Вплив умов реакції на селективність процесу епоксидування окт-1-ену трет-бутилгідропероксидом у присутності MoB

dc.citation.epage26
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage22
dc.citation.volume6
dc.contributor.affiliationЛьвівська медична академія імені Андрея Крупинського
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Medical Academy
dc.contributor.affiliationLviv Polytechnik National University
dc.contributor.authorЖукровська, М. О.
dc.contributor.authorКомаренська, З. М.
dc.contributor.authorZhukrovska, M. O.
dc.contributor.authorKomarenska, Z. M.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:48Z
dc.date.available2024-02-09T09:24:48Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractДосліджено закономірності впливу умов реакції на селективність взаємодії окт-1-ену з трет-бутил гідропероксидом у присутності МоВ. Показано, що селективність утворення 1,2-епоксиоктану може змінюватися, залежно від умов реакції. За участю активованої форми каталізатора селективність суттєво зростає, проте не досягає 100 %. Встановлено оптимальні умови реакції, за яких селективність уворення 1,2-епоксиоктану перевищує 90 %.
dc.description.abstractThe influence of the reaction conditions on the selectivity of the interaction of oct-1-ene with tert-butyl hydroperoxide in the presence of MoB was investigated. It is shown that the selectivity of 1,2-epoxyoctane formation can vary depending on the reaction conditions.With the participation of the activated form of the catalyst, the selectivity increases significantly, but does not reach 100 %. The optimal reaction conditions under which the selectivity of 1,2-epoxyoctane formation exceeds 90 % have been established.
dc.format.extent22-26
dc.format.pages5
dc.identifier.citationЖукровська М. О. Вплив умов реакції на селективність процесу епоксидування окт-1-ену трет-бутилгідропероксидом у присутності MoB / М. О. Жукровська, З. М. Комаренська // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2023. — Том 6. — № 1. — С. 22–26.
dc.identifier.citationenZhukrovska M. O. Influence of reaction conditions on the selectivity of the process of epoxidation of oct-1-ene by tert-butyl hydroperoxide in the presence of MoB / M. O. Zhukrovska, Z. M. Komarenska // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 22–26.
dc.identifier.doidoi.org/10.23939/ctas2023.01.022
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61190
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Baljit, K., Palwinder, S. (2022). Epoxides: Developability as active pharmaceutical ingredients and biochemical probes. Bioorganic Chemistry, Vol. 125, August, 105–862. https://doi.org/10.1016/j.bioorg.2022.105862.
dc.relation.references2. Shimizu, І. (1993). Chiral synthesis of (-)- colletol based on palladium catalyzed reductive cleavage of alkenyloxiranes with formic acid. Chem. Lett, 10, 1759−1760. https://doi.org/10.1246/cl.1993.1759.
dc.relation.references3. Marco-Contelles, J. (2004). Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis. Chem. Rev., Vol. 104, 2857−2899. https://doi.org/10.1021/cr980013j.
dc.relation.references4. Forbes, J. E. (1991). Epoxides in synthesis. Synthesis of novel 2,6-dioxabicyclo[3.2.1]octane units in the citreoviridinols and the aurovertins. J. Chem., Vol. 1, 8, 1967−1973.
dc.relation.references5. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley−VCH, 523. DOI:10.1002/3527607862.
dc.relation.references6. Elder, D. P., Snodin, D., Teasdale, A. (2010). Analytical approaches for the detection of epoxides and hydroperoxides in active pharmaceutical ingredients, drug products and herbals. Journal of Pharmaceutical and Biomedical Analysis, 51 (5), 1015–1023. DOI: 10.1016/j.jpba.2009.11.023.
dc.relation.references7. Hwang, S., Choi, C. Y., Lee, E. Y. (2010). Bioand chemo-catalytic preparations of chiral epoxides Journal of Industrial and Engineering Chemistry, 16 (1), 1–6. https://doi.org/10.1016/j.jiec.2010.01.001.
dc.relation.references8. Denisov, E. T. (2005). Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton, FL: CRC, Taylor and Francis, 354. https://doi.org/10.1201/9781420030853.
dc.relation.references9. Mazahiro, N. (1984). Sopolymer dyoksyda uhleroda y еpoksydosoderzhashcheho monomera v kachestve nosytelia lekarstvennіkh veshchestv. J. Synth. Org. Chem., 42, 7, 665−671.
dc.relation.references10. Choi, W. J. (2009). Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl. Microbiol. Biotechnol. 84, 239–247. https://doi.org/10.1007/s00253-009-2110-9.
dc.relation.references11. Chen, X.-J. (1993). Microbiological transformations. The first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganism or an unigavecal access to all four bisabolol stereoisomers. J. Org. Chem, 58, 20, 5528−5532.
dc.relation.references12. Confalone, Pat N. (1990). The synthesis of novel antitumour antibiotics structurally related to the anthracyclinones. J. Org. Chem., Vol. 55, 20, 55.
dc.relation.references13. Neef, G. (1993). Ceris (IV) ammonium nitrate catalyzed nucleophilic opening of a steroidal α, β-unsaturated epoxides. Synth. Commun, Vol. 23, 7, 903−911. DOI: 10.1016/j.tetlet.2006.05.182.
dc.relation.references14. Magnusson, G., Frejd, T., Rehnberg, N., Sundin, A. (1990). Total synthesis of enantiomerically pure natural products via chiral unsaturated aldehydes formed by ringcontraction of sugar epoxides : 8th Int. IUPUC Conf. Org. Synth. Helsinki, 194.
dc.relation.references15. Besse, P. (1994). Chemical and biological synthesis of chiral epoxides. Tetrahedron, Vol. 50, 8885−8927. https://doi.org/10.1016/S0040-4020(01)85362-X.
dc.relation.references16. Diez, D. (2002). Regio- and stereoselective ring opening of epoxides. Enantioselective synthesis of 2,3,4-trissubstituted five-membered heterocycles.Tetrahedron: Asymmetry, Vol. 13, 6, 639−646. DOI: 10.1134/S107042802004017X.
dc.relation.references17. Punniyamurthy, T. (2004). Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen.Chemical Reviews, Vol. 11, 277−320. https://doi.org/10.1021/cr050523v.
dc.relation.references18. Wang, X., You, Q., Wu, Y., Bi, C., Chen, H., Dai, C., Hao, Q., Zhang, J., Ma, X. (2021). Tungstensubstituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 11–28. doi: 10.1016/j.micromeso.2021.111028.
dc.relation.references19. Zhang, H., Yang, X., Song, X., Chang, X., Jia, M. (2020). Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso. 2021.110277.
dc.relation.references20. Kawashima, H., Okuda, Y., Kijima, M., Fujitani, T., Choi, J.-C. (2020). Epoxidation of microalgal biomassderived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109.
dc.relation.references21. Vieira, E. G., Filho, N. L. D. (2017). Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262–270. doi: 10.1016/j.matchemphys.2017.08.045.
dc.relation.references22. Bisio, C., Gallo, A., Psaro, R, Tiozzo, C., Guidotti, M., Carniat, F. (2019). Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133–142. doi: 10.1016/j. apcata.2019.05.027.
dc.relation.references23. Emami, M., Bikas, R., Noshiranzadeh, N., Kozakiewicz, A., Lis, T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of β-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344–13357. doi:10.1021/acsomega.0c01491.
dc.relation.references24. Trach, Yu. B., Chernyi, M. O. (2003). Kinetyka epoksyduvannia oktenu-1 hidroperoksydom tretbutylu u prysutnosti MoB. Ukr. khym. zh., Vol. 69, 12, 112–116.
dc.relation.references25. Trach, Yu. B., Makota, O. Y. (2002). Kynetychni zakonomirnosti hydroperoksydnoho epoksyduvannia oktenu-1 v prysutnosti MoV2. Teoret. i eksperym. Khymyia. Vol. 38, 4, 245–248.
dc.relation.references26. Pyryh, Y. Yu., Nykypanchuk, M. V., Cherniak, B. Y. (1983). Epoksyduvannia oktenu-1 hidroperoksydom tretynnoho butylu v prysutnosti borydu molybdenu. Kynetyka i katalyz, Vol. XXIV, 3, 600–605.
dc.relation.references27. Komarenska, Z. M., Nykypanchuk, M. V., Chernii, M. O., Chaikivskyi O. V., (2007). Vplyv zminy aktyvnosti molibdenborydnoho katalizatora na selektyvnist utvorennia epoksydu v reaktsii oktenu-1 z tret-butylhidroperoksydom. V Naukovo-tekhnichna konferentsiia “Postup v naftohazopererobnii ta naftokhimichnii promyslovosti”, 289.
dc.relation.references28. Nykypanchuk, M. V., Komarenska, Z. M., Chernyi, M. O. (2014). Pro aktyvatsyu molybdenborydnykh katalyzatoriv v reaktsii epoksyduvannia oktenu-1 tretbutylhydroperoksydom. Kyn. i katalyz, 55 (2), 221.
dc.relation.references29. Nykypanchuk, M. V., Komarenska, Z. M., Chernii, M. O. (2008). Zakonomirnosti aktyvuvannia katalizatora Mo2B v reaktsii epoksyduvannia oktenu-1 tret-butylhidroperoksydom. Katalyz i naftokhimiia, 16, 91–94.
dc.relation.references30. Nykypanchuk, M. V., Komarenska, Z. M., Chernii, M. O. (2010). Modyfikuvannia poverkhni molibdenborydnoho katalizatora v protsesi okysnennia oktenu-1 tretbutylhidroperoksydom. I Ukrainska konferentsiia “Reaktsii okysnennia. Nauka i tekhnolohii”. Rubizhne, 52, 53.
dc.relation.references31. Milas, N. A. (1946). Studies in organic peroxides. t-butyl hydroperoxide and di-t-butyl peroxide. J. Amer. Chem. Soc., Vol. 68, 2, 205–208. https://doi.org/10.1021/ja01206a017.
dc.relation.referencesen1. Baljit, K., Palwinder, S. (2022). Epoxides: Developability as active pharmaceutical ingredients and biochemical probes. Bioorganic Chemistry, Vol. 125, August, 105–862. https://doi.org/10.1016/j.bioorg.2022.105862.
dc.relation.referencesen2. Shimizu, I. (1993). Chiral synthesis of (-)- colletol based on palladium catalyzed reductive cleavage of alkenyloxiranes with formic acid. Chem. Lett, 10, 1759−1760. https://doi.org/10.1246/cl.1993.1759.
dc.relation.referencesen3. Marco-Contelles, J. (2004). Naturally occurring cyclohexane epoxides: sources, biological activities, and synthesis. Chem. Rev., Vol. 104, 2857−2899. https://doi.org/10.1021/cr980013j.
dc.relation.referencesen4. Forbes, J. E. (1991). Epoxides in synthesis. Synthesis of novel 2,6-dioxabicyclo[3.2.1]octane units in the citreoviridinols and the aurovertins. J. Chem., Vol. 1, 8, 1967−1973.
dc.relation.referencesen5. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley−VCH, 523. DOI:10.1002/3527607862.
dc.relation.referencesen6. Elder, D. P., Snodin, D., Teasdale, A. (2010). Analytical approaches for the detection of epoxides and hydroperoxides in active pharmaceutical ingredients, drug products and herbals. Journal of Pharmaceutical and Biomedical Analysis, 51 (5), 1015–1023. DOI: 10.1016/j.jpba.2009.11.023.
dc.relation.referencesen7. Hwang, S., Choi, C. Y., Lee, E. Y. (2010). Bioand chemo-catalytic preparations of chiral epoxides Journal of Industrial and Engineering Chemistry, 16 (1), 1–6. https://doi.org/10.1016/j.jiec.2010.01.001.
dc.relation.referencesen8. Denisov, E. T. (2005). Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton, FL: CRC, Taylor and Francis, 354. https://doi.org/10.1201/9781420030853.
dc.relation.referencesen9. Mazahiro, N. (1984). Sopolymer dyoksyda uhleroda y epoksydosoderzhashcheho monomera v kachestve nosytelia lekarstvennikh veshchestv. J. Synth. Org. Chem., 42, 7, 665−671.
dc.relation.referencesen10. Choi, W. J. (2009). Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Appl. Microbiol. Biotechnol. 84, 239–247. https://doi.org/10.1007/s00253-009-2110-9.
dc.relation.referencesen11. Chen, X.-J. (1993). Microbiological transformations. The first examples for preparative-scale enantioselective or diastereoselective epoxide hydrolyses using microorganism or an unigavecal access to all four bisabolol stereoisomers. J. Org. Chem, 58, 20, 5528−5532.
dc.relation.referencesen12. Confalone, Pat N. (1990). The synthesis of novel antitumour antibiotics structurally related to the anthracyclinones. J. Org. Chem., Vol. 55, 20, 55.
dc.relation.referencesen13. Neef, G. (1993). Ceris (IV) ammonium nitrate catalyzed nucleophilic opening of a steroidal α, b-unsaturated epoxides. Synth. Commun, Vol. 23, 7, 903−911. DOI: 10.1016/j.tetlet.2006.05.182.
dc.relation.referencesen14. Magnusson, G., Frejd, T., Rehnberg, N., Sundin, A. (1990). Total synthesis of enantiomerically pure natural products via chiral unsaturated aldehydes formed by ringcontraction of sugar epoxides : 8th Int. IUPUC Conf. Org. Synth. Helsinki, 194.
dc.relation.referencesen15. Besse, P. (1994). Chemical and biological synthesis of chiral epoxides. Tetrahedron, Vol. 50, 8885−8927. https://doi.org/10.1016/S0040-4020(01)85362-X.
dc.relation.referencesen16. Diez, D. (2002). Regio- and stereoselective ring opening of epoxides. Enantioselective synthesis of 2,3,4-trissubstituted five-membered heterocycles.Tetrahedron: Asymmetry, Vol. 13, 6, 639−646. DOI: 10.1134/S107042802004017X.
dc.relation.referencesen17. Punniyamurthy, T. (2004). Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen.Chemical Reviews, Vol. 11, 277−320. https://doi.org/10.1021/cr050523v.
dc.relation.referencesen18. Wang, X., You, Q., Wu, Y., Bi, C., Chen, H., Dai, C., Hao, Q., Zhang, J., Ma, X. (2021). Tungstensubstituted Silicalite-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 11–28. doi: 10.1016/j.micromeso.2021.111028.
dc.relation.referencesen19. Zhang, H., Yang, X., Song, X., Chang, X., Jia, M. (2020). Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277. doi: 10.1016/j.micromeso. 2021.110277.
dc.relation.referencesen20. Kawashima, H., Okuda, Y., Kijima, M., Fujitani, T., Choi, J.-C. (2020). Epoxidation of microalgal biomassderived squalene with hydrogen peroxide using solid heterogeneous tungsten-based catalyst. Tetrahedron, 76(16), 131109. doi: 10.1016/j.tet.2020.131109.
dc.relation.referencesen21. Vieira, E. G., Filho, N. L. D. (2017). Epoxidation of olefins using a novel synthesized tungsten dendritic catalyst. Materials Chemistry and Physics, 201(1), 262–270. doi: 10.1016/j.matchemphys.2017.08.045.
dc.relation.referencesen22. Bisio, C., Gallo, A., Psaro, R, Tiozzo, C., Guidotti, M., Carniat, F. (2019). Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Applied Catalysis A: General, 581, 133–142. doi: 10.1016/j. apcata.2019.05.027.
dc.relation.referencesen23. Emami, M., Bikas, R., Noshiranzadeh, N., Kozakiewicz, A., Lis, T. (2020). Cu(II)-Hydrazide coordination compound supported on silica gel as an efficient and recyclable heterogeneous catalyst for green click synthesis of b-hydroxy-1,2,3-triazoles in water. ACS Omega, 5, 13344–13357. doi:10.1021/acsomega.0c01491.
dc.relation.referencesen24. Trach, Yu. B., Chernyi, M. O. (2003). Kinetyka epoksyduvannia oktenu-1 hidroperoksydom tretbutylu u prysutnosti MoB. Ukr. khym. zh., Vol. 69, 12, 112–116.
dc.relation.referencesen25. Trach, Yu. B., Makota, O. Y. (2002). Kynetychni zakonomirnosti hydroperoksydnoho epoksyduvannia oktenu-1 v prysutnosti MoV2. Teoret. i eksperym. Khymyia. Vol. 38, 4, 245–248.
dc.relation.referencesen26. Pyryh, Y. Yu., Nykypanchuk, M. V., Cherniak, B. Y. (1983). Epoksyduvannia oktenu-1 hidroperoksydom tretynnoho butylu v prysutnosti borydu molybdenu. Kynetyka i katalyz, Vol. XXIV, 3, 600–605.
dc.relation.referencesen27. Komarenska, Z. M., Nykypanchuk, M. V., Chernii, M. O., Chaikivskyi O. V., (2007). Vplyv zminy aktyvnosti molibdenborydnoho katalizatora na selektyvnist utvorennia epoksydu v reaktsii oktenu-1 z tret-butylhidroperoksydom. V Naukovo-tekhnichna konferentsiia "Postup v naftohazopererobnii ta naftokhimichnii promyslovosti", 289.
dc.relation.referencesen28. Nykypanchuk, M. V., Komarenska, Z. M., Chernyi, M. O. (2014). Pro aktyvatsyu molybdenborydnykh katalyzatoriv v reaktsii epoksyduvannia oktenu-1 tretbutylhydroperoksydom. Kyn. i katalyz, 55 (2), 221.
dc.relation.referencesen29. Nykypanchuk, M. V., Komarenska, Z. M., Chernii, M. O. (2008). Zakonomirnosti aktyvuvannia katalizatora Mo2B v reaktsii epoksyduvannia oktenu-1 tret-butylhidroperoksydom. Katalyz i naftokhimiia, 16, 91–94.
dc.relation.referencesen30. Nykypanchuk, M. V., Komarenska, Z. M., Chernii, M. O. (2010). Modyfikuvannia poverkhni molibdenborydnoho katalizatora v protsesi okysnennia oktenu-1 tretbutylhidroperoksydom. I Ukrainska konferentsiia "Reaktsii okysnennia. Nauka i tekhnolohii". Rubizhne, 52, 53.
dc.relation.referencesen31. Milas, N. A. (1946). Studies in organic peroxides. t-butyl hydroperoxide and di-t-butyl peroxide. J. Amer. Chem. Soc., Vol. 68, 2, 205–208. https://doi.org/10.1021/ja01206a017.
dc.relation.urihttps://doi.org/10.1016/j.bioorg.2022.105862
dc.relation.urihttps://doi.org/10.1246/cl.1993.1759
dc.relation.urihttps://doi.org/10.1021/cr980013j
dc.relation.urihttps://doi.org/10.1016/j.jiec.2010.01.001
dc.relation.urihttps://doi.org/10.1201/9781420030853
dc.relation.urihttps://doi.org/10.1007/s00253-009-2110-9
dc.relation.urihttps://doi.org/10.1016/S0040-4020(01)85362-X
dc.relation.urihttps://doi.org/10.1021/cr050523v
dc.relation.urihttps://doi.org/10.1021/ja01206a017
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectокиснення
dc.subjectепоксидування
dc.subjectселективність
dc.subjectконверсія
dc.subjectкаталізатор
dc.subjectoxidation
dc.subjectepoxidation
dc.subjectselectivity
dc.subjectconversion
dc.subjectcatalyst
dc.titleВплив умов реакції на селективність процесу епоксидування окт-1-ену трет-бутилгідропероксидом у присутності MoB
dc.title.alternativeInfluence of reaction conditions on the selectivity of the process of epoxidation of oct-1-ene by tert-butyl hydroperoxide in the presence of MoB
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v6n1_Zhukrovska_M_O-Influence_of_reaction_22-26.pdf
Size:
1.7 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v6n1_Zhukrovska_M_O-Influence_of_reaction_22-26__COVER.png
Size:
462.1 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.82 KB
Format:
Plain Text
Description: