Analysis of Calculation Model for Primary Coolant Fission Products
dc.citation.epage | 74 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Енергетика та системи керування | |
dc.citation.spage | 69 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Лис, Степан | |
dc.contributor.author | Lys, Stepan | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-04-11T09:41:37Z | |
dc.date.available | 2024-04-11T09:41:37Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Джерелами радіоактивного забруднення теплоносія першого контуру продуктами поділу під час роботи блока на номінальній потужності є дефектні тепловидільні елементи з негерметичністю та істотними пошкодженнями, поверхневе забруднення зовнішніх поверхонь оболонок ТВЕЛів, поверхневе забруднення конструкційних матеріалів паливних збірок. На початковому етапі роботи реактора (за відсутності виробничих дефектів тепловидільних елементів) забруднення теплоносія продуктами поділу визначається виходом у контур осколків поділу урану-235 (за рахунок їх кінетичної енергії), наявного на зовнішніх поверхнях паливних елементів як забруднення під час їх виготовлення. Під час нормальної роботи реактора цілісність оболонки може порушуватися внаслідок різних процесів корозійної втоми, які призводять до появи спочатку мікротріщин, а потім великих дефектів оболонок, що супроводжується збільшенням надходження продуктів поділу з ТВЕЛів у теплоносій першого контуру. | |
dc.description.abstract | The sources of radioactive contamination of the primary coolant by fission products when the unit is operating at the rated power are as follows: defect fuel elements with gas leakiness and substantial damages, surface contamination of the outer surfaces of fuel claddings, superficial contamination of structural materials of fuel assemblies. Initially in the reactor operation (if there are no manufacturing defects in fuel elements), the contamination of the coolant by fission products is determined by the release into the reactor coolant circuit of fission fragments of Uranium-235 (due to their kinetic energy) that is present on the outer surfaces of fuel elements as contamination in their manufacturing. During normal operation of the reactor, the integrity of cladding may fail due to various processes of corrosion fatigue type. These processes result in, first of all, micro-fissures and then in large defects in the claddings, which is accompanied by an increase in the release of fission products from fuel elements into the primary coolant. | |
dc.format.extent | 69-74 | |
dc.format.pages | 6 | |
dc.identifier.citation | Lys S. Analysis of Calculation Model for Primary Coolant Fission Products / Stepan Lys // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 2. — P. 69–74. | |
dc.identifier.citationen | Lys S. Analysis of Calculation Model for Primary Coolant Fission Products / Stepan Lys // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 9. — No 2. — P. 69–74. | |
dc.identifier.doi | doi.org/10.23939/jeecs2023.02.069 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61732 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Енергетика та системи керування, 2 (9), 2023 | |
dc.relation.ispartof | Energy Engineering and Control Systems, 2 (9), 2023 | |
dc.relation.references | [1] FINAL Safety Analysis Report. (2010). Radioactive waste Management. R01.KK.0.0.OO.FSAR.WD0R0. | |
dc.relation.references | [2] Preliminary safety analysis reports. (1997). “General Provisions for Ensuring Safety of Nuclear Power Plants” NP-001-97 (PNAEG-01-011-97, OPB-88/97). | |
dc.relation.references | [3] Semerak, M., Lys, S., & Kovalenko, T. (2019). Analysis of the process of plasma processing of radioactive waste. Nuclear and radiation safety, 1(81), 23–29. https://doi.org/10.32918/nrs.2019.1(81).04 | |
dc.relation.references | [4] Nosovskyy A. V., Aleksyeyeva Z. M., Borozenets H. P. et al. (2007). Radioactive Waste Management, Ed. Nosovskyy A. V., Tekhnika, Kyiv, 368 p. (in Ukrainian) | |
dc.relation.references | [5] Lys, S. S., Semerak, M. M., Kanyuka, A. I. (2021). Analysis of reliability of automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio. Problems of atomic science and technology. Kharkiv, No. 5(135). 88–97. https://doi.org/10.46813/2021-135-088 | |
dc.relation.references | [6] Gavrilovskiy D. V. et al. (2016). On the disposal of radioactive waste from nuclear reactors in Russia. Proceeding of Higher Educational Institutions. North-Caucasus region. Natural science. No. 4, 62–66. (in Russian) | |
dc.relation.references | [7] Saeed Ehsan Awan, Sikander M. Mirza, Nasir M. Mirza (2011). Sensitivity analysis of fission product activity in primary coolant of typical PWRs. Progress in Nuclear Energy, Volume 53, Issue 3. 245–249. https://doi.org/10.1016/j.pnucene.2010.11.002. | |
dc.relation.references | [8] M. Javed Iqbal, Nasir M. Mirza, Sikander M. Mirza. (2007) Kinetic simulation of fission product activity in primary coolant of typical PWRs under power perturbations. Nuclear Engineering and Design, Vol. 237, Issue 2. 199–205. https://doi.org/10.1016/j.nucengdes.2006.06.003. | |
dc.relation.references | [9] M. Asadollahzadeh Goudarzi, Kh. Rezaee Ebrahim Saraee, A. R. Tabesh, B. Teymuri, H. Mansouri. (2015). Calculation of the activity of fission products in the primary coolant of the eastern-type pressurized water reactor (VVER1000-V446) of the Bushehr Nuclear Power Plant at normal full power operational condition. Progress in Nuclear Energy, Volume 81, 123–126. https://doi.org/10.1016/j.pnucene.2014.09.019. | |
dc.relation.references | [10] Hakim Mazrou. (2009). Performance improvement of artificial neural networks designed for safety key parameters prediction in nuclear research reactors. Nuclear Engineering and Design, Volume 239, Issue 10, 1901–1910. https://doi.org/10.1016/j.nucengdes.2009.06.004. | |
dc.relation.referencesen | [1] FINAL Safety Analysis Report. (2010). Radioactive waste Management. R01.KK.0.0.OO.FSAR.WD0R0. | |
dc.relation.referencesen | [2] Preliminary safety analysis reports. (1997). "General Provisions for Ensuring Safety of Nuclear Power Plants" NP-001-97 (PNAEG-01-011-97, OPB-88/97). | |
dc.relation.referencesen | [3] Semerak, M., Lys, S., & Kovalenko, T. (2019). Analysis of the process of plasma processing of radioactive waste. Nuclear and radiation safety, 1(81), 23–29. https://doi.org/10.32918/nrs.2019.1(81).04 | |
dc.relation.referencesen | [4] Nosovskyy A. V., Aleksyeyeva Z. M., Borozenets H. P. et al. (2007). Radioactive Waste Management, Ed. Nosovskyy A. V., Tekhnika, Kyiv, 368 p. (in Ukrainian) | |
dc.relation.referencesen | [5] Lys, S. S., Semerak, M. M., Kanyuka, A. I. (2021). Analysis of reliability of automatic core protection function of the reactor V-412 in response to local parameters: maximum linear power, departure from nucleate boiling ratio. Problems of atomic science and technology. Kharkiv, No. 5(135). 88–97. https://doi.org/10.46813/2021-135-088 | |
dc.relation.referencesen | [6] Gavrilovskiy D. V. et al. (2016). On the disposal of radioactive waste from nuclear reactors in Russia. Proceeding of Higher Educational Institutions. North-Caucasus region. Natural science. No. 4, 62–66. (in Russian) | |
dc.relation.referencesen | [7] Saeed Ehsan Awan, Sikander M. Mirza, Nasir M. Mirza (2011). Sensitivity analysis of fission product activity in primary coolant of typical PWRs. Progress in Nuclear Energy, Volume 53, Issue 3. 245–249. https://doi.org/10.1016/j.pnucene.2010.11.002. | |
dc.relation.referencesen | [8] M. Javed Iqbal, Nasir M. Mirza, Sikander M. Mirza. (2007) Kinetic simulation of fission product activity in primary coolant of typical PWRs under power perturbations. Nuclear Engineering and Design, Vol. 237, Issue 2. 199–205. https://doi.org/10.1016/j.nucengdes.2006.06.003. | |
dc.relation.referencesen | [9] M. Asadollahzadeh Goudarzi, Kh. Rezaee Ebrahim Saraee, A. R. Tabesh, B. Teymuri, H. Mansouri. (2015). Calculation of the activity of fission products in the primary coolant of the eastern-type pressurized water reactor (VVER1000-V446) of the Bushehr Nuclear Power Plant at normal full power operational condition. Progress in Nuclear Energy, Volume 81, 123–126. https://doi.org/10.1016/j.pnucene.2014.09.019. | |
dc.relation.referencesen | [10] Hakim Mazrou. (2009). Performance improvement of artificial neural networks designed for safety key parameters prediction in nuclear research reactors. Nuclear Engineering and Design, Volume 239, Issue 10, 1901–1910. https://doi.org/10.1016/j.nucengdes.2009.06.004. | |
dc.relation.uri | https://doi.org/10.32918/nrs.2019.1(81).04 | |
dc.relation.uri | https://doi.org/10.46813/2021-135-088 | |
dc.relation.uri | https://doi.org/10.1016/j.pnucene.2010.11.002 | |
dc.relation.uri | https://doi.org/10.1016/j.nucengdes.2006.06.003 | |
dc.relation.uri | https://doi.org/10.1016/j.pnucene.2014.09.019 | |
dc.relation.uri | https://doi.org/10.1016/j.nucengdes.2009.06.004 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | реактор | |
dc.subject | модель розрахунку | |
dc.subject | корозія | |
dc.subject | теплоносій першого контуру | |
dc.subject | продукти поділу | |
dc.subject | reactor | |
dc.subject | calculation model | |
dc.subject | corrosion | |
dc.subject | primary coolant | |
dc.subject | fission products | |
dc.title | Analysis of Calculation Model for Primary Coolant Fission Products | |
dc.title.alternative | Аналіз моделі розрахунку продуктів поділу в теплоносії першого контуру | |
dc.type | Article |
Files
License bundle
1 - 1 of 1