Model of tectonic stress in the Eastern Baltic region

dc.citation.epage26
dc.citation.issue2(37)
dc.citation.journalTitleГеодинаміка
dc.citation.spage16
dc.contributor.affiliationКарпатське відділення Інституту геофізики ім. Субботіна Національної академії наук України
dc.contributor.affiliationSIA Geo Consultants
dc.contributor.affiliationCarpathian Branch of Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine
dc.contributor.authorНікулінс, Валерій
dc.contributor.authorМалицький, Дмитро
dc.contributor.authorŅikuļins, Valērijs
dc.contributor.authorMalytskyy, Dmytro
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T09:56:05Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractСистематизовано параметри та механізми вогнищ сучасних землетрусів у регіоні Східної Балтії. Переважають такі типи механізмів вогнищ материкових землетрусів, як Strike-slip і Reverse. Створено узагальнену карту орієнтації максимальних горизонтальних напружень у Східно-Балтійському регіоні та на прилеглих територіях. Щоб створити цю карту, ми використали базу даних World Stress Map і додали напрямки максимальних горизонтальних напружень в Естонії. Напрямок максимальних горизонтальних напружень змінюється із півночі (Естонія) на південь (Калінінградська область РФ) від 102º–114º до 157º–166º. Ми дослідили, як глибинна геологічна структура та гравітаційні сили в різних частинах земної кори впливають на напрямок максимальних горизонтальних напружень. З’ясовано, що напрямок максимального горизонтального напруження змінювався під час перетину лише одного глибокого тектонічного розлому. Виявлено високі значення кореляції напрямку максимального горизонтального напруження із гравітаційним впливом осадового чохла (від’ємну кореляцію), усередненим різницевим гравітаційним полем і гравітаційним впливом шару земної кори до границі Конрада.
dc.description.abstractThe parameters and mechanisms of the source of modern earthquakes in the Eastern Baltic region are systematized. The predominant types of focal mechanisms of continental earthquakes are strike-slip and reverse. A generalized map of the orientation of maximum horizontal stresses in the East Baltic region and adjacent territories has been created. To create this map, we utilized the World Stress Map database and added the directions of maximum horizontal stresses in Estonia. The direction of maximum horizontal stresses changes from north (Estonia) to south (Kaliningrad region of Russian Federation) from 102º–114º to 157º–166º. The study investigated how the deep geological structure and gravitational forces in different parts of the earth's crust affect the direction of maximum horizontal stresses. It was observed that the direction of maximum horizontal stress changed when crossing only one of a deep tectonic fault. The direction of maximum horizontal stress showed the high correlation values with the gravitational effect of the sedimentary cover (negative correlation), the averaged difference gravitational field, and the gravitational effect of the crustal layer up to the Conrad boundary.
dc.format.extent16-26
dc.format.pages11
dc.identifier.citationŅikuļins V. Model of tectonic stress in the Eastern Baltic region / Valērijs Ņikuļins, Dmytro Malytskyy // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 2(37). — P. 16–26.
dc.identifier.citationenŅikuļins V. Model of tectonic stress in the Eastern Baltic region / Valērijs Ņikuļins, Dmytro Malytskyy // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 2(37). — P. 16–26.
dc.identifier.doidoi.org/10.23939/jgd2024.02.016
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113870
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2(37), 2024
dc.relation.ispartofGeodynamics, 2(37), 2024
dc.relation.referencesAvotinya, I. Ya., Boborykin, A. M. et al. (1988). Catalog of historical earthquakes in Belarus and the Baltic states. Seismological bulletin of seismic stations “Minsk” (Pleschenitsy) and “Naroch” for 1984, 126–137 (in Russian).
dc.relation.referencesAnkudinov, S. A., Brio, H. S., & Sadov, A. S. (1991). The deep structure of the earth's crust on the territory of the Baltic republics according to seismic data from the Deep Seismic Sounding. Belarusian Seismological Bulletin, 1, 111–117 (in Russian).
dc.relation.referencesBoborykin, A. M., Garetsky, R. G., Emelyanov, A. P., Sildvee, H. H., & Suveizdis, P. I. (1993). Earthquakes of Belarus and the Baltic States. Current state of seismic observations and their generalizations (Methodological works of ESSN), 4, 29–39.
dc.relation.referencesBock, G. (2012). Source parameters and moment-tensor solution. GeoForschungZentrum Potsdam, Germany. 14 p., https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.8
dc.relation.referencesBrangulis, A., & Kanevs, S. (2002). Latvijas tektonika. Valsts geologijas dienests, 50 p.
dc.relation.referencesBrown, E. T, & Hoek, E. (1978). Trends in relationships between measured in situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 211–215. https://www.rocscience.com/assets/resources/learning/hoek/Trends-in-Relation-ship-between-Measured-In-Situ-Stresses-and-Depth1978.pdf
dc.relation.referencesDoss, B. (1910). Die historisch beglaubigten Einsturzbeben und seismisch-akustischen Phänomene der russischen Ostseeprovinzen. Beiträge zur Geophysik. Leipzig, X. Band, pp. 1–124.
dc.relation.referencesGregersen, S., Wiejacz, P., Debski, W., Domanski, B., Assinovskaya, B., Guterh, B., Mantyniemi, P., Nikulin, V. G., Pacesa, A., Puura, V., Aronov, A. G., Aronova, T. I., Grunthal, G.,Husebye, E. S., & Sliaupa, S. (2007). The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth Planetary Interiors, 164, 63−74. https://doi.org/10.1016/j.pepi.2007.06.005
dc.relation.referencesHeidbach, O., M. Rajabi, K. Reiter, M. O. Ziegler, WSM Team (2016). World Stress Map Database Release 2016. GFZ Data Services, https://doi.org/10.5880/WSM.2016.001
dc.relation.referencesHeidbach, O., M. Rajabi, X. Cui, K. Fuchs, B. Müller, J. Reinecker, K. Reiter, M. Tingay, F. Wenzel, F. Xie, M. O. Ziegler, M.-L. Zoback, and M. D. Zoback (2018). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, 484–498. https://doi.org/10.1016/j.tecto.2018.07.007
dc.relation.referencesHergert, T, & Heidbach, O. (2011). Geomechanical model of the Marmara Sea region – II. 3D contemporary background stress field. Geophysical Journal International, 185(3),1090–1102. https://doi.org/10.1111/j.1365-246X.2011.04992.x
dc.relation.referencesKnopoff, L., & Randall, M. J. (1970). The compensated linear-vector dipole. A possible mechanism for deep earthquakes, Journal of Geophysical Research, 75(26), 4957–4963. https://doi.org/10.1029/JB075i026p04957
dc.relation.referencesMcNutt, M. (1980). Implications of Regional Gravity for State of Stress in the Earth’s Crust and Upper Mantle. Journal of Geophysical Research, 85 (B11), 6377–6396. JB085iB11p06377 https://doi.org/10.1029/
dc.relation.referencesMüller, B, Wehrle, V, Hettel, S, Sperne,r B, & Fuchs, F. (2003). A new method for smoothing oriented data and its application to stress data. In: M Ameen (ed) Fracture and in situ stress characterization of hydrocarbon reservoirs. Special Publication: Geological Society, London, 209(1), 107–126. https://doi.org/10.1144/GSL. SP.2003.209.01.11
dc.relation.referencesNikonov, A. A., & Sildvee, H. (1991). Historical earthquakes in Estonia and their seismotectonic position. Geophysica, 27(1–2), 79–93. https://www.geophysica.fi/pdf/geophysica_1991_27_1-2_079_nikonov.pdf
dc.relation.referencesNikulins, V. (2019). Geodynamic Hazard Factors of Latvia: Experimental Data and Computational Analysis. Baltic Journal of Modern Computing, 7 (1), 151–170. https://doi.org/10.22364/bjmc.2019.7.1.11
dc.relation.referencesNikulins, V., Malytskyy D. (2021). Focal mechanism of the Kaliningrad earthquake of 21 September 2004 based on waveform inversion using a limited number of stations. Baltica, 34(1), 95–107. https://doi.org/10.5200/baltica.2021.1.8
dc.relation.referencesOzolinya, N. K., & Kovrigin, V. P. (1986). Report on the topic “Generalization of the physical properties of rocks on the territory of the Latvian SSR” for 1984–1986. Geology Department of the Latvian SSR, KGE, Vol. 1, 144 p.
dc.relation.referencesPaskevicius J. (1997). The Geology of the Baltic Republics. Vilnius, 387 p.
dc.relation.referencesSlunga, R. S. (1979). Source mechanism of a Baltic earthquake inferred from surface wave recordings. Bulletin of the Seismological Society of America, 69(6), 1931–1964. https://doi.org/10.1785/BSSA0690061931
dc.relation.referencesSlunga, R., & Ahjos, T. (1986). Fault mechanisms of Finnish earthquakes, crustal stress and faults. Geophysica, 22(1–2), 1–13. https://archive.geophysica.fi/pdf/geophysica_1986_22_1-2_001_slunga.pdf
dc.relation.referencesSoosalu, H., Uski, M., Komminaho, K., Veski, A. (2022). Recent Intraplate Seismicity in Estonia, East European Platform. Seismological Research Letters, 93(3), 1800–1811. 10.1785/0220210277
dc.relation.referencesTingay M. (2009). State and Origin of Present-Day Stress Field in Sedimentary Basin. ASEG Extended Abstracts, 1, 1–10. https://doi.org/10.1071/ASEG2009ab037
dc.relation.referencesenAvotinya, I. Ya., Boborykin, A. M. et al. (1988). Catalog of historical earthquakes in Belarus and the Baltic states. Seismological bulletin of seismic stations "Minsk" (Pleschenitsy) and "Naroch" for 1984, 126–137 (in Russian).
dc.relation.referencesenAnkudinov, S. A., Brio, H. S., & Sadov, A. S. (1991). The deep structure of the earth's crust on the territory of the Baltic republics according to seismic data from the Deep Seismic Sounding. Belarusian Seismological Bulletin, 1, 111–117 (in Russian).
dc.relation.referencesenBoborykin, A. M., Garetsky, R. G., Emelyanov, A. P., Sildvee, H. H., & Suveizdis, P. I. (1993). Earthquakes of Belarus and the Baltic States. Current state of seismic observations and their generalizations (Methodological works of ESSN), 4, 29–39.
dc.relation.referencesenBock, G. (2012). Source parameters and moment-tensor solution. GeoForschungZentrum Potsdam, Germany. 14 p., https://doi.org/10.2312/GFZ.NMSOP-2_IS_3.8
dc.relation.referencesenBrangulis, A., & Kanevs, S. (2002). Latvijas tektonika. Valsts geologijas dienests, 50 p.
dc.relation.referencesenBrown, E. T, & Hoek, E. (1978). Trends in relationships between measured in situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 211–215. https://www.rocscience.com/assets/resources/learning/hoek/Trends-in-Relation-ship-between-Measured-In-Situ-Stresses-and-Depth1978.pdf
dc.relation.referencesenDoss, B. (1910). Die historisch beglaubigten Einsturzbeben und seismisch-akustischen Phänomene der russischen Ostseeprovinzen. Beiträge zur Geophysik. Leipzig, X. Band, pp. 1–124.
dc.relation.referencesenGregersen, S., Wiejacz, P., Debski, W., Domanski, B., Assinovskaya, B., Guterh, B., Mantyniemi, P., Nikulin, V. G., Pacesa, A., Puura, V., Aronov, A. G., Aronova, T. I., Grunthal, G.,Husebye, E. S., & Sliaupa, S. (2007). The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Physics of the Earth Planetary Interiors, 164, 63−74. https://doi.org/10.1016/j.pepi.2007.06.005
dc.relation.referencesenHeidbach, O., M. Rajabi, K. Reiter, M. O. Ziegler, WSM Team (2016). World Stress Map Database Release 2016. GFZ Data Services, https://doi.org/10.5880/WSM.2016.001
dc.relation.referencesenHeidbach, O., M. Rajabi, X. Cui, K. Fuchs, B. Müller, J. Reinecker, K. Reiter, M. Tingay, F. Wenzel, F. Xie, M. O. Ziegler, M.-L. Zoback, and M. D. Zoback (2018). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, 484–498. https://doi.org/10.1016/j.tecto.2018.07.007
dc.relation.referencesenHergert, T, & Heidbach, O. (2011). Geomechanical model of the Marmara Sea region – II. 3D contemporary background stress field. Geophysical Journal International, 185(3),1090–1102. https://doi.org/10.1111/j.1365-246X.2011.04992.x
dc.relation.referencesenKnopoff, L., & Randall, M. J. (1970). The compensated linear-vector dipole. A possible mechanism for deep earthquakes, Journal of Geophysical Research, 75(26), 4957–4963. https://doi.org/10.1029/JB075i026p04957
dc.relation.referencesenMcNutt, M. (1980). Implications of Regional Gravity for State of Stress in the Earth’s Crust and Upper Mantle. Journal of Geophysical Research, 85 (B11), 6377–6396. JB085iB11p06377 https://doi.org/10.1029/
dc.relation.referencesenMüller, B, Wehrle, V, Hettel, S, Sperne,r B, & Fuchs, F. (2003). A new method for smoothing oriented data and its application to stress data. In: M Ameen (ed) Fracture and in situ stress characterization of hydrocarbon reservoirs. Special Publication: Geological Society, London, 209(1), 107–126. https://doi.org/10.1144/GSL. SP.2003.209.01.11
dc.relation.referencesenNikonov, A. A., & Sildvee, H. (1991). Historical earthquakes in Estonia and their seismotectonic position. Geophysica, 27(1–2), 79–93. https://www.geophysica.fi/pdf/geophysica_1991_27_1-2_079_nikonov.pdf
dc.relation.referencesenNikulins, V. (2019). Geodynamic Hazard Factors of Latvia: Experimental Data and Computational Analysis. Baltic Journal of Modern Computing, 7 (1), 151–170. https://doi.org/10.22364/bjmc.2019.7.1.11
dc.relation.referencesenNikulins, V., Malytskyy D. (2021). Focal mechanism of the Kaliningrad earthquake of 21 September 2004 based on waveform inversion using a limited number of stations. Baltica, 34(1), 95–107. https://doi.org/10.5200/baltica.2021.1.8
dc.relation.referencesenOzolinya, N. K., & Kovrigin, V. P. (1986). Report on the topic "Generalization of the physical properties of rocks on the territory of the Latvian SSR" for 1984–1986. Geology Department of the Latvian SSR, KGE, Vol. 1, 144 p.
dc.relation.referencesenPaskevicius J. (1997). The Geology of the Baltic Republics. Vilnius, 387 p.
dc.relation.referencesenSlunga, R. S. (1979). Source mechanism of a Baltic earthquake inferred from surface wave recordings. Bulletin of the Seismological Society of America, 69(6), 1931–1964. https://doi.org/10.1785/BSSA0690061931
dc.relation.referencesenSlunga, R., & Ahjos, T. (1986). Fault mechanisms of Finnish earthquakes, crustal stress and faults. Geophysica, 22(1–2), 1–13. https://archive.geophysica.fi/pdf/geophysica_1986_22_1-2_001_slunga.pdf
dc.relation.referencesenSoosalu, H., Uski, M., Komminaho, K., Veski, A. (2022). Recent Intraplate Seismicity in Estonia, East European Platform. Seismological Research Letters, 93(3), 1800–1811. 10.1785/0220210277
dc.relation.referencesenTingay M. (2009). State and Origin of Present-Day Stress Field in Sedimentary Basin. ASEG Extended Abstracts, 1, 1–10. https://doi.org/10.1071/ASEG2009ab037
dc.relation.urihttps://doi.org/10.2312/GFZ.NMSOP-2_IS_3.8
dc.relation.urihttps://www.rocscience.com/assets/resources/learning/hoek/Trends-in-Relation-ship-between-Measured-In-Situ-Stresses-and-Depth1978.pdf
dc.relation.urihttps://doi.org/10.1016/j.pepi.2007.06.005
dc.relation.urihttps://doi.org/10.5880/WSM.2016.001
dc.relation.urihttps://doi.org/10.1016/j.tecto.2018.07.007
dc.relation.urihttps://doi.org/10.1111/j.1365-246X.2011.04992.x
dc.relation.urihttps://doi.org/10.1029/JB075i026p04957
dc.relation.urihttps://doi.org/10.1029/
dc.relation.urihttps://doi.org/10.1144/GSL
dc.relation.urihttps://www.geophysica.fi/pdf/geophysica_1991_27_1-2_079_nikonov.pdf
dc.relation.urihttps://doi.org/10.22364/bjmc.2019.7.1.11
dc.relation.urihttps://doi.org/10.5200/baltica.2021.1.8
dc.relation.urihttps://doi.org/10.1785/BSSA0690061931
dc.relation.urihttps://archive.geophysica.fi/pdf/geophysica_1986_22_1-2_001_slunga.pdf
dc.relation.urihttps://doi.org/10.1071/ASEG2009ab037
dc.rights.holder© Національний університет “Львівська політехніка”, 2024; © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2024
dc.rights.holder© V. Ņikuļins, D. Malytskyy
dc.subjectмеханізм вогнища землетрусу
dc.subjectтензор сейсмічного моменту
dc.subjectпараметри вогнища землетрусу
dc.subjectголовні напруження
dc.subjectмаксимальне горизонтальне напруження
dc.subjectСхідно-Балтійський регіон
dc.subjectWorld Stress Map
dc.subjectearthquake focal mechanism
dc.subjectseismic moment tensor
dc.subjectearthquake source parameters
dc.subjectprincipal stresses
dc.subjectmaximum horizontal stress
dc.subjectEastern Baltic region
dc.subjectWorld Stress Map
dc.subject.udc550.34.
dc.subject.udc550.348
dc.subject.udc550.348.098.4
dc.titleModel of tectonic stress in the Eastern Baltic region
dc.title.alternativeМодель тектонічних напружень у Східно-Балтійському регіоні
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024n2_37___iku_ins_V-Model_of_tectonic_stress_16-26.pdf
Size:
1.09 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024n2_37___iku_ins_V-Model_of_tectonic_stress_16-26__COVER.png
Size:
508.1 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.83 KB
Format:
Plain Text
Description: