is All You Need. In 31st Conf. on Neural Information Processing Systems. URL: arXiv:1706.03762v5. | |
dc.relation.references | 12. He, K.; Zhang, X.; Ren, S.; Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778. | |
dc.relation.references | 13. Graves, A. (2013). Generating sequences with recurrent neural networks. URL: arXiv:1308.0850. | |
dc.relation.references | 14. Ba, J.; Kiros, J. and Hinton, G. (2016). Layer normalization. URL: arXiv:1607.06450. | |
dc.relation.references | 15. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D. and Dauphin, Y. (2017). Convolutional sequence to sequence learning. URL: arXiv:1705.03122v2. | |
dc.relation.references | 16. Алімпієв, А., Пєвцов, Г., Гриб Д. та ін. (2019). Озброєння і військова техніка Російської Федерації: довідник учасника АТО. За заг. ред. А. Алімпієва. Харків, 1112. | |
dc.relation.referencesen | 1. Vovnianka, R., Dosyn, D., Kovalevych, V. (2014). Metod vydobuvannia znan z tekstovykh dokumentiv. Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: "Informatsiini systemy ta merezhi", No 783, 303–312. | |
dc.relation.referencesen | 2. Lytvyn, V. (2011). Bazy znan intelektualnykh system pidtrymky pryiniattia rishen. Lviv: Vyd-vo Nats. un-tu "Lvivska politekhnika". 240 p. | |
dc.relation.referencesen | 3. Vavilenkova, A. (2013). Analiz metodiv obrobky tekstovoi informatsii. Visnyk NTU "KhPI", No 39 (1012). | |
dc.relation.referencesen | 4. Lytvyn, V. (2013). Metod vydobuvannia znan z pryrodomovnykh tekstiv dlia avtomatyzovanoi rozbudovy ontolohii. Avtomatyzovani systemy upravlinnia ta prylady avtomatyky, No 164, 67–72. | |
dc.relation.referencesen | 5. Palahin, O., Petrenko M. (2017). Rozbudova abstraktnoi modeli movno-ontolohichnoi informatsiinoi systemy. Matematychni mashyny i systemy, No 1, 42–50. | |
dc.relation.referencesen | 6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press. URL: https://www.deeplearningbook.org/. | |
dc.relation.referencesen | 7. Schmidt, Robin M. (2019). Recurrent Neural Networks (RNNs): A gentle Introduction and Overview. Computer Science. Machine Learning. URL: https://arxiv.org/abs/1912.05911v1. | |
dc.relation.referencesen | 8. Rahman, M., Islam, M., Sassi, R. et al. (2019). Convolutional neural networks performance comparison for handwritten Bengali numerals recognition. SN Appl. Sci. 1, 1660. URL: https://doi.org/10.1007/s42452-019-1682-y. | |
dc.relation.referencesen | 9. Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A. & others (2020), 'Language models are few-shot learners'. URL: arXiv preprint arXiv:2005.14165. | |
dc.relation.referencesen | 10. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol. 1, 4171–4186. URL: https://aclanthology.org/N19-1423.pdf. | |
dc.relation.referencesen | 11. Gomez, A. N., Jones, L., Kaiser, Ł., Parmar, N., Polosukhin, I., Shazeer, N., Uszkoreit, J., Vaswani, A. (2017). Attention is All You Need. In 31st Conf. on Neural Information Processing Systems. URL: arXiv:1706.03762v5. | |
dc.relation.referencesen | 12. He, K.; Zhang, X.; Ren, S.; Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778. | |
dc.relation.referencesen | 13. Graves, A. (2013). Generating sequences with recurrent neural networks. URL: arXiv:1308.0850. | |
dc.relation.referencesen | 14. Ba, J.; Kiros, J. and Hinton, G. (2016). Layer normalization. URL: arXiv:1607.06450. | |
dc.relation.referencesen | 15. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D. and Dauphin, Y. (2017). Convolutional sequence to sequence learning. URL: arXiv:1705.03122v2. | |
dc.relation.referencesen | 16. Alimpiiev, A., Pievtsov, H., Hryb D. and other (2019). Ozbroiennia i viiskova tekhnika Rosiiskoi Federatsii: dovidnyk uchasnyka ATO. by gen. ed. A. Alimpiieva. Kharkiv, 1112. | |
dc.relation.uri | https://www.deeplearningbook.org/ | |
dc.relation.uri | https://arxiv.org/abs/1912.05911v1 | |
dc.relation.uri | https://doi.org/10.1007/s42452-019-1682-y | |
dc.relation.uri | https://aclanthology.org/N19-1423.pdf | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Литвин В., Тимчук В., 2023 | |
dc.subject | система обробки інформації | |
dc.subject | система підтримки прийняття рішень | |
dc.subject | метод обробки мови та тексту на навченому трансформері | |
dc.subject | машинне навчання | |
dc.subject | онтологія баз даних | |
dc.subject | множини знань | |
dc.subject | deep learning machine in data-processing system | |
dc.subject | information-retrieval system | |
dc.subject | decision support system | |
dc.subject | method for processing textual information | |
dc.subject | ontology of knowledge base | |
dc.subject | extraction of knowledge | |
dc.subject.udc | 004.89 | |
dc.subject.udc | 004.738.5 | |
dc.subject.udc | 004.415.3 | |
dc.subject.udc | 004.82(045) | |
dc.title | Метод і модель опрацювання текстової інформації на навченому трансформері для бази знань | |
dc.title.alternative | The method and the model for processing textual information on a learned transformer for information-retrieval system | |
dc.type | Article |
Files
License bundle
1 - 1 of 1