Reflection of the 3q±1 problem on the Jacobsthal map

dc.citation.epage34
dc.citation.issue2
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage23
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКособуцький, Петро
dc.contributor.authorВасилишин, Богдан
dc.contributor.authorKosobutskyy, Petro
dc.contributor.authorVasylyshyn, Bohdan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-15T08:11:15Z
dc.date.created2024-08-10
dc.date.issued2024-08-10
dc.description.abstractУ роботі показано, що актуальним завданням є розв’язання задачі C3q±1 = 3q ±1 при- пущення натуральних чисел q ³1 у зворотному напрямку n®0 розгалуження дерева Якобсталя, згідно з правилами перетворень рекурентних чисел Якобсталя. Вперше задачу Коллатца проаналі- зовано з погляду зростання інформаційної ентропії після проходження так званих точок злиття (вузлів) на поліномах q × 2n траєкторіями Коллатца. Проблему Коллатца вперше проаналізовано із погляду поведінки інформаційної ентропії Шеннона – Хартлі. Також вперше показано, що траєкторія Коллатца є одновимірним графіком на своєрідній двовимірній решітці повторюваних чисел Якобсталя.
dc.description.abstractThe work shows that the task is the problem 3 1 3 1 = ± ± C q q conjecture positive integers q ³ 1 in the reverse direction n®0 of the branching of the Jacobsthal tree, according to the rules of transformations of recurrent Jacobsthal numbers. For the first time, the Collatz problem is analyzed from the point of view of the increase in information entropy after the passage of the socalled fusion points (nodes) on the polynomials q × 2n by the Сollatz trajectories. For the first time, the Сollatz problem is considered from the point of view of Shannon–Hartley information entropy behavior. It is also shown for the first time that the Сollatz trajectory is a one-dimensional graph on a kind of two-dimensional lattice of recurring Jacobsthal numbers.
dc.format.extent23-34
dc.format.pages12
dc.identifier.citationKosobutskyy P. Reflection of the 3q±1 problem on the Jacobsthal map / Petro Kosobutskyy, Bohdan Vasylyshyn // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 23–34.
dc.identifier.citation2015Kosobutskyy P., Vasylyshyn B. Reflection of the 3q±1 problem on the Jacobsthal map // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 2. P. 23–34.
dc.identifier.citationenAPAKosobutskyy, P., & Vasylyshyn, B. (2024). Reflection of the 3q±1 problem on the Jacobsthal map. Computer Systems of Design. Theory and Practice, 6(2), 23-34. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOKosobutskyy P., Vasylyshyn B. (2024) Reflection of the 3q±1 problem on the Jacobsthal map. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 2, pp. 23-34.
dc.identifier.doihttps://doi.org/10.23939/cds2024.02.023
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124055
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 2 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 2 (6), 2024
dc.relation.references[1] L. Collatz on the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition. (1986). 12(3), 9–11.
dc.relation.references[2] 'Williams, M. Collatz Conjecture: An Order Machine. Preprints 2022,2022030401. https://doi.org/10.20944/preprints202203.0401.v1'
dc.relation.references[3] B. Gurbaxani. An Engineering and Statistical Look at the Collatz (3n + 1) Conjecture. arXiv preprint arXiv:2103.15554
dc.relation.references[4] H. Schaetzel. Pascal trihedron and Collatz algorithm. https://hubertschaetzel.wixsite.com/website
dc.relation.references[5] Z. Hu. The Analysis of Convergence for the 3X + 1 Problem and Crandall Conjecture for the aX+1 Problem. Advances in Pure Mathematics (2021), 11, 400–407. https://www.scirp.org/journal/apm
dc.relation.references[6] M. Winkler. On the structure and the behaviour of Collatz 3n + 1 sequences – Finite subsequences and the role of the Fibonacci sequence. arXiv:1412.0519 [math.GM], 2014
dc.relation.references[7] M. Albert, B. Gudmundsson, H. Ulfarsson. Collatz Meets Fibonacci. Mathematics Magazine, 95 (2022),130–136. https://doi.org/10.1080/0025570X.2022.2023307
dc.relation.references[8] J. Choi. Ternary Modified Collatz Sequences and Jacobsthal Numbers. Journal of Integer Sequences, Vol. 19 (2016), Article 16.7.5
dc.relation.references[9] R. Carbó-Dorca. Collatz Conjecture Redefinition on Prime Numbers. Journal of Applied Mathematics and Physics, 2023, 11, 147–15. https://www.scirp.org/journal/jamp
dc.relation.references[10] Kandasamya W., Kandasamyb I., Smarandachec F. A New 3n−1 Conjecture Akin to Collatz Conjecture. October, 2016. https://vixra.org/pdf/1610.0106v1.pdf
dc.relation.references[11] L. Green. The Negative Collatz Sequence (2022), v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf
dc.relation.references[12] Catarino P., Campos H., Vasco P. On the mersenne sequence. Ann.Mathem. et Informaticae. Vol.46, 216, 37-53
dc.relation.references[13] Kosobutskyy Р. Svitohliad 2022, No. 5(97), 56–61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329.
dc.relation.references[14] Kosobutskyy Р. Comment from article “M.Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023”.
dc.relation.references[15] Kosobutskyy Р. The Collatz problem as a reverse problem on a graph tree formed from Q×2^n (Q = 1,3,5,7,…) Jacobsthal-type numbers. arXiv:2306.14635v1
dc.relation.references[16] P. Kosobutskyy, A. Yedyharova, T. Slobodzyan. From Newtons binomial and Pascal’s triangle to Collatz problem. CDS. 2023; Vol. 5, Number 1: 121–127 https://doi.org/10.23939/cds2023.01.121
dc.relation.references[17] P. Kosobutskyy, D. Rebot. Collatz Conjecture 3n±1 as a Newton Binomial Problem. CDS. 2023; Vol. 5, No. 1: 137–145, https://doi.org/10.23939/cds2023.01.137
dc.relation.references[18] C. Bohm, G. Sontacchi. On the existence of cycles of given length in integer sequence. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali. 1978, Vol. 64, No. 2, 260–264.
dc.relation.referencesen[1] L. Collatz on the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition. (1986). 12(3), 9–11.
dc.relation.referencesen[2] 'Williams, M. Collatz Conjecture: An Order Machine. Preprints 2022,2022030401. https://doi.org/10.20944/preprints202203.0401.v1'
dc.relation.referencesen[3] B. Gurbaxani. An Engineering and Statistical Look at the Collatz (3n + 1) Conjecture. arXiv preprint arXiv:2103.15554
dc.relation.referencesen[4] H. Schaetzel. Pascal trihedron and Collatz algorithm. https://hubertschaetzel.wixsite.com/website
dc.relation.referencesen[5] Z. Hu. The Analysis of Convergence for the 3X + 1 Problem and Crandall Conjecture for the aX+1 Problem. Advances in Pure Mathematics (2021), 11, 400–407. https://www.scirp.org/journal/apm
dc.relation.referencesen[6] M. Winkler. On the structure and the behaviour of Collatz 3n + 1 sequences – Finite subsequences and the role of the Fibonacci sequence. arXiv:1412.0519 [math.GM], 2014
dc.relation.referencesen[7] M. Albert, B. Gudmundsson, H. Ulfarsson. Collatz Meets Fibonacci. Mathematics Magazine, 95 (2022),130–136. https://doi.org/10.1080/0025570X.2022.2023307
dc.relation.referencesen[8] J. Choi. Ternary Modified Collatz Sequences and Jacobsthal Numbers. Journal of Integer Sequences, Vol. 19 (2016), Article 16.7.5
dc.relation.referencesen[9] R. Carbó-Dorca. Collatz Conjecture Redefinition on Prime Numbers. Journal of Applied Mathematics and Physics, 2023, 11, 147–15. https://www.scirp.org/journal/jamp
dc.relation.referencesen[10] Kandasamya W., Kandasamyb I., Smarandachec F. A New 3n−1 Conjecture Akin to Collatz Conjecture. October, 2016. https://vixra.org/pdf/1610.0106v1.pdf
dc.relation.referencesen[11] L. Green. The Negative Collatz Sequence (2022), v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf
dc.relation.referencesen[12] Catarino P., Campos H., Vasco P. On the mersenne sequence. Ann.Mathem. et Informaticae. Vol.46, 216, 37-53
dc.relation.referencesen[13] Kosobutskyy R. Svitohliad 2022, No. 5(97), 56–61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329.
dc.relation.referencesen[14] Kosobutskyy R. Comment from article "M.Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023".
dc.relation.referencesen[15] Kosobutskyy R. The Collatz problem as a reverse problem on a graph tree formed from Q×2^n (Q = 1,3,5,7,…) Jacobsthal-type numbers. arXiv:2306.14635v1
dc.relation.referencesen[16] P. Kosobutskyy, A. Yedyharova, T. Slobodzyan. From Newtons binomial and Pascal’s triangle to Collatz problem. CDS. 2023; Vol. 5, Number 1: 121–127 https://doi.org/10.23939/cds2023.01.121
dc.relation.referencesen[17] P. Kosobutskyy, D. Rebot. Collatz Conjecture 3n±1 as a Newton Binomial Problem. CDS. 2023; Vol. 5, No. 1: 137–145, https://doi.org/10.23939/cds2023.01.137
dc.relation.referencesen[18] C. Bohm, G. Sontacchi. On the existence of cycles of given length in integer sequence. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali. 1978, Vol. 64, No. 2, 260–264.
dc.relation.urihttps://doi.org/10.20944/preprints202203.0401.v1'
dc.relation.urihttps://hubertschaetzel.wixsite.com/website
dc.relation.urihttps://www.scirp.org/journal/apm
dc.relation.urihttps://doi.org/10.1080/0025570X.2022.2023307
dc.relation.urihttps://www.scirp.org/journal/jamp
dc.relation.urihttps://vixra.org/pdf/1610.0106v1.pdf
dc.relation.urihttps://aplusclick.org/pdf/neg_collatz.pdf
dc.relation.urihttps://doi.org/10.23939/cds2023.01.121
dc.relation.urihttps://doi.org/10.23939/cds2023.01.137
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Kosobutskyy P., Vasylyshyn B., 2024
dc.subjectрекурентна послідовність
dc.subjectчисла Якобсталя
dc.subjectгіпотеза Коллатца
dc.subjectінформаційна ентропія 2020
dc.subjectматематична предметна класифікація: 37P99
dc.subject11Y16
dc.subject11A51
dc.subject11-xx
dc.subject11Y50
dc.subjectrecurrence sequence
dc.subjectJacobsthal numbers
dc.subjectCollatz conjecture
dc.subjectinformation entropy 2020 Mathematics Subject Classification: 37P99
dc.subject11Y16
dc.subject11A51
dc.subject11-xx
dc.subject11Y50
dc.titleReflection of the 3q±1 problem on the Jacobsthal map
dc.title.alternativeВідображення задачі 3q±1 на карті Якобсталя
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n2_Kosobutskyy_P-Reflection_of_the_3q1_23-34.pdf
Size:
1.05 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: