Solar chimney: an innovative approach to passive ventilation
| dc.citation.epage | 98 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Теорія та будівельна практика | |
| dc.citation.spage | 90 | |
| dc.citation.volume | 7 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Бірмінгемський університет | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | University of Birmingham | |
| dc.contributor.author | Мізерник, В. А. | |
| dc.contributor.author | Миронюк, Х. В. | |
| dc.contributor.author | Фурдас, Ю. В. | |
| dc.contributor.author | Желих, В. М. | |
| dc.contributor.author | Mizernyk, Vasyl | |
| dc.contributor.author | Myroniuk, Khrystyna | |
| dc.contributor.author | Furdas, Yurii. | |
| dc.contributor.author | Zhelyh, Vasyl | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2026-01-26T08:05:26Z | |
| dc.date.created | 2025-02-27 | |
| dc.date.issued | 2025-02-27 | |
| dc.description.abstract | У статті розглянуто питання ефективного застосування енергозбережних технологій у системах пасивної вентиляції житлових будинків, що має велике значення в умовах зростання вимог до енергоефективності та екологічної стійкості будівель. Із огляду на це, важливим аспектом є забезпечення природного повітрообміну для створення комфортного мікроклімату. Дослідження охоплює аналіз сучасних вентиляційних систем, а також оцінювання впливу кліматичних факторів на їх ефективність. Важливою складовою є застосування числового моделювання для визначення ефективності пасивної вентиляції в різних кліматичних умовах. Результати показують, що технології, такі як сонячні димоходи, стіна Тромбе, оптимальне розміщення вентиляційних отворів та радіаційні панелі, здатні істотно покращити природний повітрообмін і знижують потребу в механічній вентиляції, що дає змогу значно зменшити енергоспоживання та підвищити ефективність вентиляційних систем, забезпечуючи комфортний мікроклімат у приміщеннях. Попри розвиток технологій відновлюваної енергії, сонячні димоходи залишаються недостатньо вивченими, їх рідко застосовують, зокрема, в багатоповерхових будинках. Це пояснюється обмеженими інженерними дослідженнями, відсутністю науково обґрунтованих методик їх розрахунку та недостатньою адаптацією до різних кліматичних умов. Необхідні додаткові дослідження для вивчення ефективності та оптимальних умов застосування сонячних димоходів у різних кліматичних зонах. У статті також наведено рекомендації щодо інтеграції пасивних вентиляційних технологій у сучасну будівельну практику, зокрема щодо оптимального проєктування та розміщення вентиляційних систем для максимального використання природних ресурсів. | |
| dc.description.abstract | The article explores the effective implementation of energy-efficient technologies in passive ventilation systems for residential buildings. As energy efficiency and environmental sustainability become more critical in construction, ensuring natural air exchange is essential for a comfortable indoor microclimate. The study analyzes contemporary ventilation systems, evaluates climatic factors, and applies numerical modeling to assess passive ventilation effectiveness. Findings show that solar chimneys, wind catchers, and hybrid ventilation systems improve natural air exchange and reduce reliance on mechanical systems. Despite advances in renewable energy technologies, solar chimneys are underutilized, particularly in multi-story buildings, due to limited research and the lack of validated methodologies. The article also offers recommendations for integrating passive ventilation technologies into modern construction for more sustainable and energy-efficient designs. | |
| dc.format.extent | 90-98 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Solar chimney: an innovative approach to passive ventilation / Vasyl Mizernyk, Khrystyna Myroniuk, Yurii. Furdas, Vasyl Zhelyh // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 90–98. | |
| dc.identifier.citationen | Solar chimney: an innovative approach to passive ventilation / Vasyl Mizernyk, Khrystyna Myroniuk, Yurii. Furdas, Vasyl Zhelyh // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 7. — No 1. — P. 90–98. | |
| dc.identifier.doi | doi.org/10.23939/jtbp2025.01.090 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124474 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Теорія та будівельна практика, 1 (7), 2025 | |
| dc.relation.ispartof | Theory and Building Practice, 1 (7), 2025 | |
| dc.relation.references | Ali, M. H., Mawlood, M. K., & Jalal, R. E. (2024). Minimizing energy losses and enhancing performance of Trombe wall systems through partial evacuation of the air gap. Energy and Buildings, 307, 113959. https://doi.org/10.1016/j.enbuild.2024.113959 | |
| dc.relation.references | Arce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928-2934. https://doi.org/10.1016/j.renene.2009.04.026 | |
| dc.relation.references | Ardila, O., Quiroga, J., & Amaris, C. (2023). Assessment of solar chimney potential for passive ventilation and thermal comfort in the northeast of Colombia. Results in Engineering, 20, 101641. https://doi.org/10.1016/j.rineng.2023.101641 | |
| dc.relation.references | Bansal, N. K., Mathur, R., & Bhandari, M. S. (1994). A study of solar chimney assisted wind tower system for natural ventilation in buildings. Building and Environment, 29(4), 495-500. https://doi.org/10.1016/0360-1323(94)90008-6 | |
| dc.relation.references | Benlefki, A., Hamel, M., & Medjahed, B. (2021). Numerical Investigation of the Interaction between the Thermal and Dynamic Effects of Cross-Ventilation for a Generic Isolated Building. Defect and Diffusion Forum, 408, 141-153. https://doi.org/10.4028/www.scientific.net/DDF.408.141 | |
| dc.relation.references | Broderick, A., Byrne, M., Armstrong, S., Sheahan, J., & Coggins, A. M. (2017). A pre and post evaluation of indoor air quality, ventilation, and thermal comfort in retrofitted co-operative social housing. Building and Environment, 122, 126-133. https://doi.org/10.1016/j.buildenv.2017.05.020 | |
| dc.relation.references | Cakyova, K., Figueiredo, A., Oliveira, R., Rebelo, F., Vicente, R., & Fokaides, P. (2021). Simulation of passive ventilation strategies towards indoor CO2 concentration reduction for passive houses. Journal of Building Engineering, 43, 103108. https://doi.org/10.1016/j.jobe.2021.103108 | |
| dc.relation.references | Chen, Y., Tong, Z., & Malkawi, A. (2017). Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. https://doi.org/10.1016/j.buildenv.2017.06.026 | |
| dc.relation.references | Chenari, B., Dias Carrilho, J., & Gameiro Da Silva, M. (2016). Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, 1426-1447. https://doi.org/10.1016/j.rser.2016.01.074 | |
| dc.relation.references | Chew, L. W., Chen, C., & Gorlé, C. (2022). Improving thermal model predictions for naturally ventilated buildings using large eddy simulations. Building and Environment, 220, 109241. https://doi.org/10.1016/j.buildenv.2022.109241 | |
| dc.relation.references | Coggins, A. M., Wemken, N., Mishra, A. K., Sharkey, M., Horgan, L., Cowie, H., Bourdin, E., & McIntyre, B. (2022). Indoor air quality, thermal comfort and ventilation in deep energy retrofitted Irish dwellings. Building and Environment, 219, 109236. https://doi.org/10.1016/j.buildenv.2022.109236 | |
| dc.relation.references | Etheridge, D. (2015). A perspective on fifty years of natural ventilation research. Building and Environment, 91, 51-60. https://doi.org/10.1016/j.buildenv.2015.02.033 | |
| dc.relation.references | Hassan, A. M. (2023). Solar Chimney Performance Driven Air Ventilation Promotion: An Investigation of Various Configuration Parameters. Buildings, 13(11), 2796. https://doi.org/10.3390/buildings13112796 | |
| dc.relation.references | Haverinen-Shaughnessy, U., Pekkonen, M., Leivo, V., Prasauskas, T., Turunen, M., Kiviste, M., Aaltonen, A., & Martuzevicius, D. (2018). Occupant satisfaction with indoor environmental quality and health after energy retrofits of multi-family buildings: Results from INSULAtE-project. International Journal of Hygiene and Environmental Health, 221(6), 921-928. https://doi.org/10.1016/j.ijheh.2018.05.009 | |
| dc.relation.references | Jia, L.-R., Han, J., Chen, X., Li, Q.-Y., Lee, C.-C., & Fung, Y.-H. (2021). Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11(12), 591. https://doi.org/10.3390/buildings11120591 | |
| dc.relation.references | Kalidasan, K., Velkennedy, R., & Rajesh Kanna, P. (2014). Buoyancy enhanced natural convection inside the ventilated square enclosure with a partition and an overhanging transverse baffle. International Communications in Heat and Mass Transfer, 56, 121-132. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.007 | |
| dc.relation.references | Khanal, R., & Lei, C. (2011). Solar chimney-A passive strategy for natural ventilation. Energy and Buildings, 43(8), 1811-1819. https://doi.org/10.1016/j.enbuild.2011.03.035 | |
| dc.relation.references | Letan, R., Dubovsky, V., & Ziskind, G. (2003). Passive ventilation and heating by natural convection in a multi-storey building. Building and Environment, 38(2), 197-208. https://doi.org/10.1016/S0360-1323(02)00070-7 | |
| dc.relation.references | https://doi.org/10.1016/S0360-1323(02)00070-7 | |
| dc.relation.references | Liu, H., Xu, X., Tam, V. W. Y., & Mao, P. (2023). What is the "DNA" of healthy buildings? A critical review and future directions. Renewable and Sustainable Energy Reviews, 183, 113460. https://doi.org/10.1016/j.rser.2023.113460 | |
| dc.relation.references | López Plazas, F., & Sáenz De Tejada, C. (2024). Natural ventilation to improve indoor air quality (IAQ) in existing homes: The development of health-based and context-specific user guidelines. Energy and Buildings, 314, 114248. https://doi.org/10.1016/j.enbuild.2024.114248 | |
| dc.relation.references | Matsunaga, J., Kikuta, K., Hirakawa, H., Mizuno, K., Tajima, M., Hayashi, M., & Fukushima, A. (2021). An Assessment of Heating Load Reduction by a Solar Air Heater in a Residential Passive Ventilation System. Energies, 14(22), 7651. https://doi.org/10.3390/en14227651 | |
| dc.relation.references | Monghasemi, N., & Vadiee, A. (2018). A review of solar chimney integrated systems for space heating and cooling application. Renewable and Sustainable Energy Reviews, 81, 2714-2730. https://doi.org/10.1016/j.rser.2017.06.078 | |
| dc.relation.references | Myroniuk, K., Furdas, Y., Zhelykh, V., Adamski, M., Gumen, O., Savin, V., & Mitoulis, S.-A. (2024). Passive Ventilation of Residential Buildings Using the Trombe Wall. Buildings, 14(10), 3154. https://doi.org/10.3390/buildings14103154 | |
| dc.relation.references | Punyasompun, S., Hirunlabh, J., Khedari, J., & Zeghmati, B. (2009). Investigation on the application of solar chimney for multi-storey buildings. Renewable Energy, 34(12), 2545-2561. https://doi.org/10.1016/j.renene.2009.03.032 | |
| dc.relation.references | Rabani, M., Kalantar, V., & Rabani, M. (2019). Passive cooling performance of a test room equipped with normal and new designed Trombe walls: A numerical approach. Sustainable Energy Technologies and Assessments, 33, 69-82. https://doi.org/10.1016/j.seta.2019.03.005 | |
| dc.relation.references | Rodrigues, A. M., Canha Da Piedade, A., Lahellec, A., & Grandpeix, J. Y. (2000). Modelling natural convection in a heated vertical channel for room ventilation. Building and Environment, 35(5), 455-469. https://doi.org/10.1016/S0360-1323(99)00027-X | |
| dc.relation.references | Rojas, G., Fletcher, M., Johnston, D., & Siddall, M. (2024). A review of the indoor air quality in residential Passive House dwellings. Energy and Buildings, 306, 113883. https://doi.org/10.1016/j.enbuild.2023.113883 | |
| dc.relation.references | Shi, L., Zhang, G., Cheng, X., Guo, Y., Wang, J., & Chew, M. Y. L. (2016). Developing an empirical model for roof solar chimney based on experimental data from various test rigs. Building and Environment, 110, 115-128. https://doi.org/10.1016/j.buildenv.2016.10.002 | |
| dc.relation.references | Simões, N., Manaia, M., & Simões, I. (2021). Energy performance of solar and Trombe walls in Mediterranean climates. Energy, 234, 121197. https://doi.org/10.1016/j.energy.2021.121197 | |
| dc.relation.references | Sornek, K., Papis-Frączek, K., Calise, F., Cappiello, F. L., & Vicidomini, M. (2023). A Review of Experimental and Numerical Analyses of Solar Thermal Walls. Energies, 16(7), 3102. https://doi.org/10.3390/en16073102 | |
| dc.relation.references | Sukholova, I., Voznyak, O., Myroniuk, K., Zhelykh, V., Mitoulis, S.-A., & Kasynets, M. (2024). Increasing the Efficiency of the Residential Buildings Premises Natural Ventilation. In Z. Blikharskyy & V. Zhelykh (Eds.), Proceedings of EcoComfort 2024 (Vol. 604, pp. 496-505). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-67576-8_45 | |
| dc.relation.references | Tognon, G., Marigo, M., De Carli, M., & Zarrella, A. (2023). Mechanical, natural and hybrid ventilation systems in different building types: Energy and indoor air quality analysis. Journal of Building Engineering, 76, 107060. https://doi.org/10.1016/j.jobe.2023.107060 | |
| dc.relation.references | Venhryn, I., & Shapoval, S. (2019). The intensity of solar radiation in the city of Lviv. Energy-Efficiency in Civil Engineering and Architecture, 0(12), 77-84. https://doi.org/10.32347/2310-0516.2019.12.77-84 | |
| dc.relation.references | Voznyak, O., Myroniuk, K., Sukholova, I., & Kapalo, P. (2020). The Impact of Air Flows on the Environment. In Z. Blikharskyy, P. Koszelnik, & P. Mesaros (Eds.), Proceedings of CEE 2019 (Vol. 47, pp. 534-540). Springer International Publishing. https://doi.org/10.1007/978-3-030-27011-7_68 | |
| dc.relation.references | Walker, C., Tan, G., & Glicksman, L. (2011). Reduced-scale building model and numerical investigations to buoyancy-driven natural ventilation. Energy and Buildings, 43(9), 2404-2413. https://doi.org/10.1016/j.enbuild.2011.05.022 | |
| dc.relation.references | Wang, B., Zhao, H., Han, B., & Jiang, X. (2023). An Investigation of Outdoor Thermal Comfort Assessment for Elderly Individuals in a Field Study in Northeastern China. Buildings, 13(10), 2458. https://doi.org/10.3390/buildings13102458 | |
| dc.relation.references | Wang, Y., Kuckelkorn, J., Zhao, F.-Y., Spliethoff, H., & Lang, W. (2017). A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renewable and Sustainable Energy Reviews, 72, 1303-1319. https://doi.org/10.1016/j.rser.2016.10.039 | |
| dc.relation.references | Yang, D., Du, T., Peng, S., & Li, B. (2013). A model for analysis of convection induced by stack effect in a shaft with warm airflow expelled from adjacent space. Energy and Buildings, 62, 107-115. https://doi.org/10.1016/j.enbuild.2013.02.045 | |
| dc.relation.references | Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications - A review. Applied Energy, 115, 164-173. https://doi.org/10.1016/j.apenergy.2013.10.062 | |
| dc.relation.references | Zamora, B., & Kaiser, A. S. (2010). Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation. Renewable Energy, 35(9), 2080-2088. https://doi.org/10.1016/j.renene.2010.02.009 | |
| dc.relation.references | Zaniboni, L., & Albatici, R. (2022). Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings, 12(11), 1983. https://doi.org/10.3390/buildings12111983 | |
| dc.relation.references | Zhang, H., Tao, Y., & Shi, L. (2021). Solar Chimney Applications in Buildings. Encyclopedia, 1(2), 409-422. https://doi.org/10.3390/encyclopedia1020034 | |
| dc.relation.references | Zhang, T., & Yang, H. (2019). Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades. Applied Energy, 242, 107-120. https://doi.org/10.1016/j.apenergy.2019.03.072 | |
| dc.relation.references | Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34(1), 91-101. https://doi.org/10.1016/S0378-7788(01)00080-9 | |
| dc.relation.referencesen | Ali, M. H., Mawlood, M. K., & Jalal, R. E. (2024). Minimizing energy losses and enhancing performance of Trombe wall systems through partial evacuation of the air gap. Energy and Buildings, 307, 113959. https://doi.org/10.1016/j.enbuild.2024.113959 | |
| dc.relation.referencesen | Arce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928-2934. https://doi.org/10.1016/j.renene.2009.04.026 | |
| dc.relation.referencesen | Ardila, O., Quiroga, J., & Amaris, C. (2023). Assessment of solar chimney potential for passive ventilation and thermal comfort in the northeast of Colombia. Results in Engineering, 20, 101641. https://doi.org/10.1016/j.rineng.2023.101641 | |
| dc.relation.referencesen | Bansal, N. K., Mathur, R., & Bhandari, M. S. (1994). A study of solar chimney assisted wind tower system for natural ventilation in buildings. Building and Environment, 29(4), 495-500. https://doi.org/10.1016/0360-1323(94)90008-6 | |
| dc.relation.referencesen | Benlefki, A., Hamel, M., & Medjahed, B. (2021). Numerical Investigation of the Interaction between the Thermal and Dynamic Effects of Cross-Ventilation for a Generic Isolated Building. Defect and Diffusion Forum, 408, 141-153. https://doi.org/10.4028/www.scientific.net/DDF.408.141 | |
| dc.relation.referencesen | Broderick, A., Byrne, M., Armstrong, S., Sheahan, J., & Coggins, A. M. (2017). A pre and post evaluation of indoor air quality, ventilation, and thermal comfort in retrofitted co-operative social housing. Building and Environment, 122, 126-133. https://doi.org/10.1016/j.buildenv.2017.05.020 | |
| dc.relation.referencesen | Cakyova, K., Figueiredo, A., Oliveira, R., Rebelo, F., Vicente, R., & Fokaides, P. (2021). Simulation of passive ventilation strategies towards indoor CO2 concentration reduction for passive houses. Journal of Building Engineering, 43, 103108. https://doi.org/10.1016/j.jobe.2021.103108 | |
| dc.relation.referencesen | Chen, Y., Tong, Z., & Malkawi, A. (2017). Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. https://doi.org/10.1016/j.buildenv.2017.06.026 | |
| dc.relation.referencesen | Chenari, B., Dias Carrilho, J., & Gameiro Da Silva, M. (2016). Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review. Renewable and Sustainable Energy Reviews, 59, 1426-1447. https://doi.org/10.1016/j.rser.2016.01.074 | |
| dc.relation.referencesen | Chew, L. W., Chen, C., & Gorlé, C. (2022). Improving thermal model predictions for naturally ventilated buildings using large eddy simulations. Building and Environment, 220, 109241. https://doi.org/10.1016/j.buildenv.2022.109241 | |
| dc.relation.referencesen | Coggins, A. M., Wemken, N., Mishra, A. K., Sharkey, M., Horgan, L., Cowie, H., Bourdin, E., & McIntyre, B. (2022). Indoor air quality, thermal comfort and ventilation in deep energy retrofitted Irish dwellings. Building and Environment, 219, 109236. https://doi.org/10.1016/j.buildenv.2022.109236 | |
| dc.relation.referencesen | Etheridge, D. (2015). A perspective on fifty years of natural ventilation research. Building and Environment, 91, 51-60. https://doi.org/10.1016/j.buildenv.2015.02.033 | |
| dc.relation.referencesen | Hassan, A. M. (2023). Solar Chimney Performance Driven Air Ventilation Promotion: An Investigation of Various Configuration Parameters. Buildings, 13(11), 2796. https://doi.org/10.3390/buildings13112796 | |
| dc.relation.referencesen | Haverinen-Shaughnessy, U., Pekkonen, M., Leivo, V., Prasauskas, T., Turunen, M., Kiviste, M., Aaltonen, A., & Martuzevicius, D. (2018). Occupant satisfaction with indoor environmental quality and health after energy retrofits of multi-family buildings: Results from INSULAtE-project. International Journal of Hygiene and Environmental Health, 221(6), 921-928. https://doi.org/10.1016/j.ijheh.2018.05.009 | |
| dc.relation.referencesen | Jia, L.-R., Han, J., Chen, X., Li, Q.-Y., Lee, C.-C., & Fung, Y.-H. (2021). Interaction between Thermal Comfort, Indoor Air Quality and Ventilation Energy Consumption of Educational Buildings: A Comprehensive Review. Buildings, 11(12), 591. https://doi.org/10.3390/buildings11120591 | |
| dc.relation.referencesen | Kalidasan, K., Velkennedy, R., & Rajesh Kanna, P. (2014). Buoyancy enhanced natural convection inside the ventilated square enclosure with a partition and an overhanging transverse baffle. International Communications in Heat and Mass Transfer, 56, 121-132. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.007 | |
| dc.relation.referencesen | Khanal, R., & Lei, C. (2011). Solar chimney-A passive strategy for natural ventilation. Energy and Buildings, 43(8), 1811-1819. https://doi.org/10.1016/j.enbuild.2011.03.035 | |
| dc.relation.referencesen | Letan, R., Dubovsky, V., & Ziskind, G. (2003). Passive ventilation and heating by natural convection in a multi-storey building. Building and Environment, 38(2), 197-208. https://doi.org/10.1016/S0360-1323(02)00070-7 | |
| dc.relation.referencesen | https://doi.org/10.1016/S0360-1323(02)00070-7 | |
| dc.relation.referencesen | Liu, H., Xu, X., Tam, V. W. Y., & Mao, P. (2023). What is the "DNA" of healthy buildings? A critical review and future directions. Renewable and Sustainable Energy Reviews, 183, 113460. https://doi.org/10.1016/j.rser.2023.113460 | |
| dc.relation.referencesen | López Plazas, F., & Sáenz De Tejada, C. (2024). Natural ventilation to improve indoor air quality (IAQ) in existing homes: The development of health-based and context-specific user guidelines. Energy and Buildings, 314, 114248. https://doi.org/10.1016/j.enbuild.2024.114248 | |
| dc.relation.referencesen | Matsunaga, J., Kikuta, K., Hirakawa, H., Mizuno, K., Tajima, M., Hayashi, M., & Fukushima, A. (2021). An Assessment of Heating Load Reduction by a Solar Air Heater in a Residential Passive Ventilation System. Energies, 14(22), 7651. https://doi.org/10.3390/en14227651 | |
| dc.relation.referencesen | Monghasemi, N., & Vadiee, A. (2018). A review of solar chimney integrated systems for space heating and cooling application. Renewable and Sustainable Energy Reviews, 81, 2714-2730. https://doi.org/10.1016/j.rser.2017.06.078 | |
| dc.relation.referencesen | Myroniuk, K., Furdas, Y., Zhelykh, V., Adamski, M., Gumen, O., Savin, V., & Mitoulis, S.-A. (2024). Passive Ventilation of Residential Buildings Using the Trombe Wall. Buildings, 14(10), 3154. https://doi.org/10.3390/buildings14103154 | |
| dc.relation.referencesen | Punyasompun, S., Hirunlabh, J., Khedari, J., & Zeghmati, B. (2009). Investigation on the application of solar chimney for multi-storey buildings. Renewable Energy, 34(12), 2545-2561. https://doi.org/10.1016/j.renene.2009.03.032 | |
| dc.relation.referencesen | Rabani, M., Kalantar, V., & Rabani, M. (2019). Passive cooling performance of a test room equipped with normal and new designed Trombe walls: A numerical approach. Sustainable Energy Technologies and Assessments, 33, 69-82. https://doi.org/10.1016/j.seta.2019.03.005 | |
| dc.relation.referencesen | Rodrigues, A. M., Canha Da Piedade, A., Lahellec, A., & Grandpeix, J. Y. (2000). Modelling natural convection in a heated vertical channel for room ventilation. Building and Environment, 35(5), 455-469. https://doi.org/10.1016/S0360-1323(99)00027-X | |
| dc.relation.referencesen | Rojas, G., Fletcher, M., Johnston, D., & Siddall, M. (2024). A review of the indoor air quality in residential Passive House dwellings. Energy and Buildings, 306, 113883. https://doi.org/10.1016/j.enbuild.2023.113883 | |
| dc.relation.referencesen | Shi, L., Zhang, G., Cheng, X., Guo, Y., Wang, J., & Chew, M. Y. L. (2016). Developing an empirical model for roof solar chimney based on experimental data from various test rigs. Building and Environment, 110, 115-128. https://doi.org/10.1016/j.buildenv.2016.10.002 | |
| dc.relation.referencesen | Simões, N., Manaia, M., & Simões, I. (2021). Energy performance of solar and Trombe walls in Mediterranean climates. Energy, 234, 121197. https://doi.org/10.1016/j.energy.2021.121197 | |
| dc.relation.referencesen | Sornek, K., Papis-Frączek, K., Calise, F., Cappiello, F. L., & Vicidomini, M. (2023). A Review of Experimental and Numerical Analyses of Solar Thermal Walls. Energies, 16(7), 3102. https://doi.org/10.3390/en16073102 | |
| dc.relation.referencesen | Sukholova, I., Voznyak, O., Myroniuk, K., Zhelykh, V., Mitoulis, S.-A., & Kasynets, M. (2024). Increasing the Efficiency of the Residential Buildings Premises Natural Ventilation. In Z. Blikharskyy & V. Zhelykh (Eds.), Proceedings of EcoComfort 2024 (Vol. 604, pp. 496-505). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-67576-8_45 | |
| dc.relation.referencesen | Tognon, G., Marigo, M., De Carli, M., & Zarrella, A. (2023). Mechanical, natural and hybrid ventilation systems in different building types: Energy and indoor air quality analysis. Journal of Building Engineering, 76, 107060. https://doi.org/10.1016/j.jobe.2023.107060 | |
| dc.relation.referencesen | Venhryn, I., & Shapoval, S. (2019). The intensity of solar radiation in the city of Lviv. Energy-Efficiency in Civil Engineering and Architecture, 0(12), 77-84. https://doi.org/10.32347/2310-0516.2019.12.77-84 | |
| dc.relation.referencesen | Voznyak, O., Myroniuk, K., Sukholova, I., & Kapalo, P. (2020). The Impact of Air Flows on the Environment. In Z. Blikharskyy, P. Koszelnik, & P. Mesaros (Eds.), Proceedings of CEE 2019 (Vol. 47, pp. 534-540). Springer International Publishing. https://doi.org/10.1007/978-3-030-27011-7_68 | |
| dc.relation.referencesen | Walker, C., Tan, G., & Glicksman, L. (2011). Reduced-scale building model and numerical investigations to buoyancy-driven natural ventilation. Energy and Buildings, 43(9), 2404-2413. https://doi.org/10.1016/j.enbuild.2011.05.022 | |
| dc.relation.referencesen | Wang, B., Zhao, H., Han, B., & Jiang, X. (2023). An Investigation of Outdoor Thermal Comfort Assessment for Elderly Individuals in a Field Study in Northeastern China. Buildings, 13(10), 2458. https://doi.org/10.3390/buildings13102458 | |
| dc.relation.referencesen | Wang, Y., Kuckelkorn, J., Zhao, F.-Y., Spliethoff, H., & Lang, W. (2017). A state of art of review on interactions between energy performance and indoor environment quality in Passive House buildings. Renewable and Sustainable Energy Reviews, 72, 1303-1319. https://doi.org/10.1016/j.rser.2016.10.039 | |
| dc.relation.referencesen | Yang, D., Du, T., Peng, S., & Li, B. (2013). A model for analysis of convection induced by stack effect in a shaft with warm airflow expelled from adjacent space. Energy and Buildings, 62, 107-115. https://doi.org/10.1016/j.enbuild.2013.02.045 | |
| dc.relation.referencesen | Yang, L., Yan, H., & Lam, J. C. (2014). Thermal comfort and building energy consumption implications - A review. Applied Energy, 115, 164-173. https://doi.org/10.1016/j.apenergy.2013.10.062 | |
| dc.relation.referencesen | Zamora, B., & Kaiser, A. S. (2010). Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation. Renewable Energy, 35(9), 2080-2088. https://doi.org/10.1016/j.renene.2010.02.009 | |
| dc.relation.referencesen | Zaniboni, L., & Albatici, R. (2022). Natural and Mechanical Ventilation Concepts for Indoor Comfort and Well-Being with a Sustainable Design Perspective: A Systematic Review. Buildings, 12(11), 1983. https://doi.org/10.3390/buildings12111983 | |
| dc.relation.referencesen | Zhang, H., Tao, Y., & Shi, L. (2021). Solar Chimney Applications in Buildings. Encyclopedia, 1(2), 409-422. https://doi.org/10.3390/encyclopedia1020034 | |
| dc.relation.referencesen | Zhang, T., & Yang, H. (2019). Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades. Applied Energy, 242, 107-120. https://doi.org/10.1016/j.apenergy.2019.03.072 | |
| dc.relation.referencesen | Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34(1), 91-101. https://doi.org/10.1016/S0378-7788(01)00080-9 | |
| dc.relation.uri | https://doi.org/10.1016/j.enbuild.2024.113959 | |
| dc.relation.uri | https://doi.org/10.1016/j.renene.2009.04.026 | |
| dc.relation.uri | https://doi.org/10.1016/j.rineng.2023.101641 | |
| dc.relation.uri | https://doi.org/10.1016/0360-1323(94)90008-6 | |
| dc.relation.uri | https://doi.org/10.4028/www.scientific.net/DDF.408.141 | |
| dc.relation.uri | https://doi.org/10.1016/j.buildenv.2017.05.020 | |
| dc.relation.uri | https://doi.org/10.1016/j.jobe.2021.103108 | |
| dc.relation.uri | https://doi.org/10.1016/j.buildenv.2017.06.026 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2016.01.074 | |
| dc.relation.uri | https://doi.org/10.1016/j.buildenv.2022.109241 | |
| dc.relation.uri | https://doi.org/10.1016/j.buildenv.2022.109236 | |
| dc.relation.uri | https://doi.org/10.1016/j.buildenv.2015.02.033 | |
| dc.relation.uri | https://doi.org/10.3390/buildings13112796 | |
| dc.relation.uri | https://doi.org/10.1016/j.ijheh.2018.05.009 | |
| dc.relation.uri | https://doi.org/10.3390/buildings11120591 | |
| dc.relation.uri | https://doi.org/10.1016/j.icheatmasstransfer.2014.06.007 | |
| dc.relation.uri | https://doi.org/10.1016/j.enbuild.2011.03.035 | |
| dc.relation.uri | https://doi.org/10.1016/S0360-1323(02)00070-7 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2023.113460 | |
| dc.relation.uri | https://doi.org/10.1016/j.enbuild.2024.114248 | |
| dc.relation.uri | https://doi.org/10.3390/en14227651 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2017.06.078 | |
| dc.relation.uri | https://doi.org/10.3390/buildings14103154 | |
| dc.relation.uri | https://doi.org/10.1016/j.renene.2009.03.032 | |
| dc.relation.uri | https://doi.org/10.1016/j.seta.2019.03.005 | |
| dc.relation.uri | https://doi.org/10.1016/S0360-1323(99)00027-X | |
| dc.relation.uri | https://doi.org/10.1016/j.enbuild.2023.113883 | |
| dc.relation.uri | https://doi.org/10.1016/j.buildenv.2016.10.002 | |
| dc.relation.uri | https://doi.org/10.1016/j.energy.2021.121197 | |
| dc.relation.uri | https://doi.org/10.3390/en16073102 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-031-67576-8_45 | |
| dc.relation.uri | https://doi.org/10.1016/j.jobe.2023.107060 | |
| dc.relation.uri | https://doi.org/10.32347/2310-0516.2019.12.77-84 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-030-27011-7_68 | |
| dc.relation.uri | https://doi.org/10.1016/j.enbuild.2011.05.022 | |
| dc.relation.uri | https://doi.org/10.3390/buildings13102458 | |
| dc.relation.uri | https://doi.org/10.1016/j.rser.2016.10.039 | |
| dc.relation.uri | https://doi.org/10.1016/j.enbuild.2013.02.045 | |
| dc.relation.uri | https://doi.org/10.1016/j.apenergy.2013.10.062 | |
| dc.relation.uri | https://doi.org/10.1016/j.renene.2010.02.009 | |
| dc.relation.uri | https://doi.org/10.3390/buildings12111983 | |
| dc.relation.uri | https://doi.org/10.3390/encyclopedia1020034 | |
| dc.relation.uri | https://doi.org/10.1016/j.apenergy.2019.03.072 | |
| dc.relation.uri | https://doi.org/10.1016/S0378-7788(01)00080-9 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2025 | |
| dc.rights.holder | © Mizernyk V., Myroniuk Kh., Furdas Yu., Zhelykh V., 2025 | |
| dc.subject | сонячний димохід | |
| dc.subject | сонячна енергія | |
| dc.subject | інтерактивне моделювання | |
| dc.subject | конвекція | |
| dc.subject | пасивна вентиляція | |
| dc.subject | природна вентиляція | |
| dc.subject | solar chimney | |
| dc.subject | solar energy | |
| dc.subject | interactive simulations | |
| dc.subject | convection | |
| dc.subject | passive ventilation | |
| dc.subject | natural ventilation | |
| dc.title | Solar chimney: an innovative approach to passive ventilation | |
| dc.title.alternative | Сонячний димохід: інноваційний підхід до пасивної вентиляції | |
| dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1