Intelligent driver assistance systems based on computer vision and deep learning
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Teliuk, Artem | |
| dc.contributor.author | Vasyliuk, Andrii | |
| dc.contributor.author | Khudyi, Andrii | |
| dc.coverage.placename | Львів | |
| dc.date.accessioned | 2025-10-30T12:23:17Z | |
| dc.date.issued | 2024 | |
| dc.date.submitted | 2025 | |
| dc.description.abstract | This article presents an integrated Advanced Driver Assistance System (ADAS) that combines several key functional modules, such as collision warning, lane detection, traffic sign recognition, and pothole detection, which are implemented using modern deep learning models, particularly YOLOv8n. The system is optimized for devices with limited computational resources, such as Raspberry Pi or NVIDIA Jetson Nano, by employing a modular architecture and parallel data processing to ensure realtime performance. This research provides an overview of existing ADAS solutions and proposes new approaches that significantly enhance the efficiency of such systems. Key innovations include an efficient approach to lane detection based on object detection models, real-time traffic sign recognition with a flexible extraction and classification process, and a novel pothole detection system optimized for dashcam recordings. Additionally, the proposed driver alert system, which uses an LED strip, allows for intuitive hazard awareness without distracting the driver. Preliminary results confirm satisfactory detection accuracy across all components, although further optimization is required for successful deployment on low-resource devices. У статті представлено інтегровану інтелектуальну систему допомоги водію (ADAS), яка об’єднує кілька ключових функціональних модулів, як-от: система попередження про зіткнення, виявлення смуг руху, розпізнавання дорожніх знаків та виявлення ям на дорогах, що реалізовані за допомогою сучасних моделей глибинного навчання, зокрема YOLOv8n. Система оптимізована для роботи на пристроях Raspberry Pi або NVIDIA Jetson Nano із обмеженими обчислювальними ресурсами із застосуванням модульної архітектури та паралельного опрацювання даних для забезпечення швидкодії в режимі реального часу. В межах цього дослідження проведено огляд наявних рішень в ADAS та запропоновано нові підходи, що значно підвищують ефективність таких систем. Ключовими інноваціями є ефективний підхід до виявлення смуг руху на основі моделей виявлення об'єктів, виявлення дорожніх знаків у реальному часі з гнучким процесом екстракції та класифікації, а також нова система виявлення ям, оптимізована для відеозаписів із відеореєстратора. Крім того, запропонована система оповіщення водія за допомогою світло-діодної смуги дає змогу інтуїтивно привертати увагу до потенційних небезпек. Попередні результати підтверджують задовільну точність виявлення у всіх компонентах, проте для успішного впровадження на пристроях із низькими ресурсами потрібна додаткова оптимізація. | |
| dc.format.pages | 303–324 | |
| dc.identifier.citation | Teliuk A. Intelligent driver assistance systems based on computer vision and deep learning / Artem Teliuk, Andrii Vasyliuk, Andrii Khudyi // Вісник Національного університету “Львівська політехніка”. Серія: Інформаційні системи та мережі. — Львів : Видавництво Львівської політехніки, 2024. — № 16. — С. 303–324. | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/116035 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.relation.references | 1. Kaur, G., Kumar, D. (2015). Lane detection techniques: A review. International Journal of Computer Applications, 112(10), 1–8. 2. Saha, A., Roy, D. D., Alam, T., Deb, K. (2012). Automated road lane detection for intelligent vehicles. Global Journal of Computer Science and Technology, 12(6), 1–6. 3. Rachel, M. J. S., Kalaiselvi, S., Salini, R. (2020). Lane detection using neural networks. International Research Journal of Engineering and Technology, 7(3), 3578–3582. 4. Murthy, J. S., Siddesh, G. M., Lai, W.-C., Parameshachari, B. D., Patil, S. N., Hemalatha, K. L. (2022). ObjectDetect: A real-time object detection framework for advanced driver assistance systems using YOLOv5. Wireless Communications and Mobile Computing, 1–10. https://doi.org/10.1155/2022/9444360 5. Buza, E., Omanovic, S., Huseinovic, A. (n.d.). Pothole detection with image processing and spectral clustering. Recent Advances in Computer Science and Networking, 48-53. 6. Joe, H., Blessingh, J., Cherian, J. (2020). An intelligent pothole detection system using deep learning. International Research Journal of Engineering and Technology, 7(2), 1591–1594. 7. Jumaa, B. A., Abdulhassan, A. M., Abdulhassan, A. M. (2019). Advanced driver assistance system (ADAS): A review of systems and technologies. International Journal of Advanced Research in Computer Engineering & Technology, 8(6), 231–234. 8. Golgire, V. (2021). Traffic sign recognition using machine learning: A review. International Journal of Engineering Research & Technology (IJERT), 10(5), 872–876. 9. Tyagi, H., Saroj, V. K., Shahzad, M., Agarwal, A. (2023). Evolution of YOLO: Exploring the advancements in YOLOv8 for real-time wildlife detection. Journal of Computer Vision in Wildlife Monitoring, 1(2), 1–10. 10. Tabernik, D., Skočaj, D. (2019). Deep learning for large-scale traffic-sign detection and recognition. IEEE Transactions on Intelligent Transportation Systems, 1524–9050. https://doi.org/10.1109/TITS.2019.2913588 11. Make ML. (n.d.). Potholes dataset. https://makeml.app/datasets/potholes 12. Jocher, G., Chaurasia, A., Qiu, J. (2023). Ultralytics YOLOv8 (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics 13. Rezaei, M., Terauchi, M., Klette, R. (2015). Robust vehicle detection and distance estimation under challenging lighting conditions. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2015.2421482 14. Budagam, D., Kumar, A., Ghosh, S., Shrivastav, A., Imanbayev, A., Akhmetov, I., Kaplun, D., Antonov, S., Rychenkov, A., Cyganov, G., Sinitca, A. (2024). Instance segmentation and teeth classification in panoramic X-rays. arXiv. https://doi.org/10.48550/arXiv.2406.03747 15. Haque, M. R., Islam, M. M., Alam, K. S., Iqbal, H., Shaik, M. E. (2019). A computer vision-based lane detection approach. Khulna University of Engineering & Technology. Received: 25 October 2018; Accepted: 17 January 2019; Published: 08 March 2019. 16. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X. (2018, February). Spatial as deep: Spatial CNN for traffic scene understanding. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 17. Souweidane, N., Smith, B. (2023). State of ADAS, Automation, and Connectivity. Center for Automotive Research, Ann Arbor, MI. 18. Tomasch, E., Smit, S. (2023). Naturalistic driving study on the impact of an aftermarket blind spot monitoring system on driver behavior of heavy goods vehicles and buses on reducing conflicts with pedestrians and cyclists. Accident Analysis and Prevention, 192, 107242. https://doi.org/10.1016/j.aap.2023.107242 | |
| dc.relation.uri | https://doi.org/10.23939/sisn2024.16.303 | |
| dc.subject | intelligent driver assistance system, object detection, deep learning, real-time, YOLOv8n, lane detection, traffic signs, potholes | |
| dc.subject | інтелектуальна система допомоги водію, виявлення об’єктів, глибинне навчання, реальний час, YOLOv8n, виявлення смуг руху, дорожні знаки, ями на дорогах. | |
| dc.subject.udc | 004.8 | |
| dc.title | Intelligent driver assistance systems based on computer vision and deep learning | |
| dc.title.alternative | Інтелектуальні системи допомоги водію на основі комп'ютерного зору та глибинного навчання | |
| dc.type | Article |