Implementation of the sludge biotic index for control and optimization of the biological treatment process
dc.citation.epage | 171 | |
dc.citation.issue | 3 | |
dc.citation.journalTitle | Екологічні проблеми | |
dc.citation.spage | 164 | |
dc.citation.volume | 9 | |
dc.contributor.affiliation | O. M. Beketov National University of Urban Economy in Kharkiv | |
dc.contributor.author | Iurchenko, Valentina | |
dc.contributor.author | Tkachenko, Svitlana | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-05-13T09:48:15Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | The article examines the methodology for determining the Sludge Biotic Index (SBI) to assess the quality of activated sludge at treatment plants. The Sludge Biotic Index is a tool for quantitatively evaluating the functionality of sludge, allowing for monitoring and detection of critical conditions that may affect the quality of wastewater treatment. The determination of SBI is based on the analysis of the microfauna of activated sludge, where organisms are grouped into positive and negative key groups depending on their impact on the treatment process. The methodology allows for comparisons between different treatment facilities and identifying exceedances of discharge limits. Experimental studies were conducted at wastewater treatment facilities in Kharkiv. Samples of sludge were collected over several months, allowing for the investigation of changes in sludge quality over time. It was established that using the SBI allows for determining the degree of stability of activated sludge, as well as identifying adverse phenomena such as sludge bulking, which can lead to a decrease in treatment efficiency. The results of the studies confirm that the application of the SBI contributes to improving control and optimizing the biological water treatment process, which is especially important for the preservation of natural water resources. The obtained data indicate the high effectiveness of using the biotic index for monitoring the condition of activated sludge, allowing timely measures to be taken to improve wastewater treatment quality. This confirms the feasibility of implementing European methodologies in the management practices of treatment facilities in Ukraine. | |
dc.format.extent | 164-171 | |
dc.format.pages | 8 | |
dc.identifier.citation | Iurchenko V. Implementation of the sludge biotic index for control and optimization of the biological treatment process / Valentina Iurchenko, Svitlana Tkachenko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 3. — P. 164–171. | |
dc.identifier.citationen | Iurchenko V. Implementation of the sludge biotic index for control and optimization of the biological treatment process / Valentina Iurchenko, Svitlana Tkachenko // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 9. — No 3. — P. 164–171. | |
dc.identifier.doi | doi.org/10.23939/ep2024.03.164 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64534 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Екологічні проблеми, 3 (9), 2024 | |
dc.relation.ispartof | Environmental Problems, 3 (9), 2024 | |
dc.relation.references | Cupak, A., Chmielowski, K., Bugajski, P., & Dacewicz, E. (2019). Assessment of efficiency of rural sewage treatment plant with bioreactor. Acta Scientiarum Polonorum Formatio Circumiectus, 18(1), 137–143. doi: https://doi.org/10.15576/asp.fc/2019.18.1.137 | |
dc.relation.references | Drzewicki, A., & Kulikowska, D. (2011). Limitation of Sludge Biotic Index application for control of a wastewater treatment plant working with shock organic and ammonium loadings. European Journal of Protistology, 47(4), 287–294. doi: https://doi.org/10.1016/j.ejop.2011.06.001 | |
dc.relation.references | Eikelboom, D. H. (2000). Process control of activated sludge plants by microscopic investigation. IWA Pub. | |
dc.relation.references | Gulshin, I. (2017). The settling behaviour of an activated sludge with simultaneous nitrification and dentrification. MATEC Web of Conferences, 106, 07002. doi: https://doi.org/10.1051/matecconf/201710607002 | |
dc.relation.references | Karczmarczyk, A., & Kowalik, W. (2022). Combination of microscopic tests of the activated sludge and effluent quality for more efficient on-site treatment. Water, 14(3), 489. doi: https://doi.org/10.3390/w14030489 | |
dc.relation.references | Madoni, P. (1994). A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Research, 28(1), 67–75. doi: https://doi.org/10.1016/0043-1354(94)90120-1 | |
dc.relation.references | Madoni, P. (2011). Protozoa in wastewater treatment processes: A minireview. Italian Journal of Zoology, 78(1), 3–11. doi: https://doi.org/10.1080/11250000903373797 | |
dc.relation.references | Madoni, P., Davoli, D., & Chierici, E. (1993). Comparative analysis of the activated sludge microfauna in several sewage treatment works. Water Research, 27(9), 1485–1491. doi: https://doi.org/10.1016/0043-1354(93)90029-h | |
dc.relation.references | Mesquita, D. P., Amaral, A. L., & Ferreira, E. C. (2013). Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques. Analytica Chimica Acta, 802, 14–28. doi: https://doi.org/10.1016/j.aca.2013.09.016 | |
dc.relation.references | Mikkelsen, L. (2002). The shear sensitivity of activated sludge: An evaluation of the possibility for a standardised floc strength test. Water Research, 36(12), 2931–2940. doi: https://doi.org/10.1016/s0043-1354(01)00518-8 | |
dc.relation.references | Ntougias, S., Tanasidis, S., & Melidis, P. (2011). Microfaunal indicators, Ciliophora phylogeny and protozoan population shifts in an intermittently aerated and fed bioreactor. Journal of Hazardous Materials, 186(2–3), 1862–1869. doi: https://doi.org/10.1016/j.jhazmat.2010.12.099 | |
dc.relation.references | Ostoich, M., Serena, F., Zacchello, C., Falletti, L., Zambon, M., & Tomiato, L. (2017). Discharge quality from municipal wastewater treatment plants and the Sludge Biotic Index for activated sludge: Integrative assessment. WaterPractice and Technology, 12(4), 857–870. doi: https://doi.org/10.2166/wpt.2017.092 | |
dc.relation.references | Pedrazzani, R., Menoni, L., Nembrini, S., Manili, L., & Bertanza, G. (2016). Suitability of Sludge Biotic Index (SBI), Sludge Index (SI) and filamentous bacteria analysis for assessing activated sludge process performance: The case of piggery slaughterhouse wastewater. Journal of Industrial Microbiology & Biotechnology, 43(7), 953–964. doi: https://doi.org/10.1007/s10295-016-1767-1 | |
dc.relation.references | Surerus, V., Giordano, G., & Teixeira, L. A. C. (2014). Activated sludge inhibition capacity index. Brazilian Journal of Chemical Engineering, 31(2), 385–392. doi: https://doi.org/10.1590/0104-6632.20140312s00002516 | |
dc.relation.references | Tocchi, C., Federici, E., Fidati, L., Manzi, R., Vincigurerra, V., & Petruccioli, M. (2012). Aerobic treatment of dairy wastewater in an industrial three-reactor plant: Effect of aeration regime on performances and on protozoan and bacterial communities. Water Research, 46(10), 3334–3344. doi: https://doi.org/10.1016/j.watres.2012.03.032 Van Dierdonck, J., Van den Broeck, R., Vansant, A., Van Impe, J., & Smets, I. (2013). Microscopic image analysis versus sludge volume index to monitor activated sludge bioflocculation: A case study. Separation Science and Technology, 48(10), 1433–1441. doi: https://doi.org/10.1080/01496395.2013.767836 | |
dc.relation.references | Winkler, M.-K. H., Kleerebezem, R., Strous, M., Chandran, K., & van Loosdrecht, M. C. M. (2012). Factors influencing the density of aerobic granular sludge. Applied Microbiology and Biotechnology, 97(16), 7459–7468. doi: https://doi.org/10.1007/s00253-012 | |
dc.relation.referencesen | Cupak, A., Chmielowski, K., Bugajski, P., & Dacewicz, E. (2019). Assessment of efficiency of rural sewage treatment plant with bioreactor. Acta Scientiarum Polonorum Formatio Circumiectus, 18(1), 137–143. doi: https://doi.org/10.15576/asp.fc/2019.18.1.137 | |
dc.relation.referencesen | Drzewicki, A., & Kulikowska, D. (2011). Limitation of Sludge Biotic Index application for control of a wastewater treatment plant working with shock organic and ammonium loadings. European Journal of Protistology, 47(4), 287–294. doi: https://doi.org/10.1016/j.ejop.2011.06.001 | |
dc.relation.referencesen | Eikelboom, D. H. (2000). Process control of activated sludge plants by microscopic investigation. IWA Pub. | |
dc.relation.referencesen | Gulshin, I. (2017). The settling behaviour of an activated sludge with simultaneous nitrification and dentrification. MATEC Web of Conferences, 106, 07002. doi: https://doi.org/10.1051/matecconf/201710607002 | |
dc.relation.referencesen | Karczmarczyk, A., & Kowalik, W. (2022). Combination of microscopic tests of the activated sludge and effluent quality for more efficient on-site treatment. Water, 14(3), 489. doi: https://doi.org/10.3390/w14030489 | |
dc.relation.referencesen | Madoni, P. (1994). A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis. Water Research, 28(1), 67–75. doi: https://doi.org/10.1016/0043-1354(94)90120-1 | |
dc.relation.referencesen | Madoni, P. (2011). Protozoa in wastewater treatment processes: A minireview. Italian Journal of Zoology, 78(1), 3–11. doi: https://doi.org/10.1080/11250000903373797 | |
dc.relation.referencesen | Madoni, P., Davoli, D., & Chierici, E. (1993). Comparative analysis of the activated sludge microfauna in several sewage treatment works. Water Research, 27(9), 1485–1491. doi: https://doi.org/10.1016/0043-1354(93)90029-h | |
dc.relation.referencesen | Mesquita, D. P., Amaral, A. L., & Ferreira, E. C. (2013). Activated sludge characterization through microscopy: A review on quantitative image analysis and chemometric techniques. Analytica Chimica Acta, 802, 14–28. doi: https://doi.org/10.1016/j.aca.2013.09.016 | |
dc.relation.referencesen | Mikkelsen, L. (2002). The shear sensitivity of activated sludge: An evaluation of the possibility for a standardised floc strength test. Water Research, 36(12), 2931–2940. doi: https://doi.org/10.1016/s0043-1354(01)00518-8 | |
dc.relation.referencesen | Ntougias, S., Tanasidis, S., & Melidis, P. (2011). Microfaunal indicators, Ciliophora phylogeny and protozoan population shifts in an intermittently aerated and fed bioreactor. Journal of Hazardous Materials, 186(2–3), 1862–1869. doi: https://doi.org/10.1016/j.jhazmat.2010.12.099 | |
dc.relation.referencesen | Ostoich, M., Serena, F., Zacchello, C., Falletti, L., Zambon, M., & Tomiato, L. (2017). Discharge quality from municipal wastewater treatment plants and the Sludge Biotic Index for activated sludge: Integrative assessment. WaterPractice and Technology, 12(4), 857–870. doi: https://doi.org/10.2166/wpt.2017.092 | |
dc.relation.referencesen | Pedrazzani, R., Menoni, L., Nembrini, S., Manili, L., & Bertanza, G. (2016). Suitability of Sludge Biotic Index (SBI), Sludge Index (SI) and filamentous bacteria analysis for assessing activated sludge process performance: The case of piggery slaughterhouse wastewater. Journal of Industrial Microbiology & Biotechnology, 43(7), 953–964. doi: https://doi.org/10.1007/s10295-016-1767-1 | |
dc.relation.referencesen | Surerus, V., Giordano, G., & Teixeira, L. A. C. (2014). Activated sludge inhibition capacity index. Brazilian Journal of Chemical Engineering, 31(2), 385–392. doi: https://doi.org/10.1590/0104-6632.20140312s00002516 | |
dc.relation.referencesen | Tocchi, C., Federici, E., Fidati, L., Manzi, R., Vincigurerra, V., & Petruccioli, M. (2012). Aerobic treatment of dairy wastewater in an industrial three-reactor plant: Effect of aeration regime on performances and on protozoan and bacterial communities. Water Research, 46(10), 3334–3344. doi: https://doi.org/10.1016/j.watres.2012.03.032 Van Dierdonck, J., Van den Broeck, R., Vansant, A., Van Impe, J., & Smets, I. (2013). Microscopic image analysis versus sludge volume index to monitor activated sludge bioflocculation: A case study. Separation Science and Technology, 48(10), 1433–1441. doi: https://doi.org/10.1080/01496395.2013.767836 | |
dc.relation.referencesen | Winkler, M.-K. H., Kleerebezem, R., Strous, M., Chandran, K., & van Loosdrecht, M. C. M. (2012). Factors influencing the density of aerobic granular sludge. Applied Microbiology and Biotechnology, 97(16), 7459–7468. doi: https://doi.org/10.1007/s00253-012 | |
dc.relation.uri | https://doi.org/10.15576/asp.fc/2019.18.1.137 | |
dc.relation.uri | https://doi.org/10.1016/j.ejop.2011.06.001 | |
dc.relation.uri | https://doi.org/10.1051/matecconf/201710607002 | |
dc.relation.uri | https://doi.org/10.3390/w14030489 | |
dc.relation.uri | https://doi.org/10.1016/0043-1354(94)90120-1 | |
dc.relation.uri | https://doi.org/10.1080/11250000903373797 | |
dc.relation.uri | https://doi.org/10.1016/0043-1354(93)90029-h | |
dc.relation.uri | https://doi.org/10.1016/j.aca.2013.09.016 | |
dc.relation.uri | https://doi.org/10.1016/s0043-1354(01)00518-8 | |
dc.relation.uri | https://doi.org/10.1016/j.jhazmat.2010.12.099 | |
dc.relation.uri | https://doi.org/10.2166/wpt.2017.092 | |
dc.relation.uri | https://doi.org/10.1007/s10295-016-1767-1 | |
dc.relation.uri | https://doi.org/10.1590/0104-6632.20140312s00002516 | |
dc.relation.uri | https://doi.org/10.1016/j.watres.2012.03.032 | |
dc.relation.uri | https://doi.org/10.1080/01496395.2013.767836 | |
dc.relation.uri | https://doi.org/10.1007/s00253-012 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.rights.holder | © Iurchenko V., Tkachenko S., 2024 | |
dc.subject | activated sludge | |
dc.subject | biological treatment | |
dc.subject | treatment efficiency | |
dc.subject | biotic index | |
dc.subject | microfauna | |
dc.subject | European experience | |
dc.title | Implementation of the sludge biotic index for control and optimization of the biological treatment process | |
dc.type | Article |
Files
License bundle
1 - 1 of 1