Вплив умов реакції на селективність процесу епоксидування окт-1-ену трет-бутилгідропероксидом у присутності MoB
dc.citation.epage | 26 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
dc.citation.spage | 22 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Львівська медична академія імені Андрея Крупинського | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Medical Academy | |
dc.contributor.affiliation | Lviv Polytechnik National University | |
dc.contributor.author | Жукровська, М. О. | |
dc.contributor.author | Комаренська, З. М. | |
dc.contributor.author | Zhukrovska, M. O. | |
dc.contributor.author | Komarenska, Z. M. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T09:24:48Z | |
dc.date.available | 2024-02-09T09:24:48Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Досліджено закономірності впливу умов реакції на селективність взаємодії окт-1-ену з трет-бутил гідропероксидом у присутності МоВ. Показано, що селективність утворення 1,2-епоксиоктану може змінюватися, залежно від умов реакції. За участю активованої форми каталізатора селективність суттєво зростає, проте не досягає 100 %. Встановлено оптимальні умови реакції, за яких селективність уворення 1,2-епоксиоктану перевищує 90 %. | |
dc.description.abstract | The influence of the reaction conditions on the selectivity of the interaction of oct-1-ene with tert-butyl hydroperoxide in the presence of MoB was investigated. It is shown that the selectivity of 1,2-epoxyoctane formation can vary depending on the reaction conditions.With the participation of the activated form of the catalyst, the selectivity increases significantly, but does not reach 100 %. The optimal reaction conditions under which the selectivity of 1,2-epoxyoctane formation exceeds 90 % have been established. | |
dc.format.extent | 22-26 | |
dc.format.pages | 5 | |
dc.identifier.citation | Жукровська М. О. Вплив умов реакції на селективність процесу епоксидування окт-1-ену трет-бутилгідропероксидом у присутності MoB / М. О. Жукровська, З. М. Комаренська // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2023. — Том 6. — № 1. — С. 22–26. | |
dc.identifier.citationen | Zhukrovska M. O. Influence of reaction conditions on the selectivity of the process of epoxidation of oct-1-ene by tert-butyl hydroperoxide in the presence of MoB / M. O. Zhukrovska, Z. M. Komarenska // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 22–26. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.01.022 | |
dc.identifier.issn | 2617-7307 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61190 | |
dc.language.iso | uk | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 1 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (6), 2023 | |
dc.relation.references | 1. Baljit, K., Palwinder, S. (2022). Epoxides: Developability as active pharmaceutical ingredients and biochemical probes. Bioorganic Chemistry, Vol. 125, August, 105–862. https://doi.org/10.1016/j.bioorg.2022.105862. | |
dc.relation.references | 2. Shimizu, І. (1993). Chiral synthesis of (-)- colletol based on palladium catalyzed reductive cleavage of alkenyloxiranes with formic acid. Chem. Lett, 10, 1759−1760. https://doi.org/10.1246/cl.1993.1759. | |
dc.relation.references | 3. Marco-Contelles, J. (2004). Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis. Chem. Rev., Vol. 104, 2857−2899. https://doi.org/10.1021/cr980013j. | |
dc.relation.references | 4. Forbes, J. E. (1991). Epoxides in synthesis. Synthesis of novel 2,6-dioxabicyclo[3.2.1]octane units in the citreoviridinols and the aurovertins. J. Chem., Vol. 1, 8, 1967−1973. | |
dc.relation.references | 5. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley−VCH, 523. DOI:10.1002/3527607862. | |
dc.relation.references | 6. Elder, D. P., Snodin, D., Teasdale, A. (2010). Analytical approaches for the detection of epoxides and hydroperoxides in active pharmaceutical ingredients, drug products and herbals. Journal of Pharmaceutical and Biomedical Analysis, 51 (5), 1015–1023. DOI: 10.1016/j.jpba.2009.11.023. | |
dc.relation.references | 7. Hwang, S., Choi, C. Y., Lee, E. Y. (2010). Bioand chemo-catalytic preparations of chiral epoxides Journal of Industrial and Engineering Chemistry, 16 (1), 1–6. https://doi.org/10.1016/j.jiec.2010.01.001. | |
dc.relation.references | 8. Denisov, E. T. (2005). Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton, FL: CRC, Taylor and Francis, 354. https://doi.org/10.1201/9781420030853. | |
dc.relation.references | 9. Mazahiro, N. (1984). Sopolymer dyoksyda uhleroda y еpoksydosoderzhashcheho monomera v kachestve nosytelia lekarstvennіkh veshchestv. J. Synth. Org. Chem., 42, 7, 665−671. | |
dc.relation.references | 10. Choi, W. J. (2009). Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl. Microbiol. Biotechnol. 84, 239–247. https://doi.org/10.1007/s00253-009-2110-9. | |
dc.relation.references | 11. Chen, X.-J. (1993). Microbiological transformations. The first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganism or an unigavecal access to all four bisabolol stereoisomers. J. Org. Chem, 58, 20, 5528−5532. | |
dc.relation.references | 12. Confalone, Pat N. (1990). The synthesis of novel antitumour antibiotics structurally related to the anthracyclinones. J. Org. Chem., Vol. 55, 20, 55. | |
dc.relation.references | 13. Neef, G. (1993). Ceris (IV) ammonium nitrate catalyzed nucleophilic opening of a steroidal α, β-unsaturated epoxides. Synth. Commun, Vol. 23, 7, 903−911. DOI: 10.1016/j.tetlet.2006.05.182. | |
dc.relation.references | 14. Magnusson, G., Frejd, T., Rehnberg, N., Sundin, A. (1990). Total synthesis of enantiomerically pure natural products via chiral unsaturated aldehydes formed by ringcontraction of sugar epoxides : 8th Int. IUPUC Conf. Org. Synth. Helsinki, 194. | |
dc.relation.references | 15. Besse, P. (1994). Chemical and biological synthesis of chiral epoxides. Tetrahedron, Vol. 50, 8885−8927. https://doi.org/10.1016/S0040-4020(01)85362-X. | |
dc.relation.references | 16. Diez, D. (2002). Regio- and stereoselective ring opening of epoxides. Enantioselective synthesis of 2,3,4-trissubstituted five-membered heterocycles.Tetrahedron: Asymmetry, Vol. 13, 6, 639−646. DOI: 10.1134/S107042802004017X. | |
dc.relation.references | 17. Punniyamurthy, T. (2004). Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen.Chemical Reviews, Vol. 11, 277−320. https://doi.org/10.1021/cr050523v. | |
dc.relation.references | 18. Wang, X., You, Q., Wu, Y., Bi, C., Chen, H., Dai, C., Hao, Q., Zhang, J., Ma, X. (2021). Tungstensubstituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 11–28. doi: 10.1016/j.micromeso.2021.111028. | |
dc.relation.references | 19. Zhang, H., Yang, X., Song, X., Chang, X., Jia, M. (2020). Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso. 2021.110277. | |
dc.relation.references | 20. Kawashima, H., Okuda, Y., Kijima, M., Fujitani, T., Choi, J.-C. (2020). Epoxidation of microalgal biomassderived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109. | |
dc.relation.references | 21. Vieira, E. G., Filho, N. L. D. (2017). Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262–270. doi: 10.1016/j.matchemphys.2017.08.045. | |
dc.relation.references | 22. Bisio, C., Gallo, A., Psaro, R, Tiozzo, C., Guidotti, M., Carniat, F. (2019). Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133–142. doi: 10.1016/j. apcata.2019.05.027. | |
dc.relation.references | 23. Emami, M., Bikas, R., Noshiranzadeh, N., Kozakiewicz, A., Lis, T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of β-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344–13357. doi:10.1021/acsomega.0c01491. | |
dc.relation.references | 24. Trach, Yu. B., Chernyi, M. O. (2003). Kinetyka epoksyduvannia oktenu-1 hidroperoksydom tretbutylu u prysutnosti MoB. Ukr. khym. zh., Vol. 69, 12, 112–116. | |
dc.relation.references | 25. Trach, Yu. B., Makota, O. Y. (2002). Kynetychni zakonomirnosti hydroperoksydnoho epoksyduvannia oktenu-1 v prysutnosti MoV2. Teoret. i eksperym. Khymyia. Vol. 38, 4, 245–248. | |
dc.relation.references | 26. Pyryh, Y. Yu., Nykypanchuk, M. V., Cherniak, B. Y. (1983). Epoksyduvannia oktenu-1 hidroperoksydom tretynnoho butylu v prysutnosti borydu molybdenu. Kynetyka i katalyz, Vol. XXIV, 3, 600–605. | |
dc.relation.references | 27. Komarenska, Z. M., Nykypanchuk, M. V., Chernii, M. O., Chaikivskyi O. V., (2007). Vplyv zminy aktyvnosti molibdenborydnoho katalizatora na selektyvnist utvorennia epoksydu v reaktsii oktenu-1 z tret-butylhidroperoksydom. V Naukovo-tekhnichna konferentsiia “Postup v naftohazopererobnii ta naftokhimichnii promyslovosti”, 289. | |
dc.relation.references | 28. Nykypanchuk, M. V., Komarenska, Z. M., Chernyi, M. O. (2014). Pro aktyvatsyu molybdenborydnykh katalyzatoriv v reaktsii epoksyduvannia oktenu-1 tretbutylhydroperoksydom. Kyn. i katalyz, 55 (2), 221. | |
dc.relation.references | 29. Nykypanchuk, M. V., Komarenska, Z. M., Chernii, M. O. (2008). Zakonomirnosti aktyvuvannia katalizatora Mo2B v reaktsii epoksyduvannia oktenu-1 tret-butylhidroperoksydom. Katalyz i naftokhimiia, 16, 91–94. | |
dc.relation.references | 30. Nykypanchuk, M. V., Komarenska, Z. M., Chernii, M. O. (2010). Modyfikuvannia poverkhni molibdenborydnoho katalizatora v protsesi okysnennia oktenu-1 tretbutylhidroperoksydom. I Ukrainska konferentsiia “Reaktsii okysnennia. Nauka i tekhnolohii”. Rubizhne, 52, 53. | |
dc.relation.references | 31. Milas, N. A. (1946). Studies in organic peroxides. t-butyl hydroperoxide and di-t-butyl peroxide. J. Amer. Chem. Soc., Vol. 68, 2, 205–208. https://doi.org/10.1021/ja01206a017. | |
dc.relation.referencesen | 1. Baljit, K., Palwinder, S. (2022). Epoxides: Developability as active pharmaceutical ingredients and biochemical probes. Bioorganic Chemistry, Vol. 125, August, 105–862. https://doi.org/10.1016/j.bioorg.2022.105862. | |
dc.relation.referencesen | 2. Shimizu, I. (1993). Chiral synthesis of (-)- colletol based on palladium catalyzed reductive cleavage of alkenyloxiranes with formic acid. Chem. Lett, 10, 1759−1760. https://doi.org/10.1246/cl.1993.1759. | |
dc.relation.referencesen | 3. Marco-Contelles, J. (2004). Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis. Chem. Rev., Vol. 104, 2857−2899. https://doi.org/10.1021/cr980013j. | |
dc.relation.referencesen | 4. Forbes, J. E. (1991). Epoxides in synthesis. Synthesis of novel 2,6-dioxabicyclo[3.2.1]octane units in the citreoviridinols and the aurovertins. J. Chem., Vol. 1, 8, 1967−1973. | |
dc.relation.referencesen | 5. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley−VCH, 523. DOI:10.1002/3527607862. | |
dc.relation.referencesen | 6. Elder, D. P., Snodin, D., Teasdale, A. (2010). Analytical approaches for the detection of epoxides and hydroperoxides in active pharmaceutical ingredients, drug products and herbals. Journal of Pharmaceutical and Biomedical Analysis, 51 (5), 1015–1023. DOI: 10.1016/j.jpba.2009.11.023. | |
dc.relation.referencesen | 7. Hwang, S., Choi, C. Y., Lee, E. Y. (2010). Bioand chemo-catalytic preparations of chiral epoxides Journal of Industrial and Engineering Chemistry, 16 (1), 1–6. https://doi.org/10.1016/j.jiec.2010.01.001. | |
dc.relation.referencesen | 8. Denisov, E. T. (2005). Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton, FL: CRC, Taylor and Francis, 354. https://doi.org/10.1201/9781420030853. | |
dc.relation.referencesen | 9. Mazahiro, N. (1984). Sopolymer dyoksyda uhleroda y epoksydosoderzhashcheho monomera v kachestve nosytelia lekarstvennikh veshchestv. J. Synth. Org. Chem., 42, 7, 665−671. | |
dc.relation.referencesen | 10. Choi, W. J. (2009). Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl. Microbiol. Biotechnol. 84, 239–247. https://doi.org/10.1007/s00253-009-2110-9. | |
dc.relation.referencesen | 11. Chen, X.-J. (1993). Microbiological transformations. The first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganism or an unigavecal access to all four bisabolol stereoisomers. J. Org. Chem, 58, 20, 5528−5532. | |
dc.relation.referencesen | 12. Confalone, Pat N. (1990). The synthesis of novel antitumour antibiotics structurally related to the anthracyclinones. J. Org. Chem., Vol. 55, 20, 55. | |
dc.relation.referencesen | 13. Neef, G. (1993). Ceris (IV) ammonium nitrate catalyzed nucleophilic opening of a steroidal α, b-unsaturated epoxides. Synth. Commun, Vol. 23, 7, 903−911. DOI: 10.1016/j.tetlet.2006.05.182. | |
dc.relation.referencesen | 14. Magnusson, G., Frejd, T., Rehnberg, N., Sundin, A. (1990). Total synthesis of enantiomerically pure natural products via chiral unsaturated aldehydes formed by ringcontraction of sugar epoxides : 8th Int. IUPUC Conf. Org. Synth. Helsinki, 194. | |
dc.relation.referencesen | 15. Besse, P. (1994). Chemical and biological synthesis of chiral epoxides. Tetrahedron, Vol. 50, 8885−8927. https://doi.org/10.1016/S0040-4020(01)85362-X. | |
dc.relation.referencesen | 16. Diez, D. (2002). Regio- and stereoselective ring opening of epoxides. Enantioselective synthesis of 2,3,4-trissubstituted five-membered heterocycles.Tetrahedron: Asymmetry, Vol. 13, 6, 639−646. DOI: 10.1134/S107042802004017X. | |
dc.relation.referencesen | 17. Punniyamurthy, T. (2004). Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen.Chemical Reviews, Vol. 11, 277−320. https://doi.org/10.1021/cr050523v. | |
dc.relation.referencesen | 18. Wang, X., You, Q., Wu, Y., Bi, C., Chen, H., Dai, C., Hao, Q., Zhang, J., Ma, X. (2021). Tungstensubstituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 11–28. doi: 10.1016/j.micromeso.2021.111028. | |
dc.relation.referencesen | 19. Zhang, H., Yang, X., Song, X., Chang, X., Jia, M. (2020). Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso. 2021.110277. | |
dc.relation.referencesen | 20. Kawashima, H., Okuda, Y., Kijima, M., Fujitani, T., Choi, J.-C. (2020). Epoxidation of microalgal biomassderived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109. | |
dc.relation.referencesen | 21. Vieira, E. G., Filho, N. L. D. (2017). Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262–270. doi: 10.1016/j.matchemphys.2017.08.045. | |
dc.relation.referencesen | 22. Bisio, C., Gallo, A., Psaro, R, Tiozzo, C., Guidotti, M., Carniat, F. (2019). Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133–142. doi: 10.1016/j. apcata.2019.05.027. | |
dc.relation.referencesen | 23. Emami, M., Bikas, R., Noshiranzadeh, N., Kozakiewicz, A., Lis, T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of b-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344–13357. doi:10.1021/acsomega.0c01491. | |
dc.relation.referencesen | 24. Trach, Yu. B., Chernyi, M. O. (2003). Kinetyka epoksyduvannia oktenu-1 hidroperoksydom tretbutylu u prysutnosti MoB. Ukr. khym. zh., Vol. 69, 12, 112–116. | |
dc.relation.referencesen | 25. Trach, Yu. B., Makota, O. Y. (2002). Kynetychni zakonomirnosti hydroperoksydnoho epoksyduvannia oktenu-1 v prysutnosti MoV2. Teoret. i eksperym. Khymyia. Vol. 38, 4, 245–248. | |
dc.relation.referencesen | 26. Pyryh, Y. Yu., Nykypanchuk, M. V., Cherniak, B. Y. (1983). Epoksyduvannia oktenu-1 hidroperoksydom tretynnoho butylu v prysutnosti borydu molybdenu. Kynetyka i katalyz, Vol. XXIV, 3, 600–605. | |
dc.relation.referencesen | 27. Komarenska, Z. M., Nykypanchuk, M. V., Chernii, M. O., Chaikivskyi O. V., (2007). Vplyv zminy aktyvnosti molibdenborydnoho katalizatora na selektyvnist utvorennia epoksydu v reaktsii oktenu-1 z tret-butylhidroperoksydom. V Naukovo-tekhnichna konferentsiia "Postup v naftohazopererobnii ta naftokhimichnii promyslovosti", 289. | |
dc.relation.referencesen | 28. Nykypanchuk, M. V., Komarenska, Z. M., Chernyi, M. O. (2014). Pro aktyvatsyu molybdenborydnykh katalyzatoriv v reaktsii epoksyduvannia oktenu-1 tretbutylhydroperoksydom. Kyn. i katalyz, 55 (2), 221. | |
dc.relation.referencesen | 29. Nykypanchuk, M. V., Komarenska, Z. M., Chernii, M. O. (2008). Zakonomirnosti aktyvuvannia katalizatora Mo2B v reaktsii epoksyduvannia oktenu-1 tret-butylhidroperoksydom. Katalyz i naftokhimiia, 16, 91–94. | |
dc.relation.referencesen | 30. Nykypanchuk, M. V., Komarenska, Z. M., Chernii, M. O. (2010). Modyfikuvannia poverkhni molibdenborydnoho katalizatora v protsesi okysnennia oktenu-1 tretbutylhidroperoksydom. I Ukrainska konferentsiia "Reaktsii okysnennia. Nauka i tekhnolohii". Rubizhne, 52, 53. | |
dc.relation.referencesen | 31. Milas, N. A. (1946). Studies in organic peroxides. t-butyl hydroperoxide and di-t-butyl peroxide. J. Amer. Chem. Soc., Vol. 68, 2, 205–208. https://doi.org/10.1021/ja01206a017. | |
dc.relation.uri | https://doi.org/10.1016/j.bioorg.2022.105862 | |
dc.relation.uri | https://doi.org/10.1246/cl.1993.1759 | |
dc.relation.uri | https://doi.org/10.1021/cr980013j | |
dc.relation.uri | https://doi.org/10.1016/j.jiec.2010.01.001 | |
dc.relation.uri | https://doi.org/10.1201/9781420030853 | |
dc.relation.uri | https://doi.org/10.1007/s00253-009-2110-9 | |
dc.relation.uri | https://doi.org/10.1016/S0040-4020(01)85362-X | |
dc.relation.uri | https://doi.org/10.1021/cr050523v | |
dc.relation.uri | https://doi.org/10.1021/ja01206a017 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | окиснення | |
dc.subject | епоксидування | |
dc.subject | селективність | |
dc.subject | конверсія | |
dc.subject | каталізатор | |
dc.subject | oxidation | |
dc.subject | epoxidation | |
dc.subject | selectivity | |
dc.subject | conversion | |
dc.subject | catalyst | |
dc.title | Вплив умов реакції на селективність процесу епоксидування окт-1-ену трет-бутилгідропероксидом у присутності MoB | |
dc.title.alternative | Influence of reaction conditions on the selectivity of the process of epoxidation of oct-1-ene by tert-butyl hydroperoxide in the presence of MoB | |
dc.type | Article |
Files
License bundle
1 - 1 of 1