Solar chimney: an innovative approach to passive ventilation

dc.citation.epage98
dc.citation.issue1
dc.citation.journalTitleТеорія та будівельна практика
dc.citation.spage90
dc.citation.volume7
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationБірмінгемський університет
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationUniversity of Birmingham
dc.contributor.authorМізерник, В. А.
dc.contributor.authorМиронюк, Х. В.
dc.contributor.authorФурдас, Ю. В.
dc.contributor.authorЖелих, В. М.
dc.contributor.authorMizernyk, Vasyl
dc.contributor.authorMyroniuk, Khrystyna
dc.contributor.authorFurdas, Yurii.
dc.contributor.authorZhelyh, Vasyl
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2026-01-26T08:05:26Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractУ статті розглянуто питання ефективного застосування енергозбережних технологій у системах пасивної вентиляції житлових будинків, що має велике значення в умовах зростання вимог до енергоефективності та екологічної стійкості будівель. Із огляду на це, важливим аспектом є забезпечення природного повітрообміну для створення комфортного мікроклімату. Дослідження охоплює аналіз сучасних вентиляційних систем, а також оцінювання впливу кліматичних факторів на їх ефективність. Важливою складовою є застосування числового моделювання для визначення ефективності пасивної вентиляції в різних кліматичних умовах. Результати показують, що технології, такі як сонячні димоходи, стіна Тромбе, оптимальне розміщення вентиляційних отворів та радіаційні панелі, здатні істотно покращити природний повітрообмін і знижують потребу в механічній вентиляції, що дає змогу значно зменшити енергоспоживання та підвищити ефективність вентиляційних систем, забезпечуючи комфортний мікроклімат у приміщеннях. Попри розвиток технологій відновлюваної енергії, сонячні димоходи залишаються недостатньо вивченими, їх рідко застосовують, зокрема, в багатоповерхових будинках. Це пояснюється обмеженими інженерними дослідженнями, відсутністю науково обґрунтованих методик їх розрахунку та недостатньою адаптацією до різних кліматичних умов. Необхідні додаткові дослідження для вивчення ефективності та оптимальних умов застосування сонячних димоходів у різних кліматичних зонах. У статті також наведено рекомендації щодо інтеграції пасивних вентиляційних технологій у сучасну будівельну практику, зокрема щодо оптимального проєктування та розміщення вентиляційних систем для максимального використання природних ресурсів.
dc.description.abstractThe article explores the effective implementation of energy-efficient technologies in passive ventilation systems for residential buildings. As energy efficiency and environmental sustainability become more critical in construction, ensuring natural air exchange is essential for a comfortable indoor microclimate. The study analyzes contemporary ventilation systems, evaluates climatic factors, and applies numerical modeling to assess passive ventilation effectiveness. Findings show that solar chimneys, wind catchers, and hybrid ventilation systems improve natural air exchange and reduce reliance on mechanical systems. Despite advances in renewable energy technologies, solar chimneys are underutilized, particularly in multi-story buildings, due to limited research and the lack of validated methodologies. The article also offers recommendations for integrating passive ventilation technologies into modern construction for more sustainable and energy-efficient designs.
dc.format.extent90-98
dc.format.pages9
dc.identifier.citationSolar chimney: an innovative approach to passive ventilation / Vasyl Mizernyk, Khrystyna Myroniuk, Yurii. Furdas, Vasyl Zhelyh // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 90–98.
dc.identifier.citationenSolar chimney: an innovative approach to passive ventilation / Vasyl Mizernyk, Khrystyna Myroniuk, Yurii. Furdas, Vasyl Zhelyh // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 90–98.
dc.identifier.doidoi.org/10.23939/jtbp2025.01.090
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124474
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofТеорія та будівельна практика, 1 (7), 2025
dc.relation.ispartofTheory and Building Practice, 1 (7), 2025
dc.relation.referencesAli, M. H., Mawlood, M. K., & Jalal, R. E. (2024). Minimizing energy losses and enhancing performance of Trombe wall systems through partial evacuation of the air gap. Energy and Buildings, 307, 113959. https://doi.org/10.1016/j.enbuild.2024.113959
dc.relation.referencesArce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928-2934. https://doi.org/10.1016/j.renene.2009.04.026
dc.relation.referencesArdila, O., Quiroga, J., & Amaris, C. (2023). Assessment of solar chimney potential for passive ventilation and thermal comfort in the northeast of Colombia. Results in Engineering, 20, 101641. https://doi.org/10.1016/j.rineng.2023.101641
dc.relation.referencesBansal, N. K., Mathur, R., & Bhandari, M. S. (1994). A study of solar chimney assisted wind tower system for natural ventilation in buildings. Building and Environment, 29(4), 495-500. https://doi.org/10.1016/0360-1323(94)90008-6
dc.relation.referencesBenlefki, A., Hamel, M., & Medjahed, B. (2021). Numerical Investigation of the Interaction between the Thermal and Dynamic Effects of Cross-Ventilation for a Generic Isolated Building. Defect and Diffusion Forum, 408, 141-153. https://doi.org/10.4028/www.scientific.net/DDF.408.141
dc.relation.referencesBroderick, A., Byrne, M., Armstrong, S., Sheahan, J., & Coggins, A. M. (2017). A pre and post evaluation of indoor air quality, ventilation, and thermal comfort in retrofitted co-operative social housing. Building and Environment, 122, 126-133. https://doi.org/10.1016/j.buildenv.2017.05.020
dc.relation.referencesCakyova, K., Figueiredo, A., Oliveira, R., Rebelo, F., Vicente, R., & Fokaides, P. (2021). Simulation of passive ventilation strategies towards indoor CO2 concentration reduction for passive houses. Journal of Building Engineering, 43, 103108. https://doi.org/10.1016/j.jobe.2021.103108
dc.relation.referencesChen, Y., Tong, Z., & Malkawi, A. (2017). Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. https://doi.org/10.1016/j.buildenv.2017.06.026
dc.relation.referencesChenari, B., Dias Carrilho, J., & Gameiro Da Silva, M. (2016). Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, 1426-1447. https://doi.org/10.1016/j.rser.2016.01.074
dc.relation.referencesChew, L. W., Chen, C., & Gorlé, C. (2022). Improving thermal model predictions for naturally ventilated buildings using large eddy simulations. Building and Environment, 220, 109241. https://doi.org/10.1016/j.buildenv.2022.109241
dc.relation.referencesCoggins, A. M., Wemken, N., Mishra, A. K., Sharkey, M., Horgan, L., Cowie, H., Bourdin, E., & McIntyre, B. (2022). Indoor air quality, thermal comfort and ventilation in deep energy retrofitted Irish dwellings. Building and Environment, 219, 109236. https://doi.org/10.1016/j.buildenv.2022.109236
dc.relation.referencesEtheridge, D. (2015). A perspective on fifty years of natural ventilation research. Building and Environment, 91, 51-60. https://doi.org/10.1016/j.buildenv.2015.02.033
dc.relation.referencesHassan, A. M. (2023). Solar Chimney Performance Driven Air Ventilation Promotion: An Investigation of Various Configuration Parameters. Buildings, 13(11), 2796. https://doi.org/10.3390/buildings13112796
dc.relation.referencesHaverinen-Shaughnessy, U., Pekkonen, M., Leivo, V., Prasauskas, T., Turunen, M., Kiviste, M., Aaltonen, A., & Martuzevicius, D. (2018). Occupant satisfaction with indoor environmental quality and health after energy retrofits of multi-family buildings: Results from INSULAtE-project. International Journal of Hygiene and Environmental Health, 221(6), 921-928. https://doi.org/10.1016/j.ijheh.2018.05.009
dc.relation.referencesJia, L.-R., Han, J., Chen, X., Li, Q.-Y., Lee, C.-C., & Fung, Y.-H. (2021). Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11(12), 591. https://doi.org/10.3390/buildings11120591
dc.relation.referencesKalidasan, K., Velkennedy, R., & Rajesh Kanna, P. (2014). Buoyancy enhanced natural convection inside the ventilated square enclosure with a partition and an overhanging transverse baffle. International Communications in Heat and Mass Transfer, 56, 121-132. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.007
dc.relation.referencesKhanal, R., & Lei, C. (2011). Solar chimney-A passive strategy for natural ventilation. Energy and Buildings, 43(8), 1811-1819. https://doi.org/10.1016/j.enbuild.2011.03.035
dc.relation.referencesLetan, R., Dubovsky, V., & Ziskind, G. (2003). Passive ventilation and heating by natural convection in a multi-storey building. Building and Environment, 38(2), 197-208. https://doi.org/10.1016/S0360-1323(02)00070-7
dc.relation.referenceshttps://doi.org/10.1016/S0360-1323(02)00070-7
dc.relation.referencesLiu, H., Xu, X., Tam, V. W. Y., & Mao, P. (2023). What is the "DNA" of healthy buildings? A critical review and future directions. Renewable and Sustainable Energy Reviews, 183, 113460. https://doi.org/10.1016/j.rser.2023.113460
dc.relation.referencesLópez Plazas, F., & Sáenz De Tejada, C. (2024). Natural ventilation to improve indoor air quality (IAQ) in existing homes: The development of health-based and context-specific user guidelines. Energy and Buildings, 314, 114248. https://doi.org/10.1016/j.enbuild.2024.114248
dc.relation.referencesMatsunaga, J., Kikuta, K., Hirakawa, H., Mizuno, K., Tajima, M., Hayashi, M., & Fukushima, A. (2021). An Assessment of Heating Load Reduction by a Solar Air Heater in a Residential Passive Ventilation System. Energies, 14(22), 7651. https://doi.org/10.3390/en14227651
dc.relation.referencesMonghasemi, N., & Vadiee, A. (2018). A review of solar chimney integrated systems for space heating and cooling application. Renewable and Sustainable Energy Reviews, 81, 2714-2730. https://doi.org/10.1016/j.rser.2017.06.078
dc.relation.referencesMyroniuk, K., Furdas, Y., Zhelykh, V., Adamski, M., Gumen, O., Savin, V., & Mitoulis, S.-A. (2024). Passive Ventilation of Residential Buildings Using the Trombe Wall. Buildings, 14(10), 3154. https://doi.org/10.3390/buildings14103154
dc.relation.referencesPunyasompun, S., Hirunlabh, J., Khedari, J., & Zeghmati, B. (2009). Investigation on the application of solar chimney for multi-storey buildings. Renewable Energy, 34(12), 2545-2561. https://doi.org/10.1016/j.renene.2009.03.032
dc.relation.referencesRabani, M., Kalantar, V., & Rabani, M. (2019). Passive cooling performance of a test room equipped with normal and new designed Trombe walls: A numerical approach. Sustainable Energy Technologies and Assessments, 33, 69-82. https://doi.org/10.1016/j.seta.2019.03.005
dc.relation.referencesRodrigues, A. M., Canha Da Piedade, A., Lahellec, A., & Grandpeix, J. Y. (2000). Modelling natural convection in a heated vertical channel for room ventilation. Building and Environment, 35(5), 455-469. https://doi.org/10.1016/S0360-1323(99)00027-X
dc.relation.referencesRojas, G., Fletcher, M., Johnston, D., & Siddall, M. (2024). A review of the indoor air quality in residential Passive House dwellings. Energy and Buildings, 306, 113883. https://doi.org/10.1016/j.enbuild.2023.113883
dc.relation.referencesShi, L., Zhang, G., Cheng, X., Guo, Y., Wang, J., & Chew, M. Y. L. (2016). Developing an empirical model for roof solar chimney based on experimental data from various test rigs. Building and Environment, 110, 115-128. https://doi.org/10.1016/j.buildenv.2016.10.002
dc.relation.referencesSimões, N., Manaia, M., & Simões, I. (2021). Energy performance of solar and Trombe walls in Mediterranean climates. Energy, 234, 121197. https://doi.org/10.1016/j.energy.2021.121197
dc.relation.referencesSornek, K., Papis-Frączek, K., Calise, F., Cappiello, F. L., & Vicidomini, M. (2023). A Review of Experimental and Numerical Analyses of Solar Thermal Walls. Energies, 16(7), 3102. https://doi.org/10.3390/en16073102
dc.relation.referencesSukholova, I., Voznyak, O., Myroniuk, K., Zhelykh, V., Mitoulis, S.-A., & Kasynets, M. (2024). Increasing the Efficiency of the Residential Buildings Premises Natural Ventilation. In Z. Blikharskyy & V. Zhelykh (Eds.), Proceedings of EcoComfort 2024 (Vol. 604, pp. 496-505). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-67576-8_45
dc.relation.referencesTognon, G., Marigo, M., De Carli, M., & Zarrella, A. (2023). Mechanical, natural and hybrid ventilation systems in different building types: Energy and indoor air quality analysis. Journal of Building Engineering, 76, 107060. https://doi.org/10.1016/j.jobe.2023.107060
dc.relation.referencesVenhryn, I., & Shapoval, S. (2019). The intensity of solar radiation in the city of Lviv. Energy-Efficiency in Civil Engineering and Architecture, 0(12), 77-84. https://doi.org/10.32347/2310-0516.2019.12.77-84
dc.relation.referencesVoznyak, O., Myroniuk, K., Sukholova, I., & Kapalo, P. (2020). The Impact of Air Flows on the Environment. In Z. Blikharskyy, P. Koszelnik, & P. Mesaros (Eds.), Proceedings of CEE 2019 (Vol. 47, pp. 534-540). Springer International Publishing. https://doi.org/10.1007/978-3-030-27011-7_68
dc.relation.referencesWalker, C., Tan, G., & Glicksman, L. (2011). Reduced-scale building model and numerical investigations to buoyancy-driven natural ventilation. Energy and Buildings, 43(9), 2404-2413. https://doi.org/10.1016/j.enbuild.2011.05.022
dc.relation.referencesWang, B., Zhao, H., Han, B., & Jiang, X. (2023). An Investigation of Outdoor Thermal Comfort Assessment for Elderly Individuals in a Field Study in Northeastern China. Buildings, 13(10), 2458. https://doi.org/10.3390/buildings13102458
dc.relation.referencesWang, Y., Kuckelkorn, J., Zhao, F.-Y., Spliethoff, H., & Lang, W. (2017). A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renewable and Sustainable Energy Reviews, 72, 1303-1319. https://doi.org/10.1016/j.rser.2016.10.039
dc.relation.referencesYang, D., Du, T., Peng, S., & Li, B. (2013). A model for analysis of convection induced by stack effect in a shaft with warm airflow expelled from adjacent space. Energy and Buildings, 62, 107-115. https://doi.org/10.1016/j.enbuild.2013.02.045
dc.relation.referencesYang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications - A review. Applied Energy, 115, 164-173. https://doi.org/10.1016/j.apenergy.2013.10.062
dc.relation.referencesZamora, B., & Kaiser, A. S. (2010). Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation. Renewable Energy, 35(9), 2080-2088. https://doi.org/10.1016/j.renene.2010.02.009
dc.relation.referencesZaniboni, L., & Albatici, R. (2022). Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings, 12(11), 1983. https://doi.org/10.3390/buildings12111983
dc.relation.referencesZhang, H., Tao, Y., & Shi, L. (2021). Solar Chimney Applications in Buildings. Encyclopedia, 1(2), 409-422. https://doi.org/10.3390/encyclopedia1020034
dc.relation.referencesZhang, T., & Yang, H. (2019). Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades. Applied Energy, 242, 107-120. https://doi.org/10.1016/j.apenergy.2019.03.072
dc.relation.referencesZiskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34(1), 91-101. https://doi.org/10.1016/S0378-7788(01)00080-9
dc.relation.referencesenAli, M. H., Mawlood, M. K., & Jalal, R. E. (2024). Minimizing energy losses and enhancing performance of Trombe wall systems through partial evacuation of the air gap. Energy and Buildings, 307, 113959. https://doi.org/10.1016/j.enbuild.2024.113959
dc.relation.referencesenArce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928-2934. https://doi.org/10.1016/j.renene.2009.04.026
dc.relation.referencesenArdila, O., Quiroga, J., & Amaris, C. (2023). Assessment of solar chimney potential for passive ventilation and thermal comfort in the northeast of Colombia. Results in Engineering, 20, 101641. https://doi.org/10.1016/j.rineng.2023.101641
dc.relation.referencesenBansal, N. K., Mathur, R., & Bhandari, M. S. (1994). A study of solar chimney assisted wind tower system for natural ventilation in buildings. Building and Environment, 29(4), 495-500. https://doi.org/10.1016/0360-1323(94)90008-6
dc.relation.referencesenBenlefki, A., Hamel, M., & Medjahed, B. (2021). Numerical Investigation of the Interaction between the Thermal and Dynamic Effects of Cross-Ventilation for a Generic Isolated Building. Defect and Diffusion Forum, 408, 141-153. https://doi.org/10.4028/www.scientific.net/DDF.408.141
dc.relation.referencesenBroderick, A., Byrne, M., Armstrong, S., Sheahan, J., & Coggins, A. M. (2017). A pre and post evaluation of indoor air quality, ventilation, and thermal comfort in retrofitted co-operative social housing. Building and Environment, 122, 126-133. https://doi.org/10.1016/j.buildenv.2017.05.020
dc.relation.referencesenCakyova, K., Figueiredo, A., Oliveira, R., Rebelo, F., Vicente, R., & Fokaides, P. (2021). Simulation of passive ventilation strategies towards indoor CO2 concentration reduction for passive houses. Journal of Building Engineering, 43, 103108. https://doi.org/10.1016/j.jobe.2021.103108
dc.relation.referencesenChen, Y., Tong, Z., & Malkawi, A. (2017). Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. https://doi.org/10.1016/j.buildenv.2017.06.026
dc.relation.referencesenChenari, B., Dias Carrilho, J., & Gameiro Da Silva, M. (2016). Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, 1426-1447. https://doi.org/10.1016/j.rser.2016.01.074
dc.relation.referencesenChew, L. W., Chen, C., & Gorlé, C. (2022). Improving thermal model predictions for naturally ventilated buildings using large eddy simulations. Building and Environment, 220, 109241. https://doi.org/10.1016/j.buildenv.2022.109241
dc.relation.referencesenCoggins, A. M., Wemken, N., Mishra, A. K., Sharkey, M., Horgan, L., Cowie, H., Bourdin, E., & McIntyre, B. (2022). Indoor air quality, thermal comfort and ventilation in deep energy retrofitted Irish dwellings. Building and Environment, 219, 109236. https://doi.org/10.1016/j.buildenv.2022.109236
dc.relation.referencesenEtheridge, D. (2015). A perspective on fifty years of natural ventilation research. Building and Environment, 91, 51-60. https://doi.org/10.1016/j.buildenv.2015.02.033
dc.relation.referencesenHassan, A. M. (2023). Solar Chimney Performance Driven Air Ventilation Promotion: An Investigation of Various Configuration Parameters. Buildings, 13(11), 2796. https://doi.org/10.3390/buildings13112796
dc.relation.referencesenHaverinen-Shaughnessy, U., Pekkonen, M., Leivo, V., Prasauskas, T., Turunen, M., Kiviste, M., Aaltonen, A., & Martuzevicius, D. (2018). Occupant satisfaction with indoor environmental quality and health after energy retrofits of multi-family buildings: Results from INSULAtE-project. International Journal of Hygiene and Environmental Health, 221(6), 921-928. https://doi.org/10.1016/j.ijheh.2018.05.009
dc.relation.referencesenJia, L.-R., Han, J., Chen, X., Li, Q.-Y., Lee, C.-C., & Fung, Y.-H. (2021). Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11(12), 591. https://doi.org/10.3390/buildings11120591
dc.relation.referencesenKalidasan, K., Velkennedy, R., & Rajesh Kanna, P. (2014). Buoyancy enhanced natural convection inside the ventilated square enclosure with a partition and an overhanging transverse baffle. International Communications in Heat and Mass Transfer, 56, 121-132. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.007
dc.relation.referencesenKhanal, R., & Lei, C. (2011). Solar chimney-A passive strategy for natural ventilation. Energy and Buildings, 43(8), 1811-1819. https://doi.org/10.1016/j.enbuild.2011.03.035
dc.relation.referencesenLetan, R., Dubovsky, V., & Ziskind, G. (2003). Passive ventilation and heating by natural convection in a multi-storey building. Building and Environment, 38(2), 197-208. https://doi.org/10.1016/S0360-1323(02)00070-7
dc.relation.referencesenhttps://doi.org/10.1016/S0360-1323(02)00070-7
dc.relation.referencesenLiu, H., Xu, X., Tam, V. W. Y., & Mao, P. (2023). What is the "DNA" of healthy buildings? A critical review and future directions. Renewable and Sustainable Energy Reviews, 183, 113460. https://doi.org/10.1016/j.rser.2023.113460
dc.relation.referencesenLópez Plazas, F., & Sáenz De Tejada, C. (2024). Natural ventilation to improve indoor air quality (IAQ) in existing homes: The development of health-based and context-specific user guidelines. Energy and Buildings, 314, 114248. https://doi.org/10.1016/j.enbuild.2024.114248
dc.relation.referencesenMatsunaga, J., Kikuta, K., Hirakawa, H., Mizuno, K., Tajima, M., Hayashi, M., & Fukushima, A. (2021). An Assessment of Heating Load Reduction by a Solar Air Heater in a Residential Passive Ventilation System. Energies, 14(22), 7651. https://doi.org/10.3390/en14227651
dc.relation.referencesenMonghasemi, N., & Vadiee, A. (2018). A review of solar chimney integrated systems for space heating and cooling application. Renewable and Sustainable Energy Reviews, 81, 2714-2730. https://doi.org/10.1016/j.rser.2017.06.078
dc.relation.referencesenMyroniuk, K., Furdas, Y., Zhelykh, V., Adamski, M., Gumen, O., Savin, V., & Mitoulis, S.-A. (2024). Passive Ventilation of Residential Buildings Using the Trombe Wall. Buildings, 14(10), 3154. https://doi.org/10.3390/buildings14103154
dc.relation.referencesenPunyasompun, S., Hirunlabh, J., Khedari, J., & Zeghmati, B. (2009). Investigation on the application of solar chimney for multi-storey buildings. Renewable Energy, 34(12), 2545-2561. https://doi.org/10.1016/j.renene.2009.03.032
dc.relation.referencesenRabani, M., Kalantar, V., & Rabani, M. (2019). Passive cooling performance of a test room equipped with normal and new designed Trombe walls: A numerical approach. Sustainable Energy Technologies and Assessments, 33, 69-82. https://doi.org/10.1016/j.seta.2019.03.005
dc.relation.referencesenRodrigues, A. M., Canha Da Piedade, A., Lahellec, A., & Grandpeix, J. Y. (2000). Modelling natural convection in a heated vertical channel for room ventilation. Building and Environment, 35(5), 455-469. https://doi.org/10.1016/S0360-1323(99)00027-X
dc.relation.referencesenRojas, G., Fletcher, M., Johnston, D., & Siddall, M. (2024). A review of the indoor air quality in residential Passive House dwellings. Energy and Buildings, 306, 113883. https://doi.org/10.1016/j.enbuild.2023.113883
dc.relation.referencesenShi, L., Zhang, G., Cheng, X., Guo, Y., Wang, J., & Chew, M. Y. L. (2016). Developing an empirical model for roof solar chimney based on experimental data from various test rigs. Building and Environment, 110, 115-128. https://doi.org/10.1016/j.buildenv.2016.10.002
dc.relation.referencesenSimões, N., Manaia, M., & Simões, I. (2021). Energy performance of solar and Trombe walls in Mediterranean climates. Energy, 234, 121197. https://doi.org/10.1016/j.energy.2021.121197
dc.relation.referencesenSornek, K., Papis-Frączek, K., Calise, F., Cappiello, F. L., & Vicidomini, M. (2023). A Review of Experimental and Numerical Analyses of Solar Thermal Walls. Energies, 16(7), 3102. https://doi.org/10.3390/en16073102
dc.relation.referencesenSukholova, I., Voznyak, O., Myroniuk, K., Zhelykh, V., Mitoulis, S.-A., & Kasynets, M. (2024). Increasing the Efficiency of the Residential Buildings Premises Natural Ventilation. In Z. Blikharskyy & V. Zhelykh (Eds.), Proceedings of EcoComfort 2024 (Vol. 604, pp. 496-505). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-67576-8_45
dc.relation.referencesenTognon, G., Marigo, M., De Carli, M., & Zarrella, A. (2023). Mechanical, natural and hybrid ventilation systems in different building types: Energy and indoor air quality analysis. Journal of Building Engineering, 76, 107060. https://doi.org/10.1016/j.jobe.2023.107060
dc.relation.referencesenVenhryn, I., & Shapoval, S. (2019). The intensity of solar radiation in the city of Lviv. Energy-Efficiency in Civil Engineering and Architecture, 0(12), 77-84. https://doi.org/10.32347/2310-0516.2019.12.77-84
dc.relation.referencesenVoznyak, O., Myroniuk, K., Sukholova, I., & Kapalo, P. (2020). The Impact of Air Flows on the Environment. In Z. Blikharskyy, P. Koszelnik, & P. Mesaros (Eds.), Proceedings of CEE 2019 (Vol. 47, pp. 534-540). Springer International Publishing. https://doi.org/10.1007/978-3-030-27011-7_68
dc.relation.referencesenWalker, C., Tan, G., & Glicksman, L. (2011). Reduced-scale building model and numerical investigations to buoyancy-driven natural ventilation. Energy and Buildings, 43(9), 2404-2413. https://doi.org/10.1016/j.enbuild.2011.05.022
dc.relation.referencesenWang, B., Zhao, H., Han, B., & Jiang, X. (2023). An Investigation of Outdoor Thermal Comfort Assessment for Elderly Individuals in a Field Study in Northeastern China. Buildings, 13(10), 2458. https://doi.org/10.3390/buildings13102458
dc.relation.referencesenWang, Y., Kuckelkorn, J., Zhao, F.-Y., Spliethoff, H., & Lang, W. (2017). A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renewable and Sustainable Energy Reviews, 72, 1303-1319. https://doi.org/10.1016/j.rser.2016.10.039
dc.relation.referencesenYang, D., Du, T., Peng, S., & Li, B. (2013). A model for analysis of convection induced by stack effect in a shaft with warm airflow expelled from adjacent space. Energy and Buildings, 62, 107-115. https://doi.org/10.1016/j.enbuild.2013.02.045
dc.relation.referencesenYang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications - A review. Applied Energy, 115, 164-173. https://doi.org/10.1016/j.apenergy.2013.10.062
dc.relation.referencesenZamora, B., & Kaiser, A. S. (2010). Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation. Renewable Energy, 35(9), 2080-2088. https://doi.org/10.1016/j.renene.2010.02.009
dc.relation.referencesenZaniboni, L., & Albatici, R. (2022). Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings, 12(11), 1983. https://doi.org/10.3390/buildings12111983
dc.relation.referencesenZhang, H., Tao, Y., & Shi, L. (2021). Solar Chimney Applications in Buildings. Encyclopedia, 1(2), 409-422. https://doi.org/10.3390/encyclopedia1020034
dc.relation.referencesenZhang, T., & Yang, H. (2019). Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades. Applied Energy, 242, 107-120. https://doi.org/10.1016/j.apenergy.2019.03.072
dc.relation.referencesenZiskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34(1), 91-101. https://doi.org/10.1016/S0378-7788(01)00080-9
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2024.113959
dc.relation.urihttps://doi.org/10.1016/j.renene.2009.04.026
dc.relation.urihttps://doi.org/10.1016/j.rineng.2023.101641
dc.relation.urihttps://doi.org/10.1016/0360-1323(94)90008-6
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/DDF.408.141
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2017.05.020
dc.relation.urihttps://doi.org/10.1016/j.jobe.2021.103108
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2017.06.026
dc.relation.urihttps://doi.org/10.1016/j.rser.2016.01.074
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2022.109241
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2022.109236
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2015.02.033
dc.relation.urihttps://doi.org/10.3390/buildings13112796
dc.relation.urihttps://doi.org/10.1016/j.ijheh.2018.05.009
dc.relation.urihttps://doi.org/10.3390/buildings11120591
dc.relation.urihttps://doi.org/10.1016/j.icheatmasstransfer.2014.06.007
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2011.03.035
dc.relation.urihttps://doi.org/10.1016/S0360-1323(02)00070-7
dc.relation.urihttps://doi.org/10.1016/j.rser.2023.113460
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2024.114248
dc.relation.urihttps://doi.org/10.3390/en14227651
dc.relation.urihttps://doi.org/10.1016/j.rser.2017.06.078
dc.relation.urihttps://doi.org/10.3390/buildings14103154
dc.relation.urihttps://doi.org/10.1016/j.renene.2009.03.032
dc.relation.urihttps://doi.org/10.1016/j.seta.2019.03.005
dc.relation.urihttps://doi.org/10.1016/S0360-1323(99)00027-X
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2023.113883
dc.relation.urihttps://doi.org/10.1016/j.buildenv.2016.10.002
dc.relation.urihttps://doi.org/10.1016/j.energy.2021.121197
dc.relation.urihttps://doi.org/10.3390/en16073102
dc.relation.urihttps://doi.org/10.1007/978-3-031-67576-8_45
dc.relation.urihttps://doi.org/10.1016/j.jobe.2023.107060
dc.relation.urihttps://doi.org/10.32347/2310-0516.2019.12.77-84
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_68
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2011.05.022
dc.relation.urihttps://doi.org/10.3390/buildings13102458
dc.relation.urihttps://doi.org/10.1016/j.rser.2016.10.039
dc.relation.urihttps://doi.org/10.1016/j.enbuild.2013.02.045
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2013.10.062
dc.relation.urihttps://doi.org/10.1016/j.renene.2010.02.009
dc.relation.urihttps://doi.org/10.3390/buildings12111983
dc.relation.urihttps://doi.org/10.3390/encyclopedia1020034
dc.relation.urihttps://doi.org/10.1016/j.apenergy.2019.03.072
dc.relation.urihttps://doi.org/10.1016/S0378-7788(01)00080-9
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Mizernyk V., Myroniuk Kh., Furdas Yu., Zhelykh V., 2025
dc.subjectсонячний димохід
dc.subjectсонячна енергія
dc.subjectінтерактивне моделювання
dc.subjectконвекція
dc.subjectпасивна вентиляція
dc.subjectприродна вентиляція
dc.subjectsolar chimney
dc.subjectsolar energy
dc.subjectinteractive simulations
dc.subjectconvection
dc.subjectpassive ventilation
dc.subjectnatural ventilation
dc.titleSolar chimney: an innovative approach to passive ventilation
dc.title.alternativeСонячний димохід: інноваційний підхід до пасивної вентиляції
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v7n1_Mizernyk_V-Solar_chimney_an_innovative_90-98.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v7n1_Mizernyk_V-Solar_chimney_an_innovative_90-98__COVER.png
Size:
439.49 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: