Physical models of ventilation system fittings in special conditions

dc.citation.epage50
dc.citation.issue1
dc.citation.spage42
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorВозняк, О. Т.
dc.contributor.authorМиронюк, Х. В.
dc.contributor.authorСухолова, І. Є.
dc.contributor.authorДовбуш, О. М.
dc.contributor.authorКасинець, М. Є.
dc.contributor.authorVoznyak, Orest
dc.contributor.authorMyroniuk, Khrystyna
dc.contributor.authorSukholova, Iryna
dc.contributor.authorDovbush, Oleksandr
dc.contributor.authorKasynets, Mariana
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-05T10:31:19Z
dc.date.available2023-04-05T10:31:19Z
dc.date.created2021-06-06
dc.date.issued2021-06-06
dc.description.abstractОписано формування фізичних моделей фітингів вентиляційних систем в умовах зміни лінійних розмірів та форми суміжних ділянок повітропроводів систем вентиляції. Отримані результати призначені для застосування на заготівельно-монтажних підприємствах під час виготовлення та реалізації трубних заготовок для монтажу системи вентиляції та кондиціонування у виробничому приміщенні. Наведено побудову розгорток фітингів вентиляційних систем для різних вихідних умов, а також запропоновано графічні та аналітичні залежності. Результатами досліджень обґрунтовано отримання мінімальних відходів під час виготовлення та реалізації вентиляційної трубної заготовки різних діаметрів заготівельно-монтажним підприємством. Мета роботи – досягти мінімізації відходів матеріалів під час виготовлення та реалізації трубної заготовки різних діаметрів вентиляційної системи, зменшення металоємності, підвищення продуктивності виробництва та ефективності заготівельних робіт для монтажу системи вентиляції у виробничих приміщеннях, виявити способи підвищення ефективності монтажу системи вентиляції у виробничих приміщеннях різного призначення та обґрунтувати методики розрахунку. Отримані результати дають змогу мінімізувати відходи, за рахунок цього зменшити металоємність матеріалів та підвищити продуктивність виробництва та ефективність заготівельно-монтажних робіт. Застосування отриманих фізичних моделей для визначення необхідних параметрів під час виготовлення розгорток фітингів вентиляційних систем дає змогу значно підвищити критерії ефективності виконати заготівельно-монтажних робіт і тим самим зменшити витрату матеріалів для виготовлення і монтажу вентиляційної системи.
dc.description.abstractThe article presents the formation of physical models of fittings of ventilation systems in the conditions of change of linear sizes and forms of adjacent sections of air ducts of ventilation systems. The aim is to minimize waste materials in the manufacture and sale of pipe billets of different diameters of the ventilation system, reduce metal consumption, increase production productivity and efficiency of procurement for installation of ventilation in industrial premises, identify ways to improve the installation of ventilation in industrial premises for various purposes and justification calculation methods. The use of the obtained physical models to determine the required parameters in the manufacture of sweeps of ventilation system fittings can significantly increase the efficiency criteria for procurement and installation work.
dc.format.extent42-50
dc.format.pages9
dc.identifier.citationPhysical models of ventilation system fittings in special conditions / Orest Voznyak, Khrystyna Myroniuk, Iryna Sukholova, Oleksandr Dovbush, Mariana Kasynets // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 1. — P. 42–50.
dc.identifier.citationenVoznyak O., Myroniuk K., Sukholova I., Dovbush O., Kasynets M. (2021) Physical models of ventilation system fittings in special conditions. Theory and Building Practice (Lviv), vol. 3, no 1, pp. 42-50.
dc.identifier.doihttps://doi.org/10.23939/jtbp2021.01.042
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57927
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 1 (3), 2021
dc.relation.referencesDeshko, V., & Buyak, N. (2016). A model of human thermal comfort for analysing the energy performance
dc.relation.referencesof buildings. Eastern-European Journal of Enterprise Technologies, Vol. 4, Issue 8–82, 42–48. doi: 10.15587/1729-4061.2016.74854.
dc.relation.referencesKapalo, P., Domnita, F., Bacotiu, C., & Spodyniuk, N. (2018). The impact of carbon dioxide concentration
dc.relation.referenceson the human health – case study, Journal of Applied Engineering Sciences, Vol. 8, no. 1, 61–66. ISSN 2284-7197, doi:10.2478/jaes-2018-0008. doi: 10.2478/jaes-2018-0008
dc.relation.referencesKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019).
dc.relation.referencesInvestigation of CO2 production depending on physical activity of students. International Journal of Environmental
dc.relation.referencesHealth Research. Vol. 29, Issue 1, 31–44. ISSN:09603123. doi:10.1080/09603123.2018.1506570.
dc.relation.referencesKapalo, P., Sedláková, A., Košicanová, D., Voznyak, O., Lojkovics, J., & Siroczki,P. (2014). Effect of
dc.relation.referencesventilation on indoor environmental quality in buildings. The 9th International Conference “Environmental
dc.relation.referencesEngineering”, 22–23 May 2014, Vilnius, Lithuania SELECTED PAPERS, eISSN 2029-7092 / eISBN 978-609-457-640-9 Section: Energy for Buildings. doi: 10.3846 / enviro.2014.265.
dc.relation.referencesKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort
dc.relation.referencesmicroclimate in the classrooms under condition of the required air exchange, Eastern European Journal of
dc.relation.referencesEnterprise Technologies, Vol 5/10 (95), 6–14. doi: 10.15587/1729-4061.2018.143945.
dc.relation.referencesKapalo, P., Vilcekova, S., & Voznyak, O. (2014). Using experimental measurements the concentrations of
dc.relation.referencescarbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions, Vol. 39, 1789-1794.ISBN 978-88-95608-30-3; ISSN 2283-9216. doi: 10.3303/CET1439299
dc.relation.referencesKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referencesinside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations – Case Study, The 10th
dc.relation.referencesInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35. doi: 10.3846 /
dc.relation.referencesenviro.2017.262.
dc.relation.referencesVoznyak, O., Korbut, V., Davydenko, B., &Sukholova, I. (2019). Air distribution efficiency in a room by a
dc.relation.referencestwo-flow device. Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and
dc.relation.referencesEnvironmental Engineering, Springer, Vol 47, 526–533. doi: 10.1007/978-3-030-27011-7_67.
dc.relation.referencesVoznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesIndoor Climate. Selected scientific Papers 10thRzeszow-Lviv-Kosice Conference 2005 Supplementary Issue.
dc.relation.referencesTechnical University of Kosice.148–152.
dc.relation.referencesGumen, O. M., Dovhaliuk, V. B., & Міleikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesDovhaliuk, V.B., & Міleikovskyi, V.O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencespremises in compressed conditions, Journal: Building of Ukraine, No. 3, 36 (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid
dc.relation.referencesout on a convex cylindrical surface.Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesCollection, Issue 12, Kyiv, KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesDovhaliuk, V. B., & Міleikovskyi, V. O. (2013). Analytical studies of the macrostructure of jet currents for
dc.relation.referencescalculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11–32 (in Ukrainian).
dc.relation.referencesZhelykh,V. M, Voznyak, O. T, Dovbush, O. M, Yurkevich, Yu. S., & Savchenko, O. O. (2019).Technologies
dc.relation.referencesof procurement and installation of heating and ventilation systems. Lviv: Lviv Polytechnic Publishing House (in
dc.relation.referencesUkrainian).
dc.relation.referencesZmrhal V., Schwarzer J. (2009). Numerical simulation of local loss coefficients of ventilation duct fittings //
dc.relation.referencesEleventh International IBPSA Conference July 27–30. Glasgow, Scotland, 2009. Vol. I. P. 1761–1766.
dc.relation.referencesLiu, W., Long, Z., Chen, Q. (2012). A Procedure for Predicting Pressure Loss Coefficients of Duct Fittings
dc.relation.referencesUsing CFD (RP-1493). HVAC&R Research. 18(6), 1168–1181.
dc.relation.referencesSantos, APP., Andrade, CR., Zaparoli, El. (2014). CFD Prediction of the Round Elbow Fitting Loss Coefficient.
dc.relation.referencesInternational Scholarly Scientific Research & Innovation. 8(4): 743–747.
dc.relation.referencesSeongjong Park, Yonghwan Park, Bongjae Kim and Jaewoong Choi (2019). A Study on the Dynamic Loss
dc.relation.referencesCoefficients of Non-standard Fittings in Ship Exhaust Gas Pipes. Journal of Ocean Engineering and Technology 33(5), 479-485 October, 2019. doi.org/10.26748/KSOE.2019.049.
dc.relation.referencesMak, Cheuk Ming. (2007). Development of generalized prediction methods for flow-generated noise
dc.relation.referencesproduced by indoor ventilation systems. Huanan Ligong Daxue Xuebao/Journal of South China University
dc.relation.referencesof Technology (Natural Science). 35. 104–107.
dc.relation.referencesJing, Gang & Cai, Wenjian & Cui, Can. (2019). An Energy-saving Model-based Air Balancing Method for
dc.relation.referencesthe Ventilation System. doi.org/10.11159/cdsr19.124.
dc.relation.referencesG. Jing, W. Cai, D. Zhai, S. Liu, and C. Cui. (2018). A model-based air balancing method of a ventilation
dc.relation.referencessystem. Energy and Buildings, vol. 174. P. 506–512, 2018.
dc.relation.referencesG. Jing, W. Cai, H. Chen, D. Zhai, C. Cui, and X. Yin (2018). An air balancing method using support vector
dc.relation.referencesmachine for a ventilation system. Building and Environment. P. 487–495, 2018.
dc.relation.referencesenDeshko, V., & Buyak, N. (2016). A model of human thermal comfort for analysing the energy performance
dc.relation.referencesenof buildings. Eastern-European Journal of Enterprise Technologies, Vol. 4, Issue 8–82, 42–48. doi: 10.15587/1729-4061.2016.74854.
dc.relation.referencesenKapalo, P., Domnita, F., Bacotiu, C., & Spodyniuk, N. (2018). The impact of carbon dioxide concentration
dc.relation.referencesenon the human health – case study, Journal of Applied Engineering Sciences, Vol. 8, no. 1, 61–66. ISSN 2284-7197, doi:10.2478/jaes-2018-0008. doi: 10.2478/jaes-2018-0008
dc.relation.referencesenKapalo, P., Meciarova, L., Vilcekova, S., Burdova, E., Domnita, F., Bacotiu, & C. Peterfi, K. (2019).
dc.relation.referencesenInvestigation of CO2 production depending on physical activity of students. International Journal of Environmental
dc.relation.referencesenHealth Research. Vol. 29, Issue 1, 31–44. ISSN:09603123. doi:10.1080/09603123.2018.1506570.
dc.relation.referencesenKapalo, P., Sedláková, A., Košicanová, D., Voznyak, O., Lojkovics, J., & Siroczki,P. (2014). Effect of
dc.relation.referencesenventilation on indoor environmental quality in buildings. The 9th International Conference "Environmental
dc.relation.referencesenEngineering", 22–23 May 2014, Vilnius, Lithuania SELECTED PAPERS, eISSN 2029-7092, eISBN 978-609-457-640-9 Section: Energy for Buildings. doi: 10.3846, enviro.2014.265.
dc.relation.referencesenKapalo, P., Voznyak, O., Yurkevych, Yu., Myroniuk, Kh., & Sukholova, I. (2018). Ensuring comfort
dc.relation.referencesenmicroclimate in the classrooms under condition of the required air exchange, Eastern European Journal of
dc.relation.referencesenEnterprise Technologies, Vol 5/10 (95), 6–14. doi: 10.15587/1729-4061.2018.143945.
dc.relation.referencesenKapalo, P., Vilcekova, S., & Voznyak, O. (2014). Using experimental measurements the concentrations of
dc.relation.referencesencarbon dioxide for determining the intensity of ventilation in the rooms, Chemical Engineering Transactions, Vol. 39, 1789-1794.ISBN 978-88-95608-30-3; ISSN 2283-9216. doi: 10.3303/CET1439299
dc.relation.referencesenKapalo, P., Vilceková, S., Domnita, F., Bacotiu, C., & Voznyak, O. (2017). Determining the Ventilation Rate
dc.relation.referenceseninside an Apartment House on the Basis of Measured Carbon Dioxide Concentrations – Case Study, The 10th
dc.relation.referencesenInternational Conference on Environmental Engineering, Vilnius, Lithuania, Selected Papers, 30–35. doi: 10.3846 /
dc.relation.referencesenenviro.2017.262.
dc.relation.referencesenVoznyak, O., Korbut, V., Davydenko, B., &Sukholova, I. (2019). Air distribution efficiency in a room by a
dc.relation.referencesentwo-flow device. Proceedings of CEE, Advances in Resourse-saving Technologies and Materials in Civil and
dc.relation.referencesenEnvironmental Engineering, Springer, Vol 47, 526–533. doi: 10.1007/978-3-030-27011-7_67.
dc.relation.referencesenVoznyak, O., Myroniuk, K., & Dovbush, O. (2005). Relationship between a Person Heat Exchange and
dc.relation.referencesenIndoor Climate. Selected scientific Papers 10thRzeszow-Lviv-Kosice Conference 2005 Supplementary Issue.
dc.relation.referencesenTechnical University of Kosice.148–152.
dc.relation.referencesenGumen, O. M., Dovhaliuk, V. B., & Mileikovskyi, V. O. (2016). Determination of the intensity of turbulence
dc.relation.referencesenof streams with large-scale vortices on the basis of geometric and kinematic analysis of macrostructure. Proc. of
dc.relation.referencesenLviv Polytechnic National University: The theory and building practice, No. 844, 76–83 (in Ukrainian).
dc.relation.referencesenDovhaliuk, V.B., & Mileikovskyi, V.O. (2007). Efficiency of organization of air exchange in heat-stressed
dc.relation.referencesenpremises in compressed conditions, Journal: Building of Ukraine, No. 3, 36 (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2008). Estimated model of non-isothermal stream, which is laid
dc.relation.referencesenout on a convex cylindrical surface.Ventilation, Illumination and Heat and Gas Supply: Scientific and Technical
dc.relation.referencesenCollection, Issue 12, Kyiv, KNUBA, 11–32 (in Ukrainian).
dc.relation.referencesenDovhaliuk, V. B., & Mileikovskyi, V. O. (2013). Analytical studies of the macrostructure of jet currents for
dc.relation.referencesencalculating energy-efficient systems of air distribution. Energy efficiency in construction and architecture, Issue 4, 11–32 (in Ukrainian).
dc.relation.referencesenZhelykh,V. M, Voznyak, O. T, Dovbush, O. M, Yurkevich, Yu. S., & Savchenko, O. O. (2019).Technologies
dc.relation.referencesenof procurement and installation of heating and ventilation systems. Lviv: Lviv Polytechnic Publishing House (in
dc.relation.referencesenUkrainian).
dc.relation.referencesenZmrhal V., Schwarzer J. (2009). Numerical simulation of local loss coefficients of ventilation duct fittings //
dc.relation.referencesenEleventh International IBPSA Conference July 27–30. Glasgow, Scotland, 2009. Vol. I. P. 1761–1766.
dc.relation.referencesenLiu, W., Long, Z., Chen, Q. (2012). A Procedure for Predicting Pressure Loss Coefficients of Duct Fittings
dc.relation.referencesenUsing CFD (RP-1493). HVAC&R Research. 18(6), 1168–1181.
dc.relation.referencesenSantos, APP., Andrade, CR., Zaparoli, El. (2014). CFD Prediction of the Round Elbow Fitting Loss Coefficient.
dc.relation.referencesenInternational Scholarly Scientific Research & Innovation. 8(4): 743–747.
dc.relation.referencesenSeongjong Park, Yonghwan Park, Bongjae Kim and Jaewoong Choi (2019). A Study on the Dynamic Loss
dc.relation.referencesenCoefficients of Non-standard Fittings in Ship Exhaust Gas Pipes. Journal of Ocean Engineering and Technology 33(5), 479-485 October, 2019. doi.org/10.26748/KSOE.2019.049.
dc.relation.referencesenMak, Cheuk Ming. (2007). Development of generalized prediction methods for flow-generated noise
dc.relation.referencesenproduced by indoor ventilation systems. Huanan Ligong Daxue Xuebao/Journal of South China University
dc.relation.referencesenof Technology (Natural Science). 35. 104–107.
dc.relation.referencesenJing, Gang & Cai, Wenjian & Cui, Can. (2019). An Energy-saving Model-based Air Balancing Method for
dc.relation.referencesenthe Ventilation System. doi.org/10.11159/cdsr19.124.
dc.relation.referencesenG. Jing, W. Cai, D. Zhai, S. Liu, and C. Cui. (2018). A model-based air balancing method of a ventilation
dc.relation.referencesensystem. Energy and Buildings, vol. 174. P. 506–512, 2018.
dc.relation.referencesenG. Jing, W. Cai, H. Chen, D. Zhai, C. Cui, and X. Yin (2018). An air balancing method using support vector
dc.relation.referencesenmachine for a ventilation system. Building and Environment. P. 487–495, 2018.
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.rights.holder© Voznyak O., Myroniuk Kh., Sukholova I., Dovbush O., Kasynets M., 2021
dc.subjectзаготівельні роботи
dc.subjectмонтажні роботи
dc.subjectфізична модель
dc.subjectфітінги
dc.subjectсистема вентиляції
dc.subjectрозгортка
dc.subjectперехідник
dc.subjectповітророзподіл
dc.subjectprocurement work
dc.subjectinstallation work
dc.subjectphysical model
dc.subjectfittings
dc.subjectventilation system
dc.subjectcutting
dc.subjectchange-over
dc.subjectair distribution
dc.titlePhysical models of ventilation system fittings in special conditions
dc.title.alternativeФізичні моделі фітінгів вентиляційних систем у особливих умовах
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
2021v3n1_Voznyak_O-Physical_models_of_ventilation_42-50.pdf
Size:
517.28 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: