Test platform paradigm for underwater dynamics measurements
dc.citation.epage | 34 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Вимірювальна техніка та метрологія | |
dc.citation.spage | 29 | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Zeng, Xinyu | |
dc.contributor.author | Yatsyshyn, Svyatoslav | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-13T07:53:56Z | |
dc.date.created | 2024-02-27 | |
dc.date.issued | 2024-02-27 | |
dc.description.abstract | This paper presents a test platform paradigm for underwater dynamics measurement. The platform aims to ad- dress the limitations of current measurement techniques and provide a comprehensive understanding of underwater dynamics. The proposed platform incorporates advanced control systems and compensation techniques to improve the accuracy and reliability of measurements. The effectiveness of the platform is demonstrated through experimental results, showing improved performance compared to existing methods. The test platform paradigm offers a promising approach for underwater dynamics measurement in various applications. | |
dc.format.extent | 29-34 | |
dc.format.pages | 6 | |
dc.identifier.citation | Zeng X. Test platform paradigm for underwater dynamics measurements / Zeng Xinyu, Yatsyshyn Svyatoslav // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 29–34. | |
dc.identifier.citationen | Zeng X. Test platform paradigm for underwater dynamics measurements / Zeng Xinyu, Yatsyshyn Svyatoslav // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 85. — No 1. — P. 29–34. | |
dc.identifier.doi | doi.org/10.23939/istcmtm2024.01.029 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/64133 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Вимірювальна техніка та метрологія, 1 (85), 2024 | |
dc.relation.ispartof | Measuring Equipment and Metrology, 1 (85), 2024 | |
dc.relation.references | [1] M. N. Bandyopadhyay, “Position Control System of A PMDC Motor”. Department of Electrical Engineering, Kolkata, West Bengal, India 2016, DOI: 10.1109/ICEEOT.2016.7754785 | |
dc.relation.references | [2] H. Øveraas, Dynamic Positioning Using Model Predictive Control With Short-Term Wave Prediction”, 2023, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway. DOI: 10.1109/JOE.2023.3288969 | |
dc.relation.references | [3] D. R. Yoerger, “The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation in to Control System Design”, Deep Submergence Laboratory, Department of Applied Physics and Ocean Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 1990. DOI: 10.1109/48.107145 | |
dc.relation.references | [4] M. Gertler and G. R. Hagen, “Standard equations of motion for submarine simulations” Naval Ship R&D Center, Bethesda, MD, NSRDC Rep. No. 2510, 1967 [Online]. Available: https://apps.dtic.mil/sti/citations/AD0653861 | |
dc.relation.references | [5] Z. Liang, “Dynamic Analysis and Path Planning of a Turtle-Inspired Amphibious Spherical Robot”, School of Electronic Information Science and Technology, China, 2022 [Online]. Available: https://www.mdpi.com/2072-666X/13/12/2130# | |
dc.relation.references | [6] A. J. Healey, “Toward an Improved Understanding of Thruster Dynamics for Underwater Vehicles”, Naval Postgraduate School, Department of Mechanical Engineering, Monterey CA, 1994. DOI: 10.1109/48.468242 | |
dc.relation.references | [7] Y. Sun, “Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system”, Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, China, 2016 [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/19942060.2015.1121838. | |
dc.relation.references | [8] M. Abkowitz, “Stability and Motion Control of Ocean Vehicles”, Cambridge, MA: MIT Press, 1969 [Online]. Available: https://pdfcoffee.com/abkowitz-stability-andmotion-control-of-ocean-vehicles-pdf-free.html | |
dc.relation.references | [9] Cody, S. E., “An Experimental Study of The Response of Small Thrusters to Step and Triangular Wave Inputs”, Monterey, CA, 1992 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667017371008 | |
dc.relation.references | [10] Adams, J. C., Burton, D., Lee, M., “Dynamic Characterization and Control of Thrusters for Underwater Vehicles”, 1991. | |
dc.relation.references | [11] Brown, J. P., “Four Quadrant Model of the NPS AUV 11 Thruster” Monterey, CA, 1993 [Online]. Available: https://core.ac.uk/download/pdf/36719905.pdf | |
dc.relation.references | [12] D. Graham, D. McRuer, “Analysis of Nonlinear Control Systems”, New York: Wiley, 1961 [Online]. Available: https://scholar.google.com.ua/scholar?q=D.+Graham,+D.+McRuer | |
dc.relation.referencesen | [1] M. N. Bandyopadhyay, "Position Control System of A PMDC Motor". Department of Electrical Engineering, Kolkata, West Bengal, India 2016, DOI: 10.1109/ICEEOT.2016.7754785 | |
dc.relation.referencesen | [2] H. Øveraas, Dynamic Positioning Using Model Predictive Control With Short-Term Wave Prediction", 2023, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway. DOI: 10.1109/JOE.2023.3288969 | |
dc.relation.referencesen | [3] D. R. Yoerger, "The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation in to Control System Design", Deep Submergence Laboratory, Department of Applied Physics and Ocean Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA, 1990. DOI: 10.1109/48.107145 | |
dc.relation.referencesen | [4] M. Gertler and G. R. Hagen, "Standard equations of motion for submarine simulations" Naval Ship R&D Center, Bethesda, MD, NSRDC Rep. No. 2510, 1967 [Online]. Available: https://apps.dtic.mil/sti/citations/AD0653861 | |
dc.relation.referencesen | [5] Z. Liang, "Dynamic Analysis and Path Planning of a Turtle-Inspired Amphibious Spherical Robot", School of Electronic Information Science and Technology, China, 2022 [Online]. Available: https://www.mdpi.com/2072-666X/13/12/2130# | |
dc.relation.referencesen | [6] A. J. Healey, "Toward an Improved Understanding of Thruster Dynamics for Underwater Vehicles", Naval Postgraduate School, Department of Mechanical Engineering, Monterey CA, 1994. DOI: 10.1109/48.468242 | |
dc.relation.referencesen | [7] Y. Sun, "Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system", Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, China, 2016 [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/19942060.2015.1121838. | |
dc.relation.referencesen | [8] M. Abkowitz, "Stability and Motion Control of Ocean Vehicles", Cambridge, MA: MIT Press, 1969 [Online]. Available: https://pdfcoffee.com/abkowitz-stability-andmotion-control-of-ocean-vehicles-pdf-free.html | |
dc.relation.referencesen | [9] Cody, S. E., "An Experimental Study of The Response of Small Thrusters to Step and Triangular Wave Inputs", Monterey, CA, 1992 [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474667017371008 | |
dc.relation.referencesen | [10] Adams, J. C., Burton, D., Lee, M., "Dynamic Characterization and Control of Thrusters for Underwater Vehicles", 1991. | |
dc.relation.referencesen | [11] Brown, J. P., "Four Quadrant Model of the NPS AUV 11 Thruster" Monterey, CA, 1993 [Online]. Available: https://core.ac.uk/download/pdf/36719905.pdf | |
dc.relation.referencesen | [12] D. Graham, D. McRuer, "Analysis of Nonlinear Control Systems", New York: Wiley, 1961 [Online]. Available: https://scholar.google.com.ua/scholar?q=D.+Graham,+D.+McRuer | |
dc.relation.uri | https://apps.dtic.mil/sti/citations/AD0653861 | |
dc.relation.uri | https://www.mdpi.com/2072-666X/13/12/2130# | |
dc.relation.uri | https://www.tandfonline.com/doi/full/10.1080/19942060.2015.1121838 | |
dc.relation.uri | https://pdfcoffee.com/abkowitz-stability-andmotion-control-of-ocean-vehicles-pdf-free.html | |
dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S1474667017371008 | |
dc.relation.uri | https://core.ac.uk/download/pdf/36719905.pdf | |
dc.relation.uri | https://scholar.google.com.ua/scholar?q=D.+Graham,+D.+McRuer | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
dc.subject | test platform | |
dc.subject | underwater dynamics measurement | |
dc.subject | control system | |
dc.subject | compensation technique | |
dc.title | Test platform paradigm for underwater dynamics measurements | |
dc.type | Article |
Files
Original bundle
License bundle
1 - 1 of 1