Reflection of the 3q±1 problem on the Jacobsthal map
| dc.citation.epage | 34 | |
| dc.citation.issue | 2 | |
| dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
| dc.citation.spage | 23 | |
| dc.citation.volume | 6 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Кособуцький, Петро | |
| dc.contributor.author | Василишин, Богдан | |
| dc.contributor.author | Kosobutskyy, Petro | |
| dc.contributor.author | Vasylyshyn, Bohdan | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-15T08:11:15Z | |
| dc.date.created | 2024-08-10 | |
| dc.date.issued | 2024-08-10 | |
| dc.description.abstract | У роботі показано, що актуальним завданням є розв’язання задачі C3q±1 = 3q ±1 при- пущення натуральних чисел q ³1 у зворотному напрямку n®0 розгалуження дерева Якобсталя, згідно з правилами перетворень рекурентних чисел Якобсталя. Вперше задачу Коллатца проаналі- зовано з погляду зростання інформаційної ентропії після проходження так званих точок злиття (вузлів) на поліномах q × 2n траєкторіями Коллатца. Проблему Коллатца вперше проаналізовано із погляду поведінки інформаційної ентропії Шеннона – Хартлі. Також вперше показано, що траєкторія Коллатца є одновимірним графіком на своєрідній двовимірній решітці повторюваних чисел Якобсталя. | |
| dc.description.abstract | The work shows that the task is the problem 3 1 3 1 = ± ± C q q conjecture positive integers q ³ 1 in the reverse direction n®0 of the branching of the Jacobsthal tree, according to the rules of transformations of recurrent Jacobsthal numbers. For the first time, the Collatz problem is analyzed from the point of view of the increase in information entropy after the passage of the socalled fusion points (nodes) on the polynomials q × 2n by the Сollatz trajectories. For the first time, the Сollatz problem is considered from the point of view of Shannon–Hartley information entropy behavior. It is also shown for the first time that the Сollatz trajectory is a one-dimensional graph on a kind of two-dimensional lattice of recurring Jacobsthal numbers. | |
| dc.format.extent | 23-34 | |
| dc.format.pages | 12 | |
| dc.identifier.citation | Kosobutskyy P. Reflection of the 3q±1 problem on the Jacobsthal map / Petro Kosobutskyy, Bohdan Vasylyshyn // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 2. — P. 23–34. | |
| dc.identifier.citation2015 | Kosobutskyy P., Vasylyshyn B. Reflection of the 3q±1 problem on the Jacobsthal map // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 2. P. 23–34. | |
| dc.identifier.citationenAPA | Kosobutskyy, P., & Vasylyshyn, B. (2024). Reflection of the 3q±1 problem on the Jacobsthal map. Computer Systems of Design. Theory and Practice, 6(2), 23-34. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Kosobutskyy P., Vasylyshyn B. (2024) Reflection of the 3q±1 problem on the Jacobsthal map. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 2, pp. 23-34. | |
| dc.identifier.doi | https://doi.org/10.23939/cds2024.02.023 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124055 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 2 (6), 2024 | |
| dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 2 (6), 2024 | |
| dc.relation.references | [1] L. Collatz on the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition. (1986). 12(3), 9–11. | |
| dc.relation.references | [2] 'Williams, M. Collatz Conjecture: An Order Machine. Preprints 2022,2022030401. https://doi.org/10.20944/preprints202203.0401.v1' | |
| dc.relation.references | [3] B. Gurbaxani. An Engineering and Statistical Look at the Collatz (3n + 1) Conjecture. arXiv preprint arXiv:2103.15554 | |
| dc.relation.references | [4] H. Schaetzel. Pascal trihedron and Collatz algorithm. https://hubertschaetzel.wixsite.com/website | |
| dc.relation.references | [5] Z. Hu. The Analysis of Convergence for the 3X + 1 Problem and Crandall Conjecture for the aX+1 Problem. Advances in Pure Mathematics (2021), 11, 400–407. https://www.scirp.org/journal/apm | |
| dc.relation.references | [6] M. Winkler. On the structure and the behaviour of Collatz 3n + 1 sequences – Finite subsequences and the role of the Fibonacci sequence. arXiv:1412.0519 [math.GM], 2014 | |
| dc.relation.references | [7] M. Albert, B. Gudmundsson, H. Ulfarsson. Collatz Meets Fibonacci. Mathematics Magazine, 95 (2022),130–136. https://doi.org/10.1080/0025570X.2022.2023307 | |
| dc.relation.references | [8] J. Choi. Ternary Modified Collatz Sequences and Jacobsthal Numbers. Journal of Integer Sequences, Vol. 19 (2016), Article 16.7.5 | |
| dc.relation.references | [9] R. Carbó-Dorca. Collatz Conjecture Redefinition on Prime Numbers. Journal of Applied Mathematics and Physics, 2023, 11, 147–15. https://www.scirp.org/journal/jamp | |
| dc.relation.references | [10] Kandasamya W., Kandasamyb I., Smarandachec F. A New 3n−1 Conjecture Akin to Collatz Conjecture. October, 2016. https://vixra.org/pdf/1610.0106v1.pdf | |
| dc.relation.references | [11] L. Green. The Negative Collatz Sequence (2022), v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf | |
| dc.relation.references | [12] Catarino P., Campos H., Vasco P. On the mersenne sequence. Ann.Mathem. et Informaticae. Vol.46, 216, 37-53 | |
| dc.relation.references | [13] Kosobutskyy Р. Svitohliad 2022, No. 5(97), 56–61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329. | |
| dc.relation.references | [14] Kosobutskyy Р. Comment from article “M.Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023”. | |
| dc.relation.references | [15] Kosobutskyy Р. The Collatz problem as a reverse problem on a graph tree formed from Q×2^n (Q = 1,3,5,7,…) Jacobsthal-type numbers. arXiv:2306.14635v1 | |
| dc.relation.references | [16] P. Kosobutskyy, A. Yedyharova, T. Slobodzyan. From Newtons binomial and Pascal’s triangle to Collatz problem. CDS. 2023; Vol. 5, Number 1: 121–127 https://doi.org/10.23939/cds2023.01.121 | |
| dc.relation.references | [17] P. Kosobutskyy, D. Rebot. Collatz Conjecture 3n±1 as a Newton Binomial Problem. CDS. 2023; Vol. 5, No. 1: 137–145, https://doi.org/10.23939/cds2023.01.137 | |
| dc.relation.references | [18] C. Bohm, G. Sontacchi. On the existence of cycles of given length in integer sequence. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali. 1978, Vol. 64, No. 2, 260–264. | |
| dc.relation.referencesen | [1] L. Collatz on the motivation and origin of the (3n + 1) – Problem, J. Qufu Normal University, Natural Science Edition. (1986). 12(3), 9–11. | |
| dc.relation.referencesen | [2] 'Williams, M. Collatz Conjecture: An Order Machine. Preprints 2022,2022030401. https://doi.org/10.20944/preprints202203.0401.v1' | |
| dc.relation.referencesen | [3] B. Gurbaxani. An Engineering and Statistical Look at the Collatz (3n + 1) Conjecture. arXiv preprint arXiv:2103.15554 | |
| dc.relation.referencesen | [4] H. Schaetzel. Pascal trihedron and Collatz algorithm. https://hubertschaetzel.wixsite.com/website | |
| dc.relation.referencesen | [5] Z. Hu. The Analysis of Convergence for the 3X + 1 Problem and Crandall Conjecture for the aX+1 Problem. Advances in Pure Mathematics (2021), 11, 400–407. https://www.scirp.org/journal/apm | |
| dc.relation.referencesen | [6] M. Winkler. On the structure and the behaviour of Collatz 3n + 1 sequences – Finite subsequences and the role of the Fibonacci sequence. arXiv:1412.0519 [math.GM], 2014 | |
| dc.relation.referencesen | [7] M. Albert, B. Gudmundsson, H. Ulfarsson. Collatz Meets Fibonacci. Mathematics Magazine, 95 (2022),130–136. https://doi.org/10.1080/0025570X.2022.2023307 | |
| dc.relation.referencesen | [8] J. Choi. Ternary Modified Collatz Sequences and Jacobsthal Numbers. Journal of Integer Sequences, Vol. 19 (2016), Article 16.7.5 | |
| dc.relation.referencesen | [9] R. Carbó-Dorca. Collatz Conjecture Redefinition on Prime Numbers. Journal of Applied Mathematics and Physics, 2023, 11, 147–15. https://www.scirp.org/journal/jamp | |
| dc.relation.referencesen | [10] Kandasamya W., Kandasamyb I., Smarandachec F. A New 3n−1 Conjecture Akin to Collatz Conjecture. October, 2016. https://vixra.org/pdf/1610.0106v1.pdf | |
| dc.relation.referencesen | [11] L. Green. The Negative Collatz Sequence (2022), v1.25: 14 August 2022. CEng MIEE. https://aplusclick.org/pdf/neg_collatz.pdf | |
| dc.relation.referencesen | [12] Catarino P., Campos H., Vasco P. On the mersenne sequence. Ann.Mathem. et Informaticae. Vol.46, 216, 37-53 | |
| dc.relation.referencesen | [13] Kosobutskyy R. Svitohliad 2022, No. 5(97), 56–61(Ukraine). ISSN 2786-6882 (Online); ISSN 1819-7329. | |
| dc.relation.referencesen | [14] Kosobutskyy R. Comment from article "M.Ahmed, Two different scenarios when the Collatz Conjecture fails. General Letters in Mathematics. 2023". | |
| dc.relation.referencesen | [15] Kosobutskyy R. The Collatz problem as a reverse problem on a graph tree formed from Q×2^n (Q = 1,3,5,7,…) Jacobsthal-type numbers. arXiv:2306.14635v1 | |
| dc.relation.referencesen | [16] P. Kosobutskyy, A. Yedyharova, T. Slobodzyan. From Newtons binomial and Pascal’s triangle to Collatz problem. CDS. 2023; Vol. 5, Number 1: 121–127 https://doi.org/10.23939/cds2023.01.121 | |
| dc.relation.referencesen | [17] P. Kosobutskyy, D. Rebot. Collatz Conjecture 3n±1 as a Newton Binomial Problem. CDS. 2023; Vol. 5, No. 1: 137–145, https://doi.org/10.23939/cds2023.01.137 | |
| dc.relation.referencesen | [18] C. Bohm, G. Sontacchi. On the existence of cycles of given length in integer sequence. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali. 1978, Vol. 64, No. 2, 260–264. | |
| dc.relation.uri | https://doi.org/10.20944/preprints202203.0401.v1' | |
| dc.relation.uri | https://hubertschaetzel.wixsite.com/website | |
| dc.relation.uri | https://www.scirp.org/journal/apm | |
| dc.relation.uri | https://doi.org/10.1080/0025570X.2022.2023307 | |
| dc.relation.uri | https://www.scirp.org/journal/jamp | |
| dc.relation.uri | https://vixra.org/pdf/1610.0106v1.pdf | |
| dc.relation.uri | https://aplusclick.org/pdf/neg_collatz.pdf | |
| dc.relation.uri | https://doi.org/10.23939/cds2023.01.121 | |
| dc.relation.uri | https://doi.org/10.23939/cds2023.01.137 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Kosobutskyy P., Vasylyshyn B., 2024 | |
| dc.subject | рекурентна послідовність | |
| dc.subject | числа Якобсталя | |
| dc.subject | гіпотеза Коллатца | |
| dc.subject | інформаційна ентропія 2020 | |
| dc.subject | математична предметна класифікація: 37P99 | |
| dc.subject | 11Y16 | |
| dc.subject | 11A51 | |
| dc.subject | 11-xx | |
| dc.subject | 11Y50 | |
| dc.subject | recurrence sequence | |
| dc.subject | Jacobsthal numbers | |
| dc.subject | Collatz conjecture | |
| dc.subject | information entropy 2020 Mathematics Subject Classification: 37P99 | |
| dc.subject | 11Y16 | |
| dc.subject | 11A51 | |
| dc.subject | 11-xx | |
| dc.subject | 11Y50 | |
| dc.title | Reflection of the 3q±1 problem on the Jacobsthal map | |
| dc.title.alternative | Відображення задачі 3q±1 на карті Якобсталя | |
| dc.type | Article |