Application of Unmanned Aerial Vehicles in Construction Industry

dc.citation.epage42
dc.citation.issue1
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage35
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorБайцар, Роман
dc.contributor.authorТелішевський, Андрій
dc.contributor.authorBaitsar, Roman
dc.contributor.authorTelishevskyi, Andrii
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-10T08:12:25Z
dc.date.created2024-02-28
dc.date.issued2024-02-28
dc.description.abstractТехнологічні досягнення у сфері електроніки, такі як мініатюрні електромеханічні прилади і невеликі потужні електродвигуни, дозволили розробити невеликі і легкі пристрої – безпілотні літальні апарати. Останнім часом цивільні безпілотні літальні апарати починають стрімко набирати популярність. Безсумнівно, у майбутньому використання БПЛА буде використовуватися для багатьох служб. Вже зараз зростає попит на такі сфери застосування безпілотних літальних апаратів, як сільське господарство, екстрені служби, енергетика, паливо, видобуток корисних копалин, будівництво, геодезія (картографія), транспортування тощо. Завдяки сучасним технологіям стало можливим випускати легкі й малопотужні, але точні сенсори, які можуть використовуватися контролерами з високою обчислювальною потужністю і низьким споживанням енергії. Це дає можливість розробити складні системи управління, що можуть бути реалізовані на борту даного апарата. Сучасні квадрокоптери використовуються для проектування, спостереження, пошуку, будівельних перевірок і низки інших завдань.
dc.description.abstractTechnological advances in the field of electronics, such as miniature electromechanical devices and small powerful electric motors, have made it possible to develop small and light devices, such as unmanned aerial vehicles (UAVs). Recently, civilian UAVs are rapidly gaining popularity. Undoubtedly, UAVs will be used for many services in the future. There is already a growing demand for such fields of application of unmanned aerial vehicles as agriculture, emergency services, energy, fuel, mining, construction, geodesy (cartography), transportation, etc. Thanks to modern technologies it possible to produce light and low-power but accurate sensors that can be used by controllers with high computing power and low energy consumption. This makes it possible to develop complex control systems for UAVs that can be implemented on board. Today’s quadcopters are used for design, surveillance, search, construction inspections, and a variety of other applications.
dc.format.extent35-42
dc.format.pages8
dc.identifier.citationBaitsar R. Application of Unmanned Aerial Vehicles in Construction Industry / Roman Baitsar, Andrii Telishevskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 35–42.
dc.identifier.citationenBaitsar R. Application of Unmanned Aerial Vehicles in Construction Industry / Roman Baitsar, Andrii Telishevskyi // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 35–42.
dc.identifier.doidoi.org/10.23939/jeecs2024.01.035
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64044
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 1 (10), 2024
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (10), 2024
dc.relation.references[1] Tealgroup. Available online: https://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-droneproduction-will-almost-triple-over-the-next-decade (accessed on 14 March 2022).
dc.relation.references[2] Choi, H.-W.; Kim, H.-J.; Kim, S.-K.; Na, W. S. (2023). An Overview of Drone Applications in the Construction Industry. Drones , 7, 515. https://doi.org/10.3390/drones7080515
dc.relation.references[3] Molina, A. A.; Huang, Y.; Jiang, Y. A Review of Unmanned Aerial Vehicle Applications in Construction Management: 2016–2021. Standards 2023, 3, 95–109. https://doi.org/10.3390/standards3020009
dc.relation.references[4] Szóstak, M., Nowobilski, T., Mahamadu, A.-M. and Pérez, D.C. (2023), “Unmanned aerial vehicles in the construction industry - Towards a protocol for safe preparation and flight of drones”, International Journal of Intelligent Unmanned Systems, Vol. 11 No. 2, pp. 296–316. https://doi.org/10.1108/IJIUS-05-2022-0063
dc.relation.references[5] Application of drones in construction projects [Electronic resource]. URL: http://sc-os.ru/technologies/681-ispolzovanie-dronov-vstroitelnyh-proektah.html (in Ukrainian).
dc.relation.references[6] Drones. A revolution in construction technologies [Electronic resource]. URL: https://os1.ru/event/8596drony-revolyutsiya-v-tehnologiyahstroitelstva – in Ukrainian
dc.relation.references[7] Siebert, S.; Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using Unmanned Aerial Vehicle (UAV) system. Autom. Constr., 41, 1–14. DOI: 10.1016/j.autcon.2014.01.004
dc.relation.references[8] Goessens, S.; Muller, C.; Latteur, P. (2018). Feasibility study for drone-based masonry construction of real-scale structures. Autom. Constr., 94, 458–480 DOI: 10.1016/j.autcon.2018.06.015
dc.relation.references[9] Hallermann, N.; Morgenthal, G. (2013). Unmanned aerial vehicles (UAV) for the assessment of existing structures. In Proceedings of the 36th IABSE Symposium, Kolkata, India, 24–27 September 2013. DOI: 10.2749/222137813808627172.
dc.relation.references[10] Rachmawati, T. S. N.; Kim, S. (2022). Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability, 14, 5708. https://doi.org/10.3390/su14095708
dc.relation.references[11] Dallasega, P.; Rauch, E.; Linder, C. (2018). Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Comput. Ind., 99, 205–225. DOI:10.1016/j.compind.2018.03.039
dc.relation.references[12] Unmanned Aircraft Systems Roadmap 2005–2030 USA Office of the Secretary of Defense // www.acq.osd.mil/usd/ roadmaplast.pdf , 2006. 213 p.
dc.relation.references[13] Kwon, S.; Park, J.-W.; Moon, D.; Jung, S.; Park, H. (2017). Smart Merging Method for Hybrid Point Cloud Data using UAV and LIDAR in Earthwork Construction. Procedia Eng., 196, 21–28. https://doi.org/10.1016/j.proeng.2017.07.168
dc.relation.references[14] Jiang, W.; Zhou, Y.; Ding, L.; Zhou, C.; Ning, X. (2020). UAV-based 3D reconstruction for hoist site mapping and layout planning in petrochemical construction. Autom. Constr., 113. DOI: 10.1016/j.autcon.2020.103137
dc.relation.references[15] Asadi, K.; Suresh, A. K.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. (2020). An integrated UGV-UAV system for construction site data collection. Autom. Constr., 112. DOI: 10.1016/j.autcon.2019.103068
dc.relation.references[16] Gheisari, M.; Rashidi, A.; Esmaeili, B. (2018). Using Unmanned Aerial Systems for Automated Fall Hazard Monitoring. In Construction Research Congress 2018; American Society of Civil Engineers: New Orleans, LA, USA, pp. 62–72. DOI: 10.1061/9780784481288.007
dc.relation.references[17] Vacanas, Y.; Themistocleous, K.; Agapiou, A.; Hadjimitsis, D. (2015). Building information modelling (BIM) and unmanned aerial vehicle (UAV) technologies in infrastructure construction project management and delay and disruption analysis. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 22 June 2015. DOI: 10.1117/12.2192723
dc.relation.references[18] Kerle, N.; Nex, F.; Gerke, M.; Duarte, D.; Vetrivel, A. (2020). UAV-based structural damage mapping: A review. Int. J. Geo-Inf., 9, 14. https://doi.org/10.3390/ijgi9010014
dc.relation.references[19] Melo, R. R. S.; Costa, D. B.; Álvares, J. S.; Irizarry, J. (2017). Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Saf. Sci., 98, 174–185. https://doi.org/10.1016/j.ssci.2017.06.008
dc.relation.references[20] Albeaino, G.; Gheisari, M. (2021). Trends, benefits, and barriers of unmanned aerial systems in the construction industry: A survey study in the United States. J. Inf. Technol. Constr., 26, 84–111. DOI: 10.36680/j.itcon.2021.006
dc.relation.references[21] Varbla, S.; Ellmann, A.; Puust, R. (2021). Centimetre-range deformations of built environment revealed by drone-based photogrammetry. Autom. Constr., 128. DOI: 10.1016/j.autcon.2021.103787
dc.relation.references[22] Tian, J.; Luo, S.; Wang, X.; Hu, J.; Yin, J. (2021). Crane lifting optimization and construction monitoring in steel bridge construction project based on BIM and UAV. Adv. Civil. Eng. https://doi.org/10.1155/2021/5512229
dc.relation.references[23] Nex, F.; Remondino, F. (2014). UAV for 3D mapping applications: A review. Appl. Geomat., 6, 1–15. DOI: 10.1007/s12518-013-0120-x
dc.relation.references[24] Bang, S.; Kim, H. (2020). Context-based information generation for managing UAV-acquired data using image captioning. Autom. Constr., 112. https://doi.org/10.1016/j.autcon.2020.103116
dc.relation.references[25] Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. (2021). Combination of HBIM and UAV photogrammetry for modelling and documentation of forgotten heritage. Case study: Isabel II dan in Níjar (Almería, Spain). Herit. Sci., 9, 95. DOI: 10.1186/s40494-021-00571-8
dc.relation.references[26] Irizarry, J.; Karan, E. P.; Jalaei, F. (2013). Integrating BIM and GIS to improve the visual monitoring of construction supply chin management. Autom. Constr. , 31, 241–254. https://doi.org/10.1016/j.autcon.2012.12.005
dc.relation.references[27] Pepe, M.; Constantino, D.; Alfio, V. S.; Restuccia, A. G.; Papalino, N. M. (2021). Scan to BIM for the digital management and representation in 3D GIS environment of cultural heritage site. J. Cult. Herit., 50, 115–125. https://doi.org/10.1016/j.culher.2021.05.006
dc.relation.references[28] Khan, M. S.; Park, J.; Seo, J. (2021). Geotechnical property modeling and construction safety zoning based on GIS and BIM integration. Appl. Sci., 11, 4004. https://doi.org/10.3390/app11094004
dc.relation.references[29] Wen, M.-C.; Kang, S.-C. (2014). Augmented Reality and Unmanned Aerial Vehicle Assist in Construction Management. In Computing in Civil and Building Engineering; American Society of Civil Engineers: Orlando, FL, USA; pp. 1570–1577. DOI: 10.1061/9780784413616.195
dc.relation.references[30] Tomita, H.; Takabatake, T.; Sakamoto, S.; Arisumi, H.; Kato, S.; Ohgusu, Y. Development of UAV Indoor Flight Technology for Building Equipment Works. In Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; pp. 452–457. DOI: 10.22260/ISARC2017/0062
dc.relation.references[31] Patel, T.; Suthar, V.; Bhatt, N. (2021). Application of Remotely Piloted Unmanned Aerial Vehicle in Construction Management. In Recent Trends in Civil Engineering; Pathak, K. K., Bandara, J. M. S. J., Agrawal, R., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore,; Vol. 77, pp. 319–329. DOI:10.1007/978-981-15-5195-6_25
dc.relation.references[32] Hugenholtz, C.; Brown, O.; Walker, J.; Barchyn, T.; Nesbit, P.; Kucharczyk, M.; Myshak, S. (2016). Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points. Geomatica, 70, 21–30. https://doi.org/10.5623/cig2016-102
dc.relation.references[33] Zhou, S.; Gheisari, M. (2018). Unmanned aerial system applications in construction: A systematic review. Constr. Innov., 18, 453–468. https://doi.org/10.1108/CI-02-2018-0010
dc.relation.references[34] Hamledari, H.; Davari, S.; Azar, E.R.; McCabe, B.; Flager, F.; Fischer, M. (2018). UAV-Enabled Site-to-BIM Automation: Aerial Roboticand Computer Vision-Based Development of As-Built/As-Is BIMs and Quality Control. In Construction Research Congress 2018; American Society of Civil Engineers: New Orleans, LA, USA; pp. 336–346. DOI: 10.1061/9780784481264.033
dc.relation.references[35] Kim, S.; Irizarry, J.; Kanfer, R. (2020). Multilevel Goal Model for Decision-Making in UAS Visual Inspections in Construction and Infrastructure Projects. J. Manag. Eng., 36. DOI: 10.1061/(ASCE)ME.1943-5479.0000803
dc.relation.references[36] Leite, F.; Cho, Y.; Behzadan, A.H.; Lee, S.; Choe, S.; Fang, Y.; Akhavian, R.; Hwang, S. (2016). Visualization, Information Modeling, and Simulation: Grand Challenges in the Construction Industry. J. Comput. Civ. Eng., 30. DOI: 10.1061/(ASCE)CP.1943-5487.0000604
dc.relation.references[37] Nesbit, P. R.; Hugenholtz, C. H. (2019). Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens., 11, 239. DOI: 10.3390/rs11030239.
dc.relation.references[38] Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J. L.; Carbonneau, P. E. (2012). Topographic structure from motion: A new development in photogrammetric measurement: Topographic Structure from Motion. Earth Surf. Process. Landforms , 38, 421–430. DOI: 10.1002/esp.3366
dc.relation.references[39] Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98, 221–227. DOI: 10.1016/j.measurement.2016.12.002
dc.relation.references[40] Niethammer, U.; James, M. R.; Rothmund, S.; Travelletti, J.; Joswig, M. (2012). UAV-based remote sensing of the Super-Sauze landslide: Evaluation. Eng. Geol., 128, 2–11. DOI: 10.1016/j.enggeo.2011.03.012
dc.relation.references[41] Smith, M. W.; Carrivick, J. L.; Quincey, D. J. (2015). Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr., 40, 247–275. DOI: 10.1177/0309133315615805
dc.relation.references[42] Nieminski, N. M.; Graham, S. A. (2017). Modeling Stratigraphic Architecture Using Small Unmanned Aerial Vehicles and Photogrammetry: Examples From the Miocene East Coast Basin, New Zealand. J. Sediment. Res., 87, 126–132. DOI: 10.2110/jsr.2017.5
dc.relation.references[43] Wolf, P. R.; Dewitt, B. A.; Wilkinson, B. E. (2014). Elements of Photogrammetry with Application in GIS, 4th ed.; McGraw-Hill Education: Maidenhead, UK. ISBN-13: 978-0071761123
dc.relation.references[44] Martin, R.; Rojas, I.; Franke, K. W.; Hedengren, J. D. (2016). Evolutionary View Planning for Optimized UAV Terrain Modeling in a Simulated Environment. Remote Sens., 8, 26. DOI: 10.3390/rs8010026
dc.relation.references[45] Pavlis, T. L.; Mason, K. A. (2017). The New World of 3D Geologic Mapping. GSA Today, 4–10. DOI: 10.1130/GSATG313A.1
dc.relation.references[46] Vacca, G.; Dessì, A.; Sacco, A. (2017). The Use of Nadir and Oblique UAV Images for Building Knowledge. ISPRS Int. J. Geo-Inf., 6, 393. DOI: 10.3390/ijgi6120393
dc.relation.references[47] Ostrowski, W. (2016). Accuracy of measurements in oblique aerial images for urban environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch., 42, 79–85. DOI: 10.5194/isprs-archives-XLII-2-W2-79-2016
dc.relation.references[48] Rosenberg, A. S.; Waller, P. M. (2009). An Evaluation of a UAV Guidance System with Consumer Grade GPS Receivers; Proquest, Umi Dissertation Publishing: Ann Arbor, MI, USA, p. 175.
dc.relation.references[49] Forlani, G.; Dall’Asta, E.; Diotri, F.; di Cella, U. M.; Roncella, R.; Santise, M. (2018). Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sens., 10, 311. DOI: 10.3390/rs10020311
dc.relation.references[50] Moe, K.; Toschi, I.; Poli, D.; Lago, F.; Schreiner, C.; Legat, K.; Remondino, F. (2017). Changing the production pipeline – use of oblique aerial cameras for mapping purposes. Off. Publ. EuroSDR, 44–61. DOI: 10.5194/isprs-archives-XLI-B4-631-2016.
dc.relation.referencesen[1] Tealgroup. Available online: https://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-droneproduction-will-almost-triple-over-the-next-decade (accessed on 14 March 2022).
dc.relation.referencesen[2] Choi, H.-W.; Kim, H.-J.; Kim, S.-K.; Na, W. S. (2023). An Overview of Drone Applications in the Construction Industry. Drones , 7, 515. https://doi.org/10.3390/drones7080515
dc.relation.referencesen[3] Molina, A. A.; Huang, Y.; Jiang, Y. A Review of Unmanned Aerial Vehicle Applications in Construction Management: 2016–2021. Standards 2023, 3, 95–109. https://doi.org/10.3390/standards3020009
dc.relation.referencesen[4] Szóstak, M., Nowobilski, T., Mahamadu, A.-M. and Pérez, D.C. (2023), "Unmanned aerial vehicles in the construction industry - Towards a protocol for safe preparation and flight of drones", International Journal of Intelligent Unmanned Systems, Vol. 11 No. 2, pp. 296–316. https://doi.org/10.1108/IJIUS-05-2022-0063
dc.relation.referencesen[5] Application of drones in construction projects [Electronic resource]. URL: http://sc-os.ru/technologies/681-ispolzovanie-dronov-vstroitelnyh-proektah.html (in Ukrainian).
dc.relation.referencesen[6] Drones. A revolution in construction technologies [Electronic resource]. URL: https://os1.ru/event/8596drony-revolyutsiya-v-tehnologiyahstroitelstva – in Ukrainian
dc.relation.referencesen[7] Siebert, S.; Teizer, J. (2014). Mobile 3D mapping for surveying earthwork projects using Unmanned Aerial Vehicle (UAV) system. Autom. Constr., 41, 1–14. DOI: 10.1016/j.autcon.2014.01.004
dc.relation.referencesen[8] Goessens, S.; Muller, C.; Latteur, P. (2018). Feasibility study for drone-based masonry construction of real-scale structures. Autom. Constr., 94, 458–480 DOI: 10.1016/j.autcon.2018.06.015
dc.relation.referencesen[9] Hallermann, N.; Morgenthal, G. (2013). Unmanned aerial vehicles (UAV) for the assessment of existing structures. In Proceedings of the 36th IABSE Symposium, Kolkata, India, 24–27 September 2013. DOI: 10.2749/222137813808627172.
dc.relation.referencesen[10] Rachmawati, T. S. N.; Kim, S. (2022). Unmanned Aerial Vehicles (UAV) Integration with Digital Technologies toward Construction 4.0: A Systematic Literature Review. Sustainability, 14, 5708. https://doi.org/10.3390/su14095708
dc.relation.referencesen[11] Dallasega, P.; Rauch, E.; Linder, C. (2018). Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Comput. Ind., 99, 205–225. DOI:10.1016/j.compind.2018.03.039
dc.relation.referencesen[12] Unmanned Aircraft Systems Roadmap 2005–2030 USA Office of the Secretary of Defense, www.acq.osd.mil/usd/ roadmaplast.pdf , 2006. 213 p.
dc.relation.referencesen[13] Kwon, S.; Park, J.-W.; Moon, D.; Jung, S.; Park, H. (2017). Smart Merging Method for Hybrid Point Cloud Data using UAV and LIDAR in Earthwork Construction. Procedia Eng., 196, 21–28. https://doi.org/10.1016/j.proeng.2017.07.168
dc.relation.referencesen[14] Jiang, W.; Zhou, Y.; Ding, L.; Zhou, C.; Ning, X. (2020). UAV-based 3D reconstruction for hoist site mapping and layout planning in petrochemical construction. Autom. Constr., 113. DOI: 10.1016/j.autcon.2020.103137
dc.relation.referencesen[15] Asadi, K.; Suresh, A. K.; Ender, A.; Gotad, S.; Maniyar, S.; Anand, S.; Noghabaei, M.; Han, K.; Lobaton, E.; Wu, T. (2020). An integrated UGV-UAV system for construction site data collection. Autom. Constr., 112. DOI: 10.1016/j.autcon.2019.103068
dc.relation.referencesen[16] Gheisari, M.; Rashidi, A.; Esmaeili, B. (2018). Using Unmanned Aerial Systems for Automated Fall Hazard Monitoring. In Construction Research Congress 2018; American Society of Civil Engineers: New Orleans, LA, USA, pp. 62–72. DOI: 10.1061/9780784481288.007
dc.relation.referencesen[17] Vacanas, Y.; Themistocleous, K.; Agapiou, A.; Hadjimitsis, D. (2015). Building information modelling (BIM) and unmanned aerial vehicle (UAV) technologies in infrastructure construction project management and delay and disruption analysis. In Proceedings of the Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 22 June 2015. DOI: 10.1117/12.2192723
dc.relation.referencesen[18] Kerle, N.; Nex, F.; Gerke, M.; Duarte, D.; Vetrivel, A. (2020). UAV-based structural damage mapping: A review. Int. J. Geo-Inf., 9, 14. https://doi.org/10.3390/ijgi9010014
dc.relation.referencesen[19] Melo, R. R. S.; Costa, D. B.; Álvares, J. S.; Irizarry, J. (2017). Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Saf. Sci., 98, 174–185. https://doi.org/10.1016/j.ssci.2017.06.008
dc.relation.referencesen[20] Albeaino, G.; Gheisari, M. (2021). Trends, benefits, and barriers of unmanned aerial systems in the construction industry: A survey study in the United States. J. Inf. Technol. Constr., 26, 84–111. DOI: 10.36680/j.itcon.2021.006
dc.relation.referencesen[21] Varbla, S.; Ellmann, A.; Puust, R. (2021). Centimetre-range deformations of built environment revealed by drone-based photogrammetry. Autom. Constr., 128. DOI: 10.1016/j.autcon.2021.103787
dc.relation.referencesen[22] Tian, J.; Luo, S.; Wang, X.; Hu, J.; Yin, J. (2021). Crane lifting optimization and construction monitoring in steel bridge construction project based on BIM and UAV. Adv. Civil. Eng. https://doi.org/10.1155/2021/5512229
dc.relation.referencesen[23] Nex, F.; Remondino, F. (2014). UAV for 3D mapping applications: A review. Appl. Geomat., 6, 1–15. DOI: 10.1007/s12518-013-0120-x
dc.relation.referencesen[24] Bang, S.; Kim, H. (2020). Context-based information generation for managing UAV-acquired data using image captioning. Autom. Constr., 112. https://doi.org/10.1016/j.autcon.2020.103116
dc.relation.referencesen[25] Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. (2021). Combination of HBIM and UAV photogrammetry for modelling and documentation of forgotten heritage. Case study: Isabel II dan in Níjar (Almería, Spain). Herit. Sci., 9, 95. DOI: 10.1186/s40494-021-00571-8
dc.relation.referencesen[26] Irizarry, J.; Karan, E. P.; Jalaei, F. (2013). Integrating BIM and GIS to improve the visual monitoring of construction supply chin management. Autom. Constr. , 31, 241–254. https://doi.org/10.1016/j.autcon.2012.12.005
dc.relation.referencesen[27] Pepe, M.; Constantino, D.; Alfio, V. S.; Restuccia, A. G.; Papalino, N. M. (2021). Scan to BIM for the digital management and representation in 3D GIS environment of cultural heritage site. J. Cult. Herit., 50, 115–125. https://doi.org/10.1016/j.culher.2021.05.006
dc.relation.referencesen[28] Khan, M. S.; Park, J.; Seo, J. (2021). Geotechnical property modeling and construction safety zoning based on GIS and BIM integration. Appl. Sci., 11, 4004. https://doi.org/10.3390/app11094004
dc.relation.referencesen[29] Wen, M.-C.; Kang, S.-C. (2014). Augmented Reality and Unmanned Aerial Vehicle Assist in Construction Management. In Computing in Civil and Building Engineering; American Society of Civil Engineers: Orlando, FL, USA; pp. 1570–1577. DOI: 10.1061/9780784413616.195
dc.relation.referencesen[30] Tomita, H.; Takabatake, T.; Sakamoto, S.; Arisumi, H.; Kato, S.; Ohgusu, Y. Development of UAV Indoor Flight Technology for Building Equipment Works. In Proceedings of the International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 28 June–1 July 2017; pp. 452–457. DOI: 10.22260/ISARC2017/0062
dc.relation.referencesen[31] Patel, T.; Suthar, V.; Bhatt, N. (2021). Application of Remotely Piloted Unmanned Aerial Vehicle in Construction Management. In Recent Trends in Civil Engineering; Pathak, K. K., Bandara, J. M. S. J., Agrawal, R., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore,; Vol. 77, pp. 319–329. DOI:10.1007/978-981-15-5195-6_25
dc.relation.referencesen[32] Hugenholtz, C.; Brown, O.; Walker, J.; Barchyn, T.; Nesbit, P.; Kucharczyk, M.; Myshak, S. (2016). Spatial Accuracy of UAV-Derived Orthoimagery and Topography: Comparing Photogrammetric Models Processed with Direct Geo-Referencing and Ground Control Points. Geomatica, 70, 21–30. https://doi.org/10.5623/cig2016-102
dc.relation.referencesen[33] Zhou, S.; Gheisari, M. (2018). Unmanned aerial system applications in construction: A systematic review. Constr. Innov., 18, 453–468. https://doi.org/10.1108/CI-02-2018-0010
dc.relation.referencesen[34] Hamledari, H.; Davari, S.; Azar, E.R.; McCabe, B.; Flager, F.; Fischer, M. (2018). UAV-Enabled Site-to-BIM Automation: Aerial Roboticand Computer Vision-Based Development of As-Built/As-Is BIMs and Quality Control. In Construction Research Congress 2018; American Society of Civil Engineers: New Orleans, LA, USA; pp. 336–346. DOI: 10.1061/9780784481264.033
dc.relation.referencesen[35] Kim, S.; Irizarry, J.; Kanfer, R. (2020). Multilevel Goal Model for Decision-Making in UAS Visual Inspections in Construction and Infrastructure Projects. J. Manag. Eng., 36. DOI: 10.1061/(ASCE)ME.1943-5479.0000803
dc.relation.referencesen[36] Leite, F.; Cho, Y.; Behzadan, A.H.; Lee, S.; Choe, S.; Fang, Y.; Akhavian, R.; Hwang, S. (2016). Visualization, Information Modeling, and Simulation: Grand Challenges in the Construction Industry. J. Comput. Civ. Eng., 30. DOI: 10.1061/(ASCE)CP.1943-5487.0000604
dc.relation.referencesen[37] Nesbit, P. R.; Hugenholtz, C. H. (2019). Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens., 11, 239. DOI: 10.3390/rs11030239.
dc.relation.referencesen[38] Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J. L.; Carbonneau, P. E. (2012). Topographic structure from motion: A new development in photogrammetric measurement: Topographic Structure from Motion. Earth Surf. Process. Landforms , 38, 421–430. DOI: 10.1002/esp.3366
dc.relation.referencesen[39] Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. (2017). Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement, 98, 221–227. DOI: 10.1016/j.measurement.2016.12.002
dc.relation.referencesen[40] Niethammer, U.; James, M. R.; Rothmund, S.; Travelletti, J.; Joswig, M. (2012). UAV-based remote sensing of the Super-Sauze landslide: Evaluation. Eng. Geol., 128, 2–11. DOI: 10.1016/j.enggeo.2011.03.012
dc.relation.referencesen[41] Smith, M. W.; Carrivick, J. L.; Quincey, D. J. (2015). Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr., 40, 247–275. DOI: 10.1177/0309133315615805
dc.relation.referencesen[42] Nieminski, N. M.; Graham, S. A. (2017). Modeling Stratigraphic Architecture Using Small Unmanned Aerial Vehicles and Photogrammetry: Examples From the Miocene East Coast Basin, New Zealand. J. Sediment. Res., 87, 126–132. DOI: 10.2110/jsr.2017.5
dc.relation.referencesen[43] Wolf, P. R.; Dewitt, B. A.; Wilkinson, B. E. (2014). Elements of Photogrammetry with Application in GIS, 4th ed.; McGraw-Hill Education: Maidenhead, UK. ISBN-13: 978-0071761123
dc.relation.referencesen[44] Martin, R.; Rojas, I.; Franke, K. W.; Hedengren, J. D. (2016). Evolutionary View Planning for Optimized UAV Terrain Modeling in a Simulated Environment. Remote Sens., 8, 26. DOI: 10.3390/rs8010026
dc.relation.referencesen[45] Pavlis, T. L.; Mason, K. A. (2017). The New World of 3D Geologic Mapping. GSA Today, 4–10. DOI: 10.1130/GSATG313A.1
dc.relation.referencesen[46] Vacca, G.; Dessì, A.; Sacco, A. (2017). The Use of Nadir and Oblique UAV Images for Building Knowledge. ISPRS Int. J. Geo-Inf., 6, 393. DOI: 10.3390/ijgi6120393
dc.relation.referencesen[47] Ostrowski, W. (2016). Accuracy of measurements in oblique aerial images for urban environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch., 42, 79–85. DOI: 10.5194/isprs-archives-XLII-2-W2-79-2016
dc.relation.referencesen[48] Rosenberg, A. S.; Waller, P. M. (2009). An Evaluation of a UAV Guidance System with Consumer Grade GPS Receivers; Proquest, Umi Dissertation Publishing: Ann Arbor, MI, USA, p. 175.
dc.relation.referencesen[49] Forlani, G.; Dall’Asta, E.; Diotri, F.; di Cella, U. M.; Roncella, R.; Santise, M. (2018). Quality assessment of DSMs produced from UAV flights georeferenced with on-board RTK positioning. Remote Sens., 10, 311. DOI: 10.3390/rs10020311
dc.relation.referencesen[50] Moe, K.; Toschi, I.; Poli, D.; Lago, F.; Schreiner, C.; Legat, K.; Remondino, F. (2017). Changing the production pipeline – use of oblique aerial cameras for mapping purposes. Off. Publ. EuroSDR, 44–61. DOI: 10.5194/isprs-archives-XLI-B4-631-2016.
dc.relation.urihttps://www.tealgroup.com/index.php/pages/press-releases/60-teal-group-predicts-worldwide-civil-droneproduction-will-almost-triple-over-the-next-decade
dc.relation.urihttps://doi.org/10.3390/drones7080515
dc.relation.urihttps://doi.org/10.3390/standards3020009
dc.relation.urihttps://doi.org/10.1108/IJIUS-05-2022-0063
dc.relation.urihttp://sc-os.ru/technologies/681-ispolzovanie-dronov-vstroitelnyh-proektah.html
dc.relation.urihttps://os1.ru/event/8596drony-revolyutsiya-v-tehnologiyahstroitelstva
dc.relation.urihttps://doi.org/10.3390/su14095708
dc.relation.urihttps://doi.org/10.1016/j.proeng.2017.07.168
dc.relation.urihttps://doi.org/10.3390/ijgi9010014
dc.relation.urihttps://doi.org/10.1016/j.ssci.2017.06.008
dc.relation.urihttps://doi.org/10.1155/2021/5512229
dc.relation.urihttps://doi.org/10.1016/j.autcon.2020.103116
dc.relation.urihttps://doi.org/10.1016/j.autcon.2012.12.005
dc.relation.urihttps://doi.org/10.1016/j.culher.2021.05.006
dc.relation.urihttps://doi.org/10.3390/app11094004
dc.relation.urihttps://doi.org/10.5623/cig2016-102
dc.relation.urihttps://doi.org/10.1108/CI-02-2018-0010
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectБПЛА
dc.subjectстандартизація
dc.subjectінформаційні технології
dc.subjectметоди керування
dc.subjectаналіз надійності
dc.subjectUAV
dc.subjectstandardization
dc.subjectinformation technologies
dc.subjectcontrol methods
dc.subjectreliability analysis
dc.titleApplication of Unmanned Aerial Vehicles in Construction Industry
dc.title.alternativeЗастосування безпілотних літальних апаратів у будівельній сфері
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Baitsar_R-Application_of_Unmanned_Aerial_35-42.pdf
Size:
1.95 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Baitsar_R-Application_of_Unmanned_Aerial_35-42__COVER.png
Size:
408.73 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: