Development of network simulation model for evaluating the efficiency of distributed consensus taking into account the instability of network connections

dc.citation.epage19
dc.citation.issue1
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage10
dc.citation.volume4
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЖуравель, Станіслав
dc.contributor.authorZhuravel, Stanislav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-17T09:06:36Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractДинамічний і непередбачуваний характер мережевих середовищ створює серйозну проблему для розподілених систем, особливо для тих, які покладаються на консенсусні алгоритми для управління станом і відмовостійкості. Щоб вирішити цю проблему, у статті представляється нова імітаційна модель, призначена для вивчення впливу нестабільних мережевих з’єднань на кластери, які виконують консенсусні алгоритми. Модель створена для імітації різного ступеня нестабільності мережі, включаючи флуктуації затримки та порушення з’єднання, характерні для розподілених систем реального часу. Запропонована нами модель є значним прогресом у моделюванні розподілених мереж. Він використовує складний рівень емуляції мережі, здатний генерувати широкий спектр нестабільних умов мережі. Ядром моделі є симулятор механізму консенсусу з широкими можливостями налаштування, який дозволяє регулювати такі ключові параметри, як інтервали між передаваннями, тайм-аути виборів і частоту втрат повідомлень. Цей рівень конфігурації дає змогу здійснювати комплексний аналіз консенсусної поведінки за різними мережевими сценаріями. У статті зосереджено увагу на методології розробки моделі, деталізовано теоретичні основи та стратегії реалізації, які використовуються для забезпечення реалістичного представлення нестабільності мережі. Завдяки розгортанню цієї моделі дослідники та системні архітектори можуть отримати глибше розуміння стійкості та адаптивності консенсусних алгоритмів. Модель служить інструментом для завчасного виявлення та вирішення потенційних проблем у розподілених системах, сприяючи розробці більш стійких і надійних технологій.
dc.description.abstractThe dynamic and unpredictable nature of network environments poses a significant challenge for distributed systems, particularly those relying on consensus algorithms for state management and fault tolerance. To address this challenge, this article introduces a novel simulation model designed to study the impact of unstable network connections on clusters running consensus algorithms. The model is engineered to mimic varying degrees of network instability, including latency fluctuations and connection disruptions, which are characteristic of real-world distributed systems. Our proposed model represents a significant advancement in the simulation of distributed networks. It employs a sophisticated network emulation layer capable of generating a wide spectrum of unstable network conditions. The core of the model is a highly configurable consensus mechanism simulator that allows for the adjustment of key parameters such as heartbeat intervals, election timeouts, and message loss rates. This level of configurability enables a comprehensive analysis of consensus behaviors under different network scenarios. The article focuses on the methodology behind the development of the model, detailing the theoretical underpinnings and the implementation strategies used to ensure a realistic representation of network instability. We also discuss the potential applications of the model, which extend beyond academic research into practical domains where distributed ledger technologies and distributed databases are prevalent. Through the deployment of this model, researchers and system architects can gain deeper insights into the resilience and adaptability of consensus algorithms. The model serves as a tool for preemptively identifying and addressing potential issues in distributed systems, facilitating the development of more robust and reliable technologies. In summary, the article showcases the design and capabilities of a new model that enables an in-depth understanding of the delicate interplay between network instability and consensus efficiency. By focusing on the model itself, the article aims to lay a foundation for future studies and improvements in the field of distributed systems.
dc.format.extent10-19
dc.format.pages10
dc.identifier.citationZhuravel S. Development of network simulation model for evaluating the efficiency of distributed consensus taking into account the instability of network connections / Zhuravel Stanislav // Infocommunication technologies and electronic engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 4. — No 1. — P. 10–19.
dc.identifier.citationenZhuravel S. Development of network simulation model for evaluating the efficiency of distributed consensus taking into account the instability of network connections / Zhuravel Stanislav // Infocommunication technologies and electronic engineering. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 4. — No 1. — P. 10–19.
dc.identifier.doidoi.org/10.23939/ictee2024.01.010
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64162
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 1 (4), 2024
dc.relation.ispartofInfocommunication technologies and electronic engineering, 1 (4), 2024
dc.relation.references[1] Stanislav Zhuravel, Mykhailo Klymash, Olha Shpur and Orest Lavriv, “Achieving Consistency and Consensus of Distributed Infocommunication Systems”, 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), p. 386-389, February 22-26, 2022.
dc.relation.references[2] Stanislav Zhuravel, “Network Instability Consensus Simulator (NICS): A Tool for Assessing Distributed Systems' Resilience” [Software], GitHub, https://github.com/ZLStas/simulation
dc.relation.references[3] Stanislav Zhuravel, Olha Shpur and Yulia Pyrih, “Method of achieving consensus in distributed service”, vol.2, p. 58-66, November 10, 2022
dc.relation.references[4] Nazar Peleh, Stanislav Zhuravel, Olha Shpur and Olha Rybytska, “Structured and Unstructured Log Analysis as a Methods to Detect DDoS Attacks in SDN networks“, Internet of Things (IoT) and Engineering Applications, Vol 6, Issue 1, 2021
dc.relation.references[5] S. Zhuravel, S. Dumych and O. Shpur, “Research of data collection and processing methods in distributed information systems”, Information and communication technologies, electronic engineering, Vol 1, p. 20-38, November 1, 2021
dc.relation.references[6] M. Kleppmann, Designing Data-Intensive Applications, O'Reilly UK Ltd., 2017.
dc.relation.references[7] Muñoz Palacios, Filiberto & Espinoza Quesada, Eduardo Steed & La, Hung & Salazar, Sergio & Commuri, Sesh & Garcia Carrillo, Luis Rodolfo, “Adaptive consensus algorithms for real‐time operation of multi‐agent systems affected by switching network events”. International Journal of Robust and Nonlinear Control. October 20, 2016.
dc.relation.references[8] Liu, S., Zhang, R., Liu, C. et al. An improved PBFT consensus algorithm based on grouping and credit grading, 2023, https://doi.org/10.1038/s41598-023-28856-x
dc.relation.references[9] Lin Chen, Jing Liao, Naixue Xiong, "Byzantine Fault-Tolerant Consensus Algorithms: A Survey" Electronics, 2023, https://doi.org/10.3390/electronics12183801
dc.relation.references[10] Z. Hussein, M.A. Salama and S.A. El-Rahman, “Evolution of blockchain consensus algorithms: a review on the latest milestones of blockchain consensus algorithms”, Cybersecurity, Vol 6, p. 30, 2023, https://doi.org/10.1186/s42400-023-00163-y
dc.relation.references[11] K. Venkatesan and S.B Rahayu, “Blockchain security enhancement: an approach towards hybrid consensus algorithms and machine learning techniques”, Sci Rep, Vol 14, p. 1149, 2024, https://doi.org/10.1038/s41598- 024-51578-7
dc.relation.references[12] Faisal Nawab, Mohammad Sadoghi, "Consensus in Data Management: From Distributed Commit to Blockchain", Foundations and Trends in Databases: Vol. 12: No. 4, pp 221-364, 2023, http://dx.doi.org/10.1561/1900000075
dc.relation.references[13] Gary Stafford, “LAN network stability: measure response time of a wireless vs. ethernet-based LAN”, Kaggle, 2021, https://www.kaggle.com/code/garystafford/network-stability-notebook/input
dc.relation.referencesen[1] Stanislav Zhuravel, Mykhailo Klymash, Olha Shpur and Orest Lavriv, "Achieving Consistency and Consensus of Distributed Infocommunication Systems", 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), p. 386-389, February 22-26, 2022.
dc.relation.referencesen[2] Stanislav Zhuravel, "Network Instability Consensus Simulator (NICS): A Tool for Assessing Distributed Systems' Resilience" [Software], GitHub, https://github.com/ZLStas/simulation
dc.relation.referencesen[3] Stanislav Zhuravel, Olha Shpur and Yulia Pyrih, "Method of achieving consensus in distributed service", vol.2, p. 58-66, November 10, 2022
dc.relation.referencesen[4] Nazar Peleh, Stanislav Zhuravel, Olha Shpur and Olha Rybytska, "Structured and Unstructured Log Analysis as a Methods to Detect DDoS Attacks in SDN networks", Internet of Things (IoT) and Engineering Applications, Vol 6, Issue 1, 2021
dc.relation.referencesen[5] S. Zhuravel, S. Dumych and O. Shpur, "Research of data collection and processing methods in distributed information systems", Information and communication technologies, electronic engineering, Vol 1, p. 20-38, November 1, 2021
dc.relation.referencesen[6] M. Kleppmann, Designing Data-Intensive Applications, O'Reilly UK Ltd., 2017.
dc.relation.referencesen[7] Muñoz Palacios, Filiberto & Espinoza Quesada, Eduardo Steed & La, Hung & Salazar, Sergio & Commuri, Sesh & Garcia Carrillo, Luis Rodolfo, "Adaptive consensus algorithms for real‐time operation of multi‐agent systems affected by switching network events". International Journal of Robust and Nonlinear Control. October 20, 2016.
dc.relation.referencesen[8] Liu, S., Zhang, R., Liu, C. et al. An improved PBFT consensus algorithm based on grouping and credit grading, 2023, https://doi.org/10.1038/s41598-023-28856-x
dc.relation.referencesen[9] Lin Chen, Jing Liao, Naixue Xiong, "Byzantine Fault-Tolerant Consensus Algorithms: A Survey" Electronics, 2023, https://doi.org/10.3390/electronics12183801
dc.relation.referencesen[10] Z. Hussein, M.A. Salama and S.A. El-Rahman, "Evolution of blockchain consensus algorithms: a review on the latest milestones of blockchain consensus algorithms", Cybersecurity, Vol 6, p. 30, 2023, https://doi.org/10.1186/s42400-023-00163-y
dc.relation.referencesen[11] K. Venkatesan and S.B Rahayu, "Blockchain security enhancement: an approach towards hybrid consensus algorithms and machine learning techniques", Sci Rep, Vol 14, p. 1149, 2024, https://doi.org/10.1038/s41598- 024-51578-7
dc.relation.referencesen[12] Faisal Nawab, Mohammad Sadoghi, "Consensus in Data Management: From Distributed Commit to Blockchain", Foundations and Trends in Databases: Vol. 12: No. 4, pp 221-364, 2023, http://dx.doi.org/10.1561/1900000075
dc.relation.referencesen[13] Gary Stafford, "LAN network stability: measure response time of a wireless vs. ethernet-based LAN", Kaggle, 2021, https://www.kaggle.com/code/garystafford/network-stability-notebook/input
dc.relation.urihttps://github.com/ZLStas/simulation
dc.relation.urihttps://doi.org/10.1038/s41598-023-28856-x
dc.relation.urihttps://doi.org/10.3390/electronics12183801
dc.relation.urihttps://doi.org/10.1186/s42400-023-00163-y
dc.relation.urihttps://doi.org/10.1038/s41598-
dc.relation.urihttp://dx.doi.org/10.1561/1900000075
dc.relation.urihttps://www.kaggle.com/code/garystafford/network-stability-notebook/input
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectалгоритми консенсусу
dc.subjectнестабільність мережі
dc.subjectвідмовостійкість
dc.subjectімітаційна модель
dc.subjectрозподілені системи
dc.subjectconsensus algorithms
dc.subjectnetwork instability
dc.subjectfault tolerance
dc.subjectsimulation model
dc.subjectdistributed systems
dc.titleDevelopment of network simulation model for evaluating the efficiency of distributed consensus taking into account the instability of network connections
dc.title.alternativeРозробка імітаційної моделі мережі для оцінки ефективності розподіленого консенсусу з урахуванням нестабільності мережевих з’єднань
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v4n1_Zhuravel_S-Development_of_network_simulation_10-19.pdf
Size:
606.69 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v4n1_Zhuravel_S-Development_of_network_simulation_10-19__COVER.png
Size:
1.07 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: