Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode

dc.citation.epage61
dc.citation.issue2
dc.citation.spage55
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationІнститут хімічної технології, Мумбаї, Індія
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationInstitute of Chemical Technology, Mumbai, India
dc.contributor.authorМацьків, М. Я.
dc.contributor.authorЗнак, З. О.
dc.contributor.authorГогейт, П. Р.
dc.contributor.authorMatskiv, M. Ya.
dc.contributor.authorZnak, Z. O.
dc.contributor.authorGogate, P. R.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-15T13:53:25Z
dc.date.created2024-10-10
dc.date.issued2024-10-10
dc.description.abstractДосліджено сорбцію йонів міді із розчину міді (ІІ) сульфату нативною формою природного кліноптилоліту за механічного перемішування та під дією ультразвукового випромінювання різної потужності та за різного режиму здійснення процесу (безперервного та циклічного). Отримані результати дають підстави для висновку, що ультразвукові коливання істотно інтенсифікують дифузійні процеси у досліджуваній системі. Здійснення процесу в циклічному режимі “УЗ-оброблення – експозиція без УЗ” дає змогу досягти більшої сорбційної ємності кліноптилоліту за рахунок повнішої його дегазації.
dc.description.abstractThe sorption of copper ions from a solution of copper (II) sulfate by the native form of natural clinoptilolite under mechanical stirring and under the action of ultrasonic radiation of different power and under different modes of process implementation (continuous and cyclic) was investigated. Based on the obtained results, it was concluded that ultrasonic vibrations significantly intensify the diffusion processes in the studied system. Carrying out the process in the cyclic mode “US treatment – exposure without US” makes it possible to achieve a greater sorption capacity of clinoptilolite due to its more complete degassing.
dc.format.extent55-61
dc.format.pages7
dc.identifier.citationMatskiv M. Ya. Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode / M. Ya. Matskiv, Z. O. Znak, P. R. Gogate // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 55–61.
dc.identifier.citation2015Matskiv M. Ya., Gogate P. R. Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 55–61.
dc.identifier.citationenAPAMatskiv, M. Ya., Znak, Z. O., & Gogate, P. R. (2024). Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode. Chemistry, Technology and Application of Substances, 7(2), 55-61. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOMatskiv M. Ya., Znak Z. O., Gogate P. R. (2024) Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 55-61.
dc.identifier.doihttps://doi.org/10.23939/ctas2024.02.055
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124468
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (7), 2024
dc.relation.references1. Gopal, K., Srivastava, S. B., Shukla, S., Bersillon, J. L. (2004). Contaminants in drinking water and its mitigation using suitable adsorbents: an overview. J. Environ. Biol., 25(4):469–475.
dc.relation.references2. Kallo, D. (2001). Applications of Natural Zeolites in Water and Wastewater Treatment. Reviews in Mineralogy and Geochemistry. 45 (1): 519–550. https://doi.org/10.2138/rmg.2001.45.15
dc.relation.references3. Margeta, K., Zabukovec, N., Šiljeg, V., Farkas, A. (2013), Natural Zeolites in Water Treatment – How Effective is Their Use. Water Treatment. 16 January. DOI: 10.5772/50738
dc.relation.references4. De Velasco-Maldonado, P. S., Hernández- Montoya, V., Montes-Morán, M., Vázquez, N. A-R., Pérez-Cruz, M. A. (2018), Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment. Applied Surface Science. 434, 1193–1199. https://doi.org/10.1016/j.apsusc.2017.11.023
dc.relation.references5. Jiménez-Cedillo, M. J.; Olguín, M. T.; Fall, C. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite- rich tuffs. J. Hazard. Mater. 2009, 163, 939–945. DOI: 10.1016/j.jhazmat.2008.07.049
dc.relation.references6. Maria K. Doula, M. R. (2009). Simultaneous removal of Cu,Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res., 43,5: 3659–3672. DOI: 10.1016/j.watres.2009.05.037.
dc.relation.references7. Znak, Z., Zin, O., Mashtaler, A., Korniy, S., Sukhatskiy, Yu., Gogate, P.R., Mnykh, R., Thanekar, P.(2021), Improved modification of clinoptilolite with silver using ultrasonic radiation. Ultrasonics Sonochemistry.73, 105496 https://doi.org/10.1016/j.ultsonch.2021.105496
dc.relation.references8. Reeve, P. J., Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manage. 1:205:253–261.DOI: 10.1016/j.jenvman.2017.09.077.
dc.relation.references9. Cieśla, J., Franus, W., Franus, M., Kedziora, K., Gluszczyk, J., Szerement, J., Jozefaciuk, G.(2019). Environmental-Friendly Modifications of Zeolite to Increase Its Sorption and Anion Exchange Properties, Physicochemical Studies of the Modified Materials. Materials (Basel). 30; 12(19): 3213. DOI:10.3390/ma12193213.
dc.relation.references10. Strejcová, K., Tišler, Z., Svobodová, E., Velvarská, R. (2020). Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use. Molecules. 25(21):4989. DOI: 10.3390/molecules25214989
dc.relation.references11. Straioto, Н., Viotti, P. V., Amado de Moura, A., Diório, A., Scaliante, M. H. N. O., Moreira, W. M., Vieira, M. F., Bergamasco, R. (2023). Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. Environ. Technol. 44(26):3949–3964. DOI: 10.1080/09593330.2022.2077134.
dc.relation.references12. Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A., Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J . Agric. Food Chem. 28; 54(13):4773–4779. DOI: 10.1021/jf060034b.
dc.relation.references13. Zenovii Znak, Viktoria Kochubei (2023). Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on its Sorption Capacity. Chemistry & Chemical Technology. 17, 3, 646–654.https://doi.org/10.23939/chcht17.03.646
dc.relation.references14. Montallana, A., C. Cruz, M. Vasquez Jr.(2018). Antibacterial activity of copper-loaded plasmatreated natural zeolites. Plasma Med. 8: 1–10.DOI: 10.1615/PlasmaMed.2018023987
dc.relation.references15. Naderi, К., Babadagli, Т. (2010). Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types. Ultrasonics Sonochemistry. 17, 3, 500–508.https://doi.org/10.1016/j.ultsonch.2009.10.022
dc.relation.referencesen1. Gopal, K., Srivastava, S. B., Shukla, S., Bersillon, J. L. (2004). Contaminants in drinking water and its mitigation using suitable adsorbents: an overview. J. Environ. Biol., 25(4):469–475.
dc.relation.referencesen2. Kallo, D. (2001). Applications of Natural Zeolites in Water and Wastewater Treatment. Reviews in Mineralogy and Geochemistry. 45 (1): 519–550. https://doi.org/10.2138/rmg.2001.45.15
dc.relation.referencesen3. Margeta, K., Zabukovec, N., Šiljeg, V., Farkas, A. (2013), Natural Zeolites in Water Treatment – How Effective is Their Use. Water Treatment. 16 January. DOI: 10.5772/50738
dc.relation.referencesen4. De Velasco-Maldonado, P. S., Hernández- Montoya, V., Montes-Morán, M., Vázquez, N. A-R., Pérez-Cruz, M. A. (2018), Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment. Applied Surface Science. 434, 1193–1199. https://doi.org/10.1016/j.apsusc.2017.11.023
dc.relation.referencesen5. Jiménez-Cedillo, M. J.; Olguín, M. T.; Fall, C. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite- rich tuffs. J. Hazard. Mater. 2009, 163, 939–945. DOI: 10.1016/j.jhazmat.2008.07.049
dc.relation.referencesen6. Maria K. Doula, M. R. (2009). Simultaneous removal of Cu,Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res., 43,5: 3659–3672. DOI: 10.1016/j.watres.2009.05.037.
dc.relation.referencesen7. Znak, Z., Zin, O., Mashtaler, A., Korniy, S., Sukhatskiy, Yu., Gogate, P.R., Mnykh, R., Thanekar, P.(2021), Improved modification of clinoptilolite with silver using ultrasonic radiation. Ultrasonics Sonochemistry.73, 105496 https://doi.org/10.1016/j.ultsonch.2021.105496
dc.relation.referencesen8. Reeve, P. J., Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manage. 1:205:253–261.DOI: 10.1016/j.jenvman.2017.09.077.
dc.relation.referencesen9. Cieśla, J., Franus, W., Franus, M., Kedziora, K., Gluszczyk, J., Szerement, J., Jozefaciuk, G.(2019). Environmental-Friendly Modifications of Zeolite to Increase Its Sorption and Anion Exchange Properties, Physicochemical Studies of the Modified Materials. Materials (Basel). 30; 12(19): 3213. DOI:10.3390/ma12193213.
dc.relation.referencesen10. Strejcová, K., Tišler, Z., Svobodová, E., Velvarská, R. (2020). Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use. Molecules. 25(21):4989. DOI: 10.3390/molecules25214989
dc.relation.referencesen11. Straioto, N., Viotti, P. V., Amado de Moura, A., Diório, A., Scaliante, M. H. N. O., Moreira, W. M., Vieira, M. F., Bergamasco, R. (2023). Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. Environ. Technol. 44(26):3949–3964. DOI: 10.1080/09593330.2022.2077134.
dc.relation.referencesen12. Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A., Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J . Agric. Food Chem. 28; 54(13):4773–4779. DOI: 10.1021/jf060034b.
dc.relation.referencesen13. Zenovii Znak, Viktoria Kochubei (2023). Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on its Sorption Capacity. Chemistry & Chemical Technology. 17, 3, 646–654.https://doi.org/10.23939/chcht17.03.646
dc.relation.referencesen14. Montallana, A., C. Cruz, M. Vasquez Jr.(2018). Antibacterial activity of copper-loaded plasmatreated natural zeolites. Plasma Med. 8: 1–10.DOI: 10.1615/PlasmaMed.2018023987
dc.relation.referencesen15. Naderi, K., Babadagli, T. (2010). Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types. Ultrasonics Sonochemistry. 17, 3, 500–508.https://doi.org/10.1016/j.ultsonch.2009.10.022
dc.relation.urihttps://doi.org/10.2138/rmg.2001.45.15
dc.relation.urihttps://doi.org/10.1016/j.apsusc.2017.11.023
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2021.105496
dc.relation.urihttps://doi.org/10.23939/chcht17.03.646
dc.relation.urihttps://doi.org/10.1016/j.ultsonch.2009.10.022
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.subjectприродний цеоліт
dc.subjectкліноптилоліт
dc.subjectйони міді
dc.subjectсорбція
dc.subjectйонний обмін
dc.subjectсорбційна ємність
dc.subjectмодифікування
dc.subjectультразвук
dc.subjectnatural zeolite
dc.subjectclinoptilolite
dc.subjectcopper ions
dc.subjectsorption
dc.subjection exchange
dc.subjectsorption capacity
dc.subjectmodification
dc.subjectultrasound
dc.titleSorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode
dc.title.alternativeСорбція йонів міді природним кліноптилолітом під дією ультразвуку в ізотермічному режимі
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v7n2_Matskiv_M_Ya-Sorption_of_copper_ions_55-61.pdf
Size:
339.94 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: