Comparison of biofilm characteristics of different types of carriers for wastewater treatment

dc.citation.epage25
dc.citation.issue1
dc.citation.journalTitleЕкологічні проблеми
dc.citation.spage20
dc.contributor.affiliationNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
dc.contributor.affiliationInstitute of Agrophysics, Polish Academy of Sciences
dc.contributor.authorSablii, Larysa
dc.contributor.authorZhukova, Veronika
dc.contributor.authorKozar, Maryna
dc.contributor.authorHrynevych, Andrii
dc.contributor.authorJaromin-Gleń, Katarzyna
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-19T08:51:09Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractEnhancing the operational efficiency of wastewater treatment plant can be achieved by increasing the biomass concentration within the reactor volume. For this purpose, the use of immobilized microorganisms on carriers has become progressively prevalent in wastewater biological treatment technologies, aiming to enhance the quality of treated water. The analysis of the characteristics biofilms on spherical, disc-shaped and wheel-shaped on carriers under the same conditions was carried out. All investigated carriers are classified as dispersed, distributed throughout the volume of the air tank. The following characteristics of four biofilm carrier samples were investigated: the concentration of biomass immobilized on the surface of the carrier and the specific biomass per unit area of surface for different types of loading for the treatment of domestic wastewater. It has been determined that the biomass concentration immobilized on the surfaces of four distinct carriers, varying in shape and size, spans from 5425 mg/dm3 to 138 mg/dm3. The study showed that the carriers with a diameter of Ø 9.95 mm had the highest biomass concentration immobilized on the surface, and such carrier can be effectively used in MMBR systems for wastewater treatment, as well as to improve the performance of aeration tanks by upgrading them. The choice of biofilm carrier is a critical factor as it influences the optimal thickness of the biofilm, biomass growth, and the efficiency of various natures pollutants biodegradation.
dc.format.extent20-25
dc.format.pages6
dc.identifier.citationComparison of biofilm characteristics of different types of carriers for wastewater treatment / Larysa Sablii, Veronika Zhukova, Maryna Kozar, Andrii Hrynevych, Katarzyna Jaromin-Gleń // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 20–25.
dc.identifier.citationenComparison of biofilm characteristics of different types of carriers for wastewater treatment / Larysa Sablii, Veronika Zhukova, Maryna Kozar, Andrii Hrynevych, Katarzyna Jaromin-Gleń // Environmental Problems. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 10. — No 1. — P. 20–25.
dc.identifier.doidoi.org/10.23939/ep2025.01.020
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120443
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕкологічні проблеми, 1 (10), 2025
dc.relation.ispartofEnvironmental Problems, 1 (10), 2025
dc.relation.referencesAl-Amshawee, S., Yunus, M., & Azoddein, A. (2020). A novel microbial biofilm carrier for wastewater remediation. IOP Conference Series: Materials Science and Engineering, 736(7), 072006, 1-12 doi: https://doi.org/10.1088/1757-899X/736/7/072006
dc.relation.referencesAl-Zuhairy, S., Bahaa, Z., & Mizeel, W. S. (2015). Biological phosphorus and nitrogen removal from wastewater using moving bed biofilm reactor (MBBR). Engineering and Technology Journal, 33(7А), 1731–1739. doi: https://doi.org/10.30684/etj.2015.106879
dc.relation.referencesAn, Y., Wang, C., Miao, P., Wang, X., Liang, J., & Liu, J. (2018). Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms. New Carbon Materials, 33(2), 188–192. doi: https://doi.org/10.1016/S1872-5805(18)60334-8
dc.relation.referencesBao Y, Xie H, Shan J, Jiang R, Zhang Y, Guo L, Zhang R, & Li Y. (2009). Biochemical characteristics and function of a threonine dehydrogenase encoded by ste11 in Ebosin biosynthesis of Streptomyces sp. 139. Journal of Applied Microbiology, 106(4), 1140-1146. doi: https://doi.org/10.1111/j.1365-2672.2008.04079.x.
dc.relation.referencesBlyashyna, M., Zhukova, V., & Sabliy, L. (2018). Processes of biological wastewater treatment for nitrogen, phosphorus removal by immobilized microorganisms. Eastern-European Journal of Enterprise Technologies, 2(10(92)), 30–37. doi: https://doi.org/10.15587/1729-4061.2018.127058
dc.relation.referencesGieseke, A., Purkhold, U., Wagner, M., Amann, R., & Schramm, A. (2001). Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Applied and Environmental Microbiology, 67(3), 1351–1362. doi: https://doi.org/10.1128/AEM.67.3.1351-1362.2001
dc.relation.referencesKermani, M., Bina, B., Movahedian, H., Amin, M. & Nikaein, M. (2008). Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater. American Journal of Environmental Sciences, 4(6), 675-682. doi: https://doi.org/10.3844/ajessp.2008.675.682
dc.relation.referencesSabliy, L., & Zhukova, V. (2022). Efficient treatment of industrial wastewater using immobilized microorganisms. In B. Kowalskа, D. Kowalski (Ed.), Water supply and wastewater disposal: Designing, construction, operation and monitoring, Monografie. (pp. 2487-262). Lublin: Lublin University of Technology. Retrieved from http://bc.pollub.pl/dlibra/publication/14017
dc.relation.referencesSabliy, L., Kuzminskiy, Y., Zhukova, V., Kozar, M., & Sobczuk, H. (2019). New approaches in biological wastewater treatment aimed at removal of organic matter and nutrients. Ecological Chemistry and Engineering, 26(2), 331–343. doi: https://doi.org/10.1515/eces-2019-0023
dc.relation.referencesWang, R., Wen, X. & Qian, Y. (2005). Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochemistry, 40(9), 2992-3001. doi: https://doi.org/10.1016/j.procbio.2005.02.024
dc.relation.referencesWidjaya, R., Faizal, F., Subhan, U., Hidayat, S., Hermawan, W., Joni, I. M., & Panatarani, C. (2023). A coin-shaped polypropylene bio-carrier fabricated using a filament-based 3d printer for wastewater treatment. Applied Mechanics and Materials, 916, 55-61. doi: https://doi.org/10.4028/p-ojyuu4
dc.relation.referencesZinatizadeh, A., & Ghaytooli, E. (2015). Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): Process modeling and optimization. Journal of the Taiwan Institute of Chemical Engineers, 53, 98-111. doi: https://doi.org/10.1016/j.jtice.2015.02.034
dc.relation.referencesenAl-Amshawee, S., Yunus, M., & Azoddein, A. (2020). A novel microbial biofilm carrier for wastewater remediation. IOP Conference Series: Materials Science and Engineering, 736(7), 072006, 1-12 doi: https://doi.org/10.1088/1757-899X/736/7/072006
dc.relation.referencesenAl-Zuhairy, S., Bahaa, Z., & Mizeel, W. S. (2015). Biological phosphorus and nitrogen removal from wastewater using moving bed biofilm reactor (MBBR). Engineering and Technology Journal, 33(7A), 1731–1739. doi: https://doi.org/10.30684/etj.2015.106879
dc.relation.referencesenAn, Y., Wang, C., Miao, P., Wang, X., Liang, J., & Liu, J. (2018). Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms. New Carbon Materials, 33(2), 188–192. doi: https://doi.org/10.1016/S1872-5805(18)60334-8
dc.relation.referencesenBao Y, Xie H, Shan J, Jiang R, Zhang Y, Guo L, Zhang R, & Li Y. (2009). Biochemical characteristics and function of a threonine dehydrogenase encoded by ste11 in Ebosin biosynthesis of Streptomyces sp. 139. Journal of Applied Microbiology, 106(4), 1140-1146. doi: https://doi.org/10.1111/j.1365-2672.2008.04079.x.
dc.relation.referencesenBlyashyna, M., Zhukova, V., & Sabliy, L. (2018). Processes of biological wastewater treatment for nitrogen, phosphorus removal by immobilized microorganisms. Eastern-European Journal of Enterprise Technologies, 2(10(92)), 30–37. doi: https://doi.org/10.15587/1729-4061.2018.127058
dc.relation.referencesenGieseke, A., Purkhold, U., Wagner, M., Amann, R., & Schramm, A. (2001). Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Applied and Environmental Microbiology, 67(3), 1351–1362. doi: https://doi.org/10.1128/AEM.67.3.1351-1362.2001
dc.relation.referencesenKermani, M., Bina, B., Movahedian, H., Amin, M. & Nikaein, M. (2008). Application of moving bed biofilm process for biological organics and nutrients removal from municipal wastewater. American Journal of Environmental Sciences, 4(6), 675-682. doi: https://doi.org/10.3844/ajessp.2008.675.682
dc.relation.referencesenSabliy, L., & Zhukova, V. (2022). Efficient treatment of industrial wastewater using immobilized microorganisms. In B. Kowalska, D. Kowalski (Ed.), Water supply and wastewater disposal: Designing, construction, operation and monitoring, Monografie. (pp. 2487-262). Lublin: Lublin University of Technology. Retrieved from http://bc.pollub.pl/dlibra/publication/14017
dc.relation.referencesenSabliy, L., Kuzminskiy, Y., Zhukova, V., Kozar, M., & Sobczuk, H. (2019). New approaches in biological wastewater treatment aimed at removal of organic matter and nutrients. Ecological Chemistry and Engineering, 26(2), 331–343. doi: https://doi.org/10.1515/eces-2019-0023
dc.relation.referencesenWang, R., Wen, X. & Qian, Y. (2005). Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process Biochemistry, 40(9), 2992-3001. doi: https://doi.org/10.1016/j.procbio.2005.02.024
dc.relation.referencesenWidjaya, R., Faizal, F., Subhan, U., Hidayat, S., Hermawan, W., Joni, I. M., & Panatarani, C. (2023). A coin-shaped polypropylene bio-carrier fabricated using a filament-based 3d printer for wastewater treatment. Applied Mechanics and Materials, 916, 55-61. doi: https://doi.org/10.4028/p-ojyuu4
dc.relation.referencesenZinatizadeh, A., & Ghaytooli, E. (2015). Simultaneous nitrogen and carbon removal from wastewater at different operating conditions in a moving bed biofilm reactor (MBBR): Process modeling and optimization. Journal of the Taiwan Institute of Chemical Engineers, 53, 98-111. doi: https://doi.org/10.1016/j.jtice.2015.02.034
dc.relation.urihttps://doi.org/10.1088/1757-899X/736/7/072006
dc.relation.urihttps://doi.org/10.30684/etj.2015.106879
dc.relation.urihttps://doi.org/10.1016/S1872-5805(18)60334-8
dc.relation.urihttps://doi.org/10.1111/j.1365-2672.2008.04079.x
dc.relation.urihttps://doi.org/10.15587/1729-4061.2018.127058
dc.relation.urihttps://doi.org/10.1128/AEM.67.3.1351-1362.2001
dc.relation.urihttps://doi.org/10.3844/ajessp.2008.675.682
dc.relation.urihttp://bc.pollub.pl/dlibra/publication/14017
dc.relation.urihttps://doi.org/10.1515/eces-2019-0023
dc.relation.urihttps://doi.org/10.1016/j.procbio.2005.02.024
dc.relation.urihttps://doi.org/10.4028/p-ojyuu4
dc.relation.urihttps://doi.org/10.1016/j.jtice.2015.02.034
dc.rights.holder© Національний університет “Львівська політехніка”, 2025
dc.rights.holder© Sablii L., Zhukova V., Kozar M., Hrynevych A., Jaromin-Gleń K., 2025
dc.subjectbiological wastewater treatment
dc.subjectbiofilm
dc.subjectcarriers
dc.subjectimmobilization
dc.titleComparison of biofilm characteristics of different types of carriers for wastewater treatment
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v10n1_Sablii_L-Comparison_of_biofilm_characteristics_20-25.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v10n1_Sablii_L-Comparison_of_biofilm_characteristics_20-25__COVER.png
Size:
1.04 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: