Test platform paradigm for underwater dynamics measurements

dc.citation.epage34
dc.citation.issue1
dc.citation.journalTitleВимірювальна техніка та метрологія
dc.citation.spage29
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorZeng, Xinyu
dc.contributor.authorYatsyshyn, Svyatoslav
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-13T07:53:56Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractThis paper presents a test platform paradigm for underwater dynamics measurement. The platform aims to ad- dress the limitations of current measurement techniques and provide a comprehensive understanding of underwater dynamics. The proposed platform incorporates advanced control systems and compensation techniques to improve the accuracy and reliability of measurements. The effectiveness of the platform is demonstrated through experimental results, showing improved performance compared to existing methods. The test platform paradigm offers a promising approach for underwater dynamics measurement in various applications.
dc.format.extent29-34
dc.format.pages6
dc.identifier.citationZeng X. Test platform paradigm for underwater dynamics measurements / Zeng Xinyu, Yatsyshyn Svyatoslav // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 29–34.
dc.identifier.citationenZeng X. Test platform paradigm for underwater dynamics measurements / Zeng Xinyu, Yatsyshyn Svyatoslav // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 29–34.
dc.identifier.doidoi.org/10.23939/istcmtm2024.01.029
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64133
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofВимірювальна техніка та метрологія, 1 (85), 2024
dc.relation.ispartofMeasuring Equipment and Metrology, 1 (85), 2024
dc.relation.references[1] M. N. Bandyopadhyay, “Position Control System of A PMDC Motor”. Department of Electrical Engineering, Kolkata, West Bengal, India 2016, DOI: 10.1109/ICEEOT.2016.7754785
dc.relation.references[2] H. Øveraas, Dynamic Positioning Using Model Predictive Control With Short-Term Wave Prediction”, 2023, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway. DOI: 10.1109/JOE.2023.3288969
dc.relation.references[3] D. R. Yoerger, “The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation in to Control System Design”, Deep Submergence Laboratory, Department of Applied Physics and Ocean Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 1990. DOI: 10.1109/48.107145
dc.relation.references[4] M. Gertler and G. R. Hagen, “Standard equations of motion for submarine simulations” Naval Ship R&D Center, Bethesda, MD, NSRDC Rep. No. 2510, 1967 [Online]. Available: https://apps.dtic.mil/sti/citations/AD0653861
dc.relation.references[5] Z. Liang, “Dynamic Analysis and Path Planning of a Turtle-Inspired Amphibious Spherical Robot”, School of Electronic Information Science and Technology, China, 2022 [Online]. Available: https://www.mdpi.com/2072-666X/13/12/2130#
dc.relation.references[6] A. J. Healey, “Toward an Improved Understanding of Thruster Dynamics for Underwater Vehicles”, Naval Postgraduate School, Department of Mechanical Engineering, Monterey CA, 1994. DOI: 10.1109/48.468242
dc.relation.references[7] Y. Sun, “Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system”, Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, China, 2016 [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/19942060.2015.1121838.
dc.relation.references[8] M. Abkowitz, “Stability and Motion Control of Ocean Vehicles”, Cambridge, MA: MIT Press, 1969 [Online]. Available: https://pdfcoffee.com/abkowitz-stability-andmotion-control-of-ocean-vehicles-pdf-free.html
dc.relation.references[9] Cody, S. E., “An Experimental Study of The Response of Small Thrusters to Step and Triangular Wave Inputs”, Monterey, CA, 1992 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667017371008
dc.relation.references[10] Adams, J. C., Burton, D., Lee, M., “Dynamic Characterization and Control of Thrusters for Underwater Vehicles”, 1991.
dc.relation.references[11] Brown, J. P., “Four Quadrant Model of the NPS AUV 11 Thruster” Monterey, CA, 1993 [Online]. Available: https://core.ac.uk/download/pdf/36719905.pdf
dc.relation.references[12] D. Graham, D. McRuer, “Analysis of Nonlinear Control Systems”, New York: Wiley, 1961 [Online]. Available: https://scholar.google.com.ua/scholar?q=D.+Graham,+D.+McRuer
dc.relation.referencesen[1] M. N. Bandyopadhyay, "Position Control System of A PMDC Motor". Department of Electrical Engineering, Kolkata, West Bengal, India 2016, DOI: 10.1109/ICEEOT.2016.7754785
dc.relation.referencesen[2] H. Øveraas, Dynamic Positioning Using Model Predictive Control With Short-Term Wave Prediction", 2023, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway. DOI: 10.1109/JOE.2023.3288969
dc.relation.referencesen[3] D. R. Yoerger, "The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation in to Control System Design", Deep Submergence Laboratory, Department of Applied Physics and Ocean Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 1990. DOI: 10.1109/48.107145
dc.relation.referencesen[4] M. Gertler and G. R. Hagen, "Standard equations of motion for submarine simulations" Naval Ship R&D Center, Bethesda, MD, NSRDC Rep. No. 2510, 1967 [Online]. Available: https://apps.dtic.mil/sti/citations/AD0653861
dc.relation.referencesen[5] Z. Liang, "Dynamic Analysis and Path Planning of a Turtle-Inspired Amphibious Spherical Robot", School of Electronic Information Science and Technology, China, 2022 [Online]. Available: https://www.mdpi.com/2072-666X/13/12/2130#
dc.relation.referencesen[6] A. J. Healey, "Toward an Improved Understanding of Thruster Dynamics for Underwater Vehicles", Naval Postgraduate School, Department of Mechanical Engineering, Monterey CA, 1994. DOI: 10.1109/48.468242
dc.relation.referencesen[7] Y. Sun, "Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system", Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, China, 2016 [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/19942060.2015.1121838.
dc.relation.referencesen[8] M. Abkowitz, "Stability and Motion Control of Ocean Vehicles", Cambridge, MA: MIT Press, 1969 [Online]. Available: https://pdfcoffee.com/abkowitz-stability-andmotion-control-of-ocean-vehicles-pdf-free.html
dc.relation.referencesen[9] Cody, S. E., "An Experimental Study of The Response of Small Thrusters to Step and Triangular Wave Inputs", Monterey, CA, 1992 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667017371008
dc.relation.referencesen[10] Adams, J. C., Burton, D., Lee, M., "Dynamic Characterization and Control of Thrusters for Underwater Vehicles", 1991.
dc.relation.referencesen[11] Brown, J. P., "Four Quadrant Model of the NPS AUV 11 Thruster" Monterey, CA, 1993 [Online]. Available: https://core.ac.uk/download/pdf/36719905.pdf
dc.relation.referencesen[12] D. Graham, D. McRuer, "Analysis of Nonlinear Control Systems", New York: Wiley, 1961 [Online]. Available: https://scholar.google.com.ua/scholar?q=D.+Graham,+D.+McRuer
dc.relation.urihttps://apps.dtic.mil/sti/citations/AD0653861
dc.relation.urihttps://www.mdpi.com/2072-666X/13/12/2130#
dc.relation.urihttps://www.tandfonline.com/doi/full/10.1080/19942060.2015.1121838
dc.relation.urihttps://pdfcoffee.com/abkowitz-stability-andmotion-control-of-ocean-vehicles-pdf-free.html
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S1474667017371008
dc.relation.urihttps://core.ac.uk/download/pdf/36719905.pdf
dc.relation.urihttps://scholar.google.com.ua/scholar?q=D.+Graham,+D.+McRuer
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjecttest platform
dc.subjectunderwater dynamics measurement
dc.subjectcontrol system
dc.subjectcompensation technique
dc.titleTest platform paradigm for underwater dynamics measurements
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v85n1_Zeng_X-Test_platform_paradigm_for_underwater_29-34.pdf
Size:
863.09 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v85n1_Zeng_X-Test_platform_paradigm_for_underwater_29-34__COVER.png
Size:
483.75 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: