Optimal phase difference between longitudinal and normal oscillations with piecewise constant acceleration during vibratory conveying

dc.citation.epage9
dc.citation.issue3
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage1
dc.contributor.affiliationHetman Petro Sahaidachnyi National Army Academy
dc.contributor.authorVrublevskyi, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-14T08:59:31Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThe paper is dedicated to researching vibratory conveying with longitudinal harmonic oscillations and normal oscillations with piecewise constant acceleration (two-component vibration) of conveying track in non-hopping modes of moving when particles slide without detachment from the surface when maximal normal acceleration that does not exceed the gravitational acceleration. The optimization criterion is the maximal value of dimensionless conveying velocity (the mean conveying velocity divided by the product of amplitude and frequency of longitudinal oscillations), depending on several dimensionless parameters, first of all, on the phase difference angle between longitudinal and normal oscillations. The study considers several non-hopping modes of moving, distinguished by stages of movement during the oscillation period: forward (or upward on an inclined track) sliding, backward (or downward) sliding, and relative calm of particle’s movement. The maximal conveying velocity is achieved in different modes, depending on the values of several dimensionless parameters: the inclination angle parameter – a ratio of an inclination angle tangent to a frictional coefficient), the intensive vibration parameter – a ratio of the amplitudes of normal and longitudinal oscillations, divided by the frictional coefficient) and the index of asymmetry n – a ratio of the maximal acceleration of the track when moving down to the acceleration of gravity. The conditions for the existence of optimal conveying modes in dependence of values of dimensionless parameters are researched. The equations describing the various conveying modes are considered, and the equations for optimal phase difference angles between longitudinal and normal oscillations are obtained for the various conveying modes. The graphs of optimal phase difference angles dependent on several dimensionless parameters are constructed.
dc.format.extent1-9
dc.format.pages9
dc.identifier.citationVrublevskyi I. Optimal phase difference between longitudinal and normal oscillations with piecewise constant acceleration during vibratory conveying / Ihor Vrublevskyi // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 3. — P. 1–9.
dc.identifier.citationenVrublevskyi I. Optimal phase difference between longitudinal and normal oscillations with piecewise constant acceleration during vibratory conveying / Ihor Vrublevskyi // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 3. — P. 1–9.
dc.identifier.doidoi.org/10.23939/ujmems2024.03.001
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/119270
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 3 (10), 2024
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 3 (10), 2024
dc.relation.references[1] G. Boothroyd. Assembly automation and product design. Taylor and Francis Ltd, London, 2005.
dc.relation.references[2] T. Skocir. Mechanical Conveyors. Routledge, New York, 2017.
dc.relation.references[3] Automation Devices, Inc. Vibratory Parts Feeding Systems. http://www.autodev.com/vibratory-parts-feeding-systems/
dc.relation.references[4] N. Dallinger, T. Risch, K. Nendel, Simulation of Conveying Processes in Vibratory Conveyors, Logistics Journal Proceedings, 2012.
dc.relation.references[5] Y. Kurita, Y. Matsumura, S. Umezuka, J. Nakagawa, Separation and Transportation by Elliptical Vibration (The Case of Vertical Vibration under the Jump Limit), Journal of Environment and Engineering, vol. 5, no. 2, pp. 240-252, 2010.
dc.relation.references[6] B. Guo, Z. Duan, J. Zheng, Y. He, Analysis of Material Movement of Non-harmonic Horizontally Vibrated Conveyer, Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, vol. 48, no. 1, pp. 104-110, 2012.
dc.relation.references[7] Vrublevskyi I. Increasing of Vibratory Conveying Velocity by Optimizing the Normal Vibration // Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 9, No 2, pp. 26-35, 2023.
dc.relation.references[8] L Meirovitch, Principles and Techniques of Vibrations, Prentice Hall, 1997.
dc.relation.references[9] B. Balaji, R.G. Burela, G. Ponniah, Dynamics of Part Motion on a Linear Vibratory Feeder, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 236, no. 2, pp. 886-893, 2022.
dc.relation.references[10] P. Umbanhowar, K.M. Lynch, Optimal Vibratory Stick-slip Transport, IEEE Transactions on Automation Science and Engineering, pp. 7-13, 2008.
dc.relation.references[11] I. Vrublevskyi, "Vibratory Conveying by Normal Oscillations with Piecewise Constant Acceleration and Longitudinal Harmonic Oscillations", International Journal for Engineering Modelling, University of Split, vol. 37, no. 1, pp. 62-74, 2024.
dc.relation.referencesen[1] G. Boothroyd. Assembly automation and product design. Taylor and Francis Ltd, London, 2005.
dc.relation.referencesen[2] T. Skocir. Mechanical Conveyors. Routledge, New York, 2017.
dc.relation.referencesen[3] Automation Devices, Inc. Vibratory Parts Feeding Systems. http://www.autodev.com/vibratory-parts-feeding-systems/
dc.relation.referencesen[4] N. Dallinger, T. Risch, K. Nendel, Simulation of Conveying Processes in Vibratory Conveyors, Logistics Journal Proceedings, 2012.
dc.relation.referencesen[5] Y. Kurita, Y. Matsumura, S. Umezuka, J. Nakagawa, Separation and Transportation by Elliptical Vibration (The Case of Vertical Vibration under the Jump Limit), Journal of Environment and Engineering, vol. 5, no. 2, pp. 240-252, 2010.
dc.relation.referencesen[6] B. Guo, Z. Duan, J. Zheng, Y. He, Analysis of Material Movement of Non-harmonic Horizontally Vibrated Conveyer, Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, vol. 48, no. 1, pp. 104-110, 2012.
dc.relation.referencesen[7] Vrublevskyi I. Increasing of Vibratory Conveying Velocity by Optimizing the Normal Vibration, Ukrainian Journal of Mechanical Engineering and Materials Science, vol. 9, No 2, pp. 26-35, 2023.
dc.relation.referencesen[8] L Meirovitch, Principles and Techniques of Vibrations, Prentice Hall, 1997.
dc.relation.referencesen[9] B. Balaji, R.G. Burela, G. Ponniah, Dynamics of Part Motion on a Linear Vibratory Feeder, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 236, no. 2, pp. 886-893, 2022.
dc.relation.referencesen[10] P. Umbanhowar, K.M. Lynch, Optimal Vibratory Stick-slip Transport, IEEE Transactions on Automation Science and Engineering, pp. 7-13, 2008.
dc.relation.referencesen[11] I. Vrublevskyi, "Vibratory Conveying by Normal Oscillations with Piecewise Constant Acceleration and Longitudinal Harmonic Oscillations", International Journal for Engineering Modelling, University of Split, vol. 37, no. 1, pp. 62-74, 2024.
dc.relation.urihttp://www.autodev.com/vibratory-parts-feeding-systems/
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.rights.holder© Vrublevskyi I., 2024
dc.subjectvibratory conveying
dc.subjecttwo-component vibration
dc.subjectlongitudinal harmonic and normal oscillations with piecewise constant acceleration
dc.titleOptimal phase difference between longitudinal and normal oscillations with piecewise constant acceleration during vibratory conveying
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n3_Vrublevskyi_I-Optimal_phase_difference_1-9.pdf
Size:
394.68 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n3_Vrublevskyi_I-Optimal_phase_difference_1-9__COVER.png
Size:
455.04 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.75 KB
Format:
Plain Text
Description: