Development of a high-filled filament used in MFDM technology
dc.citation.epage | 107 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика. | |
dc.citation.spage | 102 | |
dc.citation.volume | 5 | |
dc.contributor.affiliation | Сілезький технологічний університет | |
dc.contributor.affiliation | Silesian University of Technology | |
dc.contributor.author | Гоцкі, Міхал | |
dc.contributor.author | Матула, Гжегож | |
dc.contributor.author | Gocki, Michal | |
dc.contributor.author | Matula, Grzegorz | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-23T06:35:22Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У статті описано дослідження, у ході якого було розроблено нитку з високим наповненням порошком сплаву Co-Cr-Mo, процес 3D-друку, а також деградацію та спікання виготовлених зразків. Вони показують вплив з’єднання на кінцеву структуру матеріалу. Дослідження, представлені в цій статті, дозволяють нам оцінити взаємозв’язок між розміром частинок металевого порошку та поверхнею та внутрішньою структурою готового агломерату. Аналіз матеріалів дає змогу виробляти та друкувати високонаповнені нитки за технологією MFDM. | |
dc.description.abstract | The article describes the research in which a filament highly filled with Co-Cr-Mo alloy powder was developed, the 3D printing process, and the degradation and sintering of the produced samples. The research shows the influence of debinding on the final structure of the material. The research presented in this article allows us to assess the relationship between the particle size of the metal powder and the surface and internal structure of the finished sinters. Material analysis allows for the possibilities of manufacturing and printing high-filled filaments in MFDM technology. | |
dc.format.extent | 102-107 | |
dc.format.pages | 6 | |
dc.identifier.citation | Gocki M. Development of a high-filled filament used in MFDM technology / Michal Gocki, Grzegorz Matula // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 102–107. | |
dc.identifier.citationen | Gocki M. Development of a high-filled filament used in MFDM technology / Michal Gocki, Grzegorz Matula // Computer Design Systems. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 1. — P. 102–107. | |
dc.identifier.doi | doi.org/10.23939/cds2023.01.102 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111484 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика., 1 (5), 2023 | |
dc.relation.ispartof | Computer Design Systems. Theory and Practice, 1 (5), 2023 | |
dc.relation.references | 1. A. Jandyal, I. Chaturvedi, I. Wazir (et al.), 3D printing – A review of processes, materials, and applications in industry 4.0, Sustainable Operations and Computers, Vol. 3, 2022, 33-42. https://doi.org/10.1016/j.susoc.2021.09.004 | |
dc.relation.references | 2. S. Park,W. Shou, L. Makatura(et al.), 3D printing of polymer composites: Materials, processes, and applications, Vol. 5, 5 January 2022, 43-76. https://doi.org/10.1016/j.matt.2021.10.018 | |
dc.relation.references | 3. Caban J., Szala M., Kęsik J., Wykorzystanie druku 3D w zastosowaniach automotive, Autobusy, Vol. 6, 2017, 573-579. | |
dc.relation.references | 4. H. Ramazani, A. Kami, Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review, Progress in Additive Manufacturing Vol 7, 2022, 609–626. https://doi.org/10.1007/s40964-021-00250-x | |
dc.relation.references | 5. Ü. Çevik, M. Kam, A Review Study on Mechanical Properties of Obtained Products by FDM Method and Metal/Polymer Composite Filament Production, Micro and Nano Sensors from Additive Manufacturing, 2020. https://doi.org/10.1155/2020/6187149 | |
dc.relation.references | 6. J. Nowacki, Spiekane metale i kompozyty z osnową metaliczną, Wydawnictwa Naukowo-Techniczne, Warszawa 2005. | |
dc.relation.references | 7. R. R. Colon, V. V. Nayak, P. Parente (et al.), The presence of 3D printing in orthopedics: A clinical and material review, Journal of Orthopaedic Research, 2022. | |
dc.relation.references | 8. B. Surowska, Biomateriały metalowe oraz połączenia metal-ceramika w zastosowaniach stomatologicznych, 2009. | |
dc.relation.references | 9. J. Marciniak, Biomateriały, Wydawnictwo Politechniki Śląskiej, Gliwice, 2013. | |
dc.relation.references | 10. Michta D., Kaczmarska B., Gierulski W., Uniwersalność druku 3D w technologii FDM. | |
dc.relation.references | 11. Venkatram S., Kim C., Chandrasekaran A., Critical Assessment of the Hildebrand and Hansen Solubility | |
dc.relation.references | 12. Parameters for Polymers, J. Chem. Inf. Model. Issue 59, Vol. 10, 2019. | |
dc.relation.references | 13. Krevelen D.W., Properties of Polymers, Elservier, 2009. | |
dc.relation.references | 14. Mark J., Physical properties of Polymers Handbook, Springer. | |
dc.relation.references | 15. Kosmalska D., Kaczmarek H., Malinowski R., Postępy w badaniach degradacji termicznej materiałów polimerowych, Polimery, Issue 5, Vol. 64, 2019,317-392. https://doi.org/10.14314/polimery.2019.4.1 | |
dc.relation.references | 16. Liu Q., Song S. L., Xi G.X., Catalytic effects of sulfates on thermal degradation of waste poly(methyl methacrylate), Thermochimica acta, Issue 435, 2005, 64-67. https://doi.org/10.1016/j.tca.2005.05.005 | |
dc.relation.referencesen | 1. A. Jandyal, I. Chaturvedi, I. Wazir (et al.), 3D printing – A review of processes, materials, and applications in industry 4.0, Sustainable Operations and Computers, Vol. 3, 2022, 33-42. https://doi.org/10.1016/j.susoc.2021.09.004 | |
dc.relation.referencesen | 2. S. Park,W. Shou, L. Makatura(et al.), 3D printing of polymer composites: Materials, processes, and applications, Vol. 5, 5 January 2022, 43-76. https://doi.org/10.1016/j.matt.2021.10.018 | |
dc.relation.referencesen | 3. Caban J., Szala M., Kęsik J., Wykorzystanie druku 3D w zastosowaniach automotive, Autobusy, Vol. 6, 2017, 573-579. | |
dc.relation.referencesen | 4. H. Ramazani, A. Kami, Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review, Progress in Additive Manufacturing Vol 7, 2022, 609–626. https://doi.org/10.1007/s40964-021-00250-x | |
dc.relation.referencesen | 5. Ü. Çevik, M. Kam, A Review Study on Mechanical Properties of Obtained Products by FDM Method and Metal/Polymer Composite Filament Production, Micro and Nano Sensors from Additive Manufacturing, 2020. https://doi.org/10.1155/2020/6187149 | |
dc.relation.referencesen | 6. J. Nowacki, Spiekane metale i kompozyty z osnową metaliczną, Wydawnictwa Naukowo-Techniczne, Warszawa 2005. | |
dc.relation.referencesen | 7. R. R. Colon, V. V. Nayak, P. Parente (et al.), The presence of 3D printing in orthopedics: A clinical and material review, Journal of Orthopaedic Research, 2022. | |
dc.relation.referencesen | 8. B. Surowska, Biomateriały metalowe oraz połączenia metal-ceramika w zastosowaniach stomatologicznych, 2009. | |
dc.relation.referencesen | 9. J. Marciniak, Biomateriały, Wydawnictwo Politechniki Śląskiej, Gliwice, 2013. | |
dc.relation.referencesen | 10. Michta D., Kaczmarska B., Gierulski W., Uniwersalność druku 3D w technologii FDM. | |
dc.relation.referencesen | 11. Venkatram S., Kim C., Chandrasekaran A., Critical Assessment of the Hildebrand and Hansen Solubility | |
dc.relation.referencesen | 12. Parameters for Polymers, J. Chem. Inf. Model. Issue 59, Vol. 10, 2019. | |
dc.relation.referencesen | 13. Krevelen D.W., Properties of Polymers, Elservier, 2009. | |
dc.relation.referencesen | 14. Mark J., Physical properties of Polymers Handbook, Springer. | |
dc.relation.referencesen | 15. Kosmalska D., Kaczmarek H., Malinowski R., Postępy w badaniach degradacji termicznej materiałów polimerowych, Polimery, Issue 5, Vol. 64, 2019,317-392. https://doi.org/10.14314/polimery.2019.4.1 | |
dc.relation.referencesen | 16. Liu Q., Song S. L., Xi G.X., Catalytic effects of sulfates on thermal degradation of waste poly(methyl methacrylate), Thermochimica acta, Issue 435, 2005, 64-67. https://doi.org/10.1016/j.tca.2005.05.005 | |
dc.relation.uri | https://doi.org/10.1016/j.susoc.2021.09.004 | |
dc.relation.uri | https://doi.org/10.1016/j.matt.2021.10.018 | |
dc.relation.uri | https://doi.org/10.1007/s40964-021-00250-x | |
dc.relation.uri | https://doi.org/10.1155/2020/6187149 | |
dc.relation.uri | https://doi.org/10.14314/polimery.2019.4.1 | |
dc.relation.uri | https://doi.org/10.1016/j.tca.2005.05.005 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Gocki M., Matula G., 2024 | |
dc.subject | 3D друк | |
dc.subject | Co-Cr-Mo сплав | |
dc.subject | спікання | |
dc.subject | порошкова металургія | |
dc.subject | 3D printing | |
dc.subject | Co-Cr-Mo alloy | |
dc.subject | sintering | |
dc.subject | powder metallurgy | |
dc.title | Development of a high-filled filament used in MFDM technology | |
dc.title.alternative | Розроблення щільнонаповненої нитки, що використовується в технології MFDM | |
dc.type | Article |
Files
License bundle
1 - 1 of 1