Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode
| dc.citation.epage | 61 | |
| dc.citation.issue | 2 | |
| dc.citation.spage | 55 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Інститут хімічної технології, Мумбаї, Індія | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Institute of Chemical Technology, Mumbai, India | |
| dc.contributor.author | Мацьків, М. Я. | |
| dc.contributor.author | Знак, З. О. | |
| dc.contributor.author | Гогейт, П. Р. | |
| dc.contributor.author | Matskiv, M. Ya. | |
| dc.contributor.author | Znak, Z. O. | |
| dc.contributor.author | Gogate, P. R. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-15T13:53:25Z | |
| dc.date.created | 2024-10-10 | |
| dc.date.issued | 2024-10-10 | |
| dc.description.abstract | Досліджено сорбцію йонів міді із розчину міді (ІІ) сульфату нативною формою природного кліноптилоліту за механічного перемішування та під дією ультразвукового випромінювання різної потужності та за різного режиму здійснення процесу (безперервного та циклічного). Отримані результати дають підстави для висновку, що ультразвукові коливання істотно інтенсифікують дифузійні процеси у досліджуваній системі. Здійснення процесу в циклічному режимі “УЗ-оброблення – експозиція без УЗ” дає змогу досягти більшої сорбційної ємності кліноптилоліту за рахунок повнішої його дегазації. | |
| dc.description.abstract | The sorption of copper ions from a solution of copper (II) sulfate by the native form of natural clinoptilolite under mechanical stirring and under the action of ultrasonic radiation of different power and under different modes of process implementation (continuous and cyclic) was investigated. Based on the obtained results, it was concluded that ultrasonic vibrations significantly intensify the diffusion processes in the studied system. Carrying out the process in the cyclic mode “US treatment – exposure without US” makes it possible to achieve a greater sorption capacity of clinoptilolite due to its more complete degassing. | |
| dc.format.extent | 55-61 | |
| dc.format.pages | 7 | |
| dc.identifier.citation | Matskiv M. Ya. Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode / M. Ya. Matskiv, Z. O. Znak, P. R. Gogate // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 7. — No 2. — P. 55–61. | |
| dc.identifier.citation2015 | Matskiv M. Ya., Gogate P. R. Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode // Chemistry, Technology and Application of Substances, Lviv. 2024. Vol 7. No 2. P. 55–61. | |
| dc.identifier.citationenAPA | Matskiv, M. Ya., Znak, Z. O., & Gogate, P. R. (2024). Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode. Chemistry, Technology and Application of Substances, 7(2), 55-61. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Matskiv M. Ya., Znak Z. O., Gogate P. R. (2024) Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode. Chemistry, Technology and Application of Substances (Lviv), vol. 7, no 2, pp. 55-61. | |
| dc.identifier.doi | https://doi.org/10.23939/ctas2024.02.055 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124468 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (7), 2024 | |
| dc.relation.references | 1. Gopal, K., Srivastava, S. B., Shukla, S., Bersillon, J. L. (2004). Contaminants in drinking water and its mitigation using suitable adsorbents: an overview. J. Environ. Biol., 25(4):469–475. | |
| dc.relation.references | 2. Kallo, D. (2001). Applications of Natural Zeolites in Water and Wastewater Treatment. Reviews in Mineralogy and Geochemistry. 45 (1): 519–550. https://doi.org/10.2138/rmg.2001.45.15 | |
| dc.relation.references | 3. Margeta, K., Zabukovec, N., Šiljeg, V., Farkas, A. (2013), Natural Zeolites in Water Treatment – How Effective is Their Use. Water Treatment. 16 January. DOI: 10.5772/50738 | |
| dc.relation.references | 4. De Velasco-Maldonado, P. S., Hernández- Montoya, V., Montes-Morán, M., Vázquez, N. A-R., Pérez-Cruz, M. A. (2018), Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment. Applied Surface Science. 434, 1193–1199. https://doi.org/10.1016/j.apsusc.2017.11.023 | |
| dc.relation.references | 5. Jiménez-Cedillo, M. J.; Olguín, M. T.; Fall, C. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite- rich tuffs. J. Hazard. Mater. 2009, 163, 939–945. DOI: 10.1016/j.jhazmat.2008.07.049 | |
| dc.relation.references | 6. Maria K. Doula, M. R. (2009). Simultaneous removal of Cu,Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res., 43,5: 3659–3672. DOI: 10.1016/j.watres.2009.05.037. | |
| dc.relation.references | 7. Znak, Z., Zin, O., Mashtaler, A., Korniy, S., Sukhatskiy, Yu., Gogate, P.R., Mnykh, R., Thanekar, P.(2021), Improved modification of clinoptilolite with silver using ultrasonic radiation. Ultrasonics Sonochemistry.73, 105496 https://doi.org/10.1016/j.ultsonch.2021.105496 | |
| dc.relation.references | 8. Reeve, P. J., Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manage. 1:205:253–261.DOI: 10.1016/j.jenvman.2017.09.077. | |
| dc.relation.references | 9. Cieśla, J., Franus, W., Franus, M., Kedziora, K., Gluszczyk, J., Szerement, J., Jozefaciuk, G.(2019). Environmental-Friendly Modifications of Zeolite to Increase Its Sorption and Anion Exchange Properties, Physicochemical Studies of the Modified Materials. Materials (Basel). 30; 12(19): 3213. DOI:10.3390/ma12193213. | |
| dc.relation.references | 10. Strejcová, K., Tišler, Z., Svobodová, E., Velvarská, R. (2020). Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use. Molecules. 25(21):4989. DOI: 10.3390/molecules25214989 | |
| dc.relation.references | 11. Straioto, Н., Viotti, P. V., Amado de Moura, A., Diório, A., Scaliante, M. H. N. O., Moreira, W. M., Vieira, M. F., Bergamasco, R. (2023). Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. Environ. Technol. 44(26):3949–3964. DOI: 10.1080/09593330.2022.2077134. | |
| dc.relation.references | 12. Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A., Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J . Agric. Food Chem. 28; 54(13):4773–4779. DOI: 10.1021/jf060034b. | |
| dc.relation.references | 13. Zenovii Znak, Viktoria Kochubei (2023). Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on its Sorption Capacity. Chemistry & Chemical Technology. 17, 3, 646–654.https://doi.org/10.23939/chcht17.03.646 | |
| dc.relation.references | 14. Montallana, A., C. Cruz, M. Vasquez Jr.(2018). Antibacterial activity of copper-loaded plasmatreated natural zeolites. Plasma Med. 8: 1–10.DOI: 10.1615/PlasmaMed.2018023987 | |
| dc.relation.references | 15. Naderi, К., Babadagli, Т. (2010). Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types. Ultrasonics Sonochemistry. 17, 3, 500–508.https://doi.org/10.1016/j.ultsonch.2009.10.022 | |
| dc.relation.referencesen | 1. Gopal, K., Srivastava, S. B., Shukla, S., Bersillon, J. L. (2004). Contaminants in drinking water and its mitigation using suitable adsorbents: an overview. J. Environ. Biol., 25(4):469–475. | |
| dc.relation.referencesen | 2. Kallo, D. (2001). Applications of Natural Zeolites in Water and Wastewater Treatment. Reviews in Mineralogy and Geochemistry. 45 (1): 519–550. https://doi.org/10.2138/rmg.2001.45.15 | |
| dc.relation.referencesen | 3. Margeta, K., Zabukovec, N., Šiljeg, V., Farkas, A. (2013), Natural Zeolites in Water Treatment – How Effective is Their Use. Water Treatment. 16 January. DOI: 10.5772/50738 | |
| dc.relation.referencesen | 4. De Velasco-Maldonado, P. S., Hernández- Montoya, V., Montes-Morán, M., Vázquez, N. A-R., Pérez-Cruz, M. A. (2018), Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment. Applied Surface Science. 434, 1193–1199. https://doi.org/10.1016/j.apsusc.2017.11.023 | |
| dc.relation.referencesen | 5. Jiménez-Cedillo, M. J.; Olguín, M. T.; Fall, C. Adsorption kinetic of arsenates as water pollutant on iron, manganese and iron–manganese-modified clinoptilolite- rich tuffs. J. Hazard. Mater. 2009, 163, 939–945. DOI: 10.1016/j.jhazmat.2008.07.049 | |
| dc.relation.referencesen | 6. Maria K. Doula, M. R. (2009). Simultaneous removal of Cu,Mn and Zn from drinking water with the use of clinoptilolite and its Fe-modified form. Water Res., 43,5: 3659–3672. DOI: 10.1016/j.watres.2009.05.037. | |
| dc.relation.referencesen | 7. Znak, Z., Zin, O., Mashtaler, A., Korniy, S., Sukhatskiy, Yu., Gogate, P.R., Mnykh, R., Thanekar, P.(2021), Improved modification of clinoptilolite with silver using ultrasonic radiation. Ultrasonics Sonochemistry.73, 105496 https://doi.org/10.1016/j.ultsonch.2021.105496 | |
| dc.relation.referencesen | 8. Reeve, P. J., Fallowfield, H. J. (2018). Natural and surfactant modified zeolites: A review of their applications for water remediation with a focus on surfactant desorption and toxicity towards microorganisms. J. Environ. Manage. 1:205:253–261.DOI: 10.1016/j.jenvman.2017.09.077. | |
| dc.relation.referencesen | 9. Cieśla, J., Franus, W., Franus, M., Kedziora, K., Gluszczyk, J., Szerement, J., Jozefaciuk, G.(2019). Environmental-Friendly Modifications of Zeolite to Increase Its Sorption and Anion Exchange Properties, Physicochemical Studies of the Modified Materials. Materials (Basel). 30; 12(19): 3213. DOI:10.3390/ma12193213. | |
| dc.relation.referencesen | 10. Strejcová, K., Tišler, Z., Svobodová, E., Velvarská, R. (2020). Characterization of Modified Natural Minerals and Rocks for Possible Adsorption and Catalytic Use. Molecules. 25(21):4989. DOI: 10.3390/molecules25214989 | |
| dc.relation.referencesen | 11. Straioto, N., Viotti, P. V., Amado de Moura, A., Diório, A., Scaliante, M. H. N. O., Moreira, W. M., Vieira, M. F., Bergamasco, R. (2023). Modification of natural zeolite clinoptilolite and ITS application in the adsorption of herbicides. Environ. Technol. 44(26):3949–3964. DOI: 10.1080/09593330.2022.2077134. | |
| dc.relation.referencesen | 12. Bansiwal, A. K., Rayalu, S. S., Labhasetwar, N. K., Juwarkar, A. A., Devotta, S. (2006). Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J . Agric. Food Chem. 28; 54(13):4773–4779. DOI: 10.1021/jf060034b. | |
| dc.relation.referencesen | 13. Zenovii Znak, Viktoria Kochubei (2023). Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on its Sorption Capacity. Chemistry & Chemical Technology. 17, 3, 646–654.https://doi.org/10.23939/chcht17.03.646 | |
| dc.relation.referencesen | 14. Montallana, A., C. Cruz, M. Vasquez Jr.(2018). Antibacterial activity of copper-loaded plasmatreated natural zeolites. Plasma Med. 8: 1–10.DOI: 10.1615/PlasmaMed.2018023987 | |
| dc.relation.referencesen | 15. Naderi, K., Babadagli, T. (2010). Influence of intensity and frequency of ultrasonic waves on capillary interaction and oil recovery from different rock types. Ultrasonics Sonochemistry. 17, 3, 500–508.https://doi.org/10.1016/j.ultsonch.2009.10.022 | |
| dc.relation.uri | https://doi.org/10.2138/rmg.2001.45.15 | |
| dc.relation.uri | https://doi.org/10.1016/j.apsusc.2017.11.023 | |
| dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2021.105496 | |
| dc.relation.uri | https://doi.org/10.23939/chcht17.03.646 | |
| dc.relation.uri | https://doi.org/10.1016/j.ultsonch.2009.10.022 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.subject | природний цеоліт | |
| dc.subject | кліноптилоліт | |
| dc.subject | йони міді | |
| dc.subject | сорбція | |
| dc.subject | йонний обмін | |
| dc.subject | сорбційна ємність | |
| dc.subject | модифікування | |
| dc.subject | ультразвук | |
| dc.subject | natural zeolite | |
| dc.subject | clinoptilolite | |
| dc.subject | copper ions | |
| dc.subject | sorption | |
| dc.subject | ion exchange | |
| dc.subject | sorption capacity | |
| dc.subject | modification | |
| dc.subject | ultrasound | |
| dc.title | Sorption of copper ions with natural clinoptilolite under the action of ultrasound in the isothermal mode | |
| dc.title.alternative | Сорбція йонів міді природним кліноптилолітом під дією ультразвуку в ізотермічному режимі | |
| dc.type | Article |