Verification of computer Simulink-model for electromechanical system of armament complex guidance of combat vehicle

dc.citation.epage50
dc.citation.issue1
dc.citation.spage43
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональна академія сухопутних військ імені гетьмана Петра Сагайдачного
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationHetman Petro Sahaidachny National Army Academy
dc.contributor.authorПаранчук, Ярослав
dc.contributor.authorЄвдокімов, Павло
dc.contributor.authorКузнєцов, Олексій
dc.contributor.authorЦяпа, Володимир
dc.contributor.authorParanchuk, Yaroslav
dc.contributor.authorEvdokimov, Pavlo
dc.contributor.authorKuznyetsov, Oleksiy
dc.contributor.authorTsjapa, Volodymyr
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-09-14T07:56:07Z
dc.date.available2023-09-14T07:56:07Z
dc.date.created2021-06-01
dc.date.issued2021-06-01
dc.description.abstractУдосконалення існуючих електромеханічних систем наведення комплексу озброєння бойових машин повинно відбуватись за допомогою підвищення швидкодії та точності позиціонування. У роботі розглянуто підйомний механізм наведення пакету напрямних реактивної системи залпового вогню БМ-21, що стоїть на озброєнні Збройних Сил України та є типовою для багатьох зразків озброєння. На основі опрацювання експериментально отриманих часових залежностей координат існуючої електромеханічної системи надання вертикального руху пакету напрямних проведено ідентифікацію параметрів та передавальних функцій її елементів, які реалізовано у математичній та комп’ютерній Simulink-моделі. Виконано порівняння процесів зміни координат у процесі наведення, які отримано на створеному до неї комп’ютерному аналогу і діючій бойовій машині. Порівняння отриманих результатів показали досягнення достатньої точності співпадіння часових залежностей координат електромеханічних систем наведення.
dc.description.abstractThe improvement of existing electromechanical guidance systems of the armament complex of combat vehicles should be implemented in the direction of increasing the speed and accuracy of positioning. The paper deals with the lifting mechanism of guidance of the package of guides of the multiple rocket launcher BM-21, which is a unit of the armament of the Armed Forces of Ukraine and is typical for many samples of weaponry. Based on the experimentally obtained time dependencies of the coordinates of the existing electromechanical system for providing a vertical motion of a package of guides, the parameters and the transfer functions of its elements have been identified, which have been implemented in the mathematical and computer Simulink-model. The comparison of the processes of changes of coordinates in the guidance process obtained by means of the created computer model and on the operating combat machine has been carried out. The comparisons of the obtained results have shown that the sufficient accuracy of coincidence of the time dependences of the coordinates of the electromechanical guidance systems is attained.
dc.format.extent43-50
dc.format.pages8
dc.identifier.citationVerification of computer Simulink-model for electromechanical system of armament complex guidance of combat vehicle / Yaroslav Paranchuk, Pavlo Evdokimov, Oleksiy Kuznyetsov, Volodymyr Tsjapa // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 1. — P. 43–50.
dc.identifier.citationenVerification of computer Simulink-model for electromechanical system of armament complex guidance of combat vehicle / Yaroslav Paranchuk, Pavlo Evdokimov, Oleksiy Kuznyetsov, Volodymyr Tsjapa // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 6. — No 1. — P. 43–50.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/59999
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (6), 2020
dc.relation.references[1] Blokhin L. M., Sytnychenko N. D. and Kukhar V. V. (2012) New challenges synthesis algorithm of optimal structures observers output coordinates dynamic objects. Problems of Informatization and Management, 4 (40), 19–23. http://dx.doi.org/10.18372/2073-4751.4.7666 (in Ukrainian)
dc.relation.references[2] Shiyko O. M. (2014) Design of joint motion of jet-projectile and mobile starting setting. Systems of Arms and Military Equipment, 2 (38), 44–60. (in Ukrainian)
dc.relation.references[3] Kuntsevich V. M. (2006) Control under uncertainties: guaranteed results in the problems of control and identification. Naukova dumka, Kyiv. (in Russian)
dc.relation.references[4] Rutkovskiy A. L., Matveyeva L. I. and Kozachek G. V. (2010) Optimization of factors of transmission function, got by modified method by Simoyu according to the experimental skim connection feature. Proceedings of Voronezh State Technical University, 3. (in Russian)
dc.relation.references[5] Alikov A. Yu., Kovaleva M. A., Rutkovskiy A. L. and Tedeeva N. V. (2017) Automation of optimal identification of dynamic element transfer functions in complex technical objects based on acceleration curves. Proceedings of Daghestan State Technical University. Technical Sciences, 44 (2), 97–106. http://dx.doi.org/10.21822/2073-6185-2017-44-2-97-106 (in Russian)
dc.relation.references[6] Smilgevicius A. and Rinkeviciene R. (2005) Simulation of transients in the mechanical part of electromechanical system. Mathematical Modelling and Analysis 2005. Proceedings of the 10th International Conference MMA2005 & CMAM2, Trakai, Lithuania, June 1–5, 2005, 155–162.
dc.relation.references[7] Bolognani S., Venturato A. and Zigliotto M. (2000) Theoretical and experimental comparison of speed controllers for elastic two-masssystems. 2000 IEEE 31st Annual Power Electronics Specialists Conference, Galway, Ireland, 23-23 June 2000, 3, 1087–1092. http://dx.doi.org/10.1109/PESC.2000.880463
dc.relation.references[8] Feiler M., Westermaier C. and Schroder D. (2003) Adaptive speed control of a two-mass system. Proc. of 2003 IEEE Conference on Control Applications. CCA 2003., Istanbul, Turkey, 25 June 2003, 2, 1112–1117. http://dx.doi.org/10.1109/CCA.2003.1223166
dc.relation.references[9] Gernet M. and Ratobylsky V. (1969) Determination of moments of inertia. Mashinostroyeniye, Moscow. (in Russian)
dc.relation.referencesen[1] Blokhin L. M., Sytnychenko N. D. and Kukhar V. V. (2012) New challenges synthesis algorithm of optimal structures observers output coordinates dynamic objects. Problems of Informatization and Management, 4 (40), 19–23. http://dx.doi.org/10.18372/2073-4751.4.7666 (in Ukrainian)
dc.relation.referencesen[2] Shiyko O. M. (2014) Design of joint motion of jet-projectile and mobile starting setting. Systems of Arms and Military Equipment, 2 (38), 44–60. (in Ukrainian)
dc.relation.referencesen[3] Kuntsevich V. M. (2006) Control under uncertainties: guaranteed results in the problems of control and identification. Naukova dumka, Kyiv. (in Russian)
dc.relation.referencesen[4] Rutkovskiy A. L., Matveyeva L. I. and Kozachek G. V. (2010) Optimization of factors of transmission function, got by modified method by Simoyu according to the experimental skim connection feature. Proceedings of Voronezh State Technical University, 3. (in Russian)
dc.relation.referencesen[5] Alikov A. Yu., Kovaleva M. A., Rutkovskiy A. L. and Tedeeva N. V. (2017) Automation of optimal identification of dynamic element transfer functions in complex technical objects based on acceleration curves. Proceedings of Daghestan State Technical University. Technical Sciences, 44 (2), 97–106. http://dx.doi.org/10.21822/2073-6185-2017-44-2-97-106 (in Russian)
dc.relation.referencesen[6] Smilgevicius A. and Rinkeviciene R. (2005) Simulation of transients in the mechanical part of electromechanical system. Mathematical Modelling and Analysis 2005. Proceedings of the 10th International Conference MMA2005 & CMAM2, Trakai, Lithuania, June 1–5, 2005, 155–162.
dc.relation.referencesen[7] Bolognani S., Venturato A. and Zigliotto M. (2000) Theoretical and experimental comparison of speed controllers for elastic two-masssystems. 2000 IEEE 31st Annual Power Electronics Specialists Conference, Galway, Ireland, 23-23 June 2000, 3, 1087–1092. http://dx.doi.org/10.1109/PESC.2000.880463
dc.relation.referencesen[8] Feiler M., Westermaier C. and Schroder D. (2003) Adaptive speed control of a two-mass system. Proc. of 2003 IEEE Conference on Control Applications. CCA 2003., Istanbul, Turkey, 25 June 2003, 2, 1112–1117. http://dx.doi.org/10.1109/CCA.2003.1223166
dc.relation.referencesen[9] Gernet M. and Ratobylsky V. (1969) Determination of moments of inertia. Mashinostroyeniye, Moscow. (in Russian)
dc.relation.urihttp://dx.doi.org/10.18372/2073-4751.4.7666
dc.relation.urihttp://dx.doi.org/10.21822/2073-6185-2017-44-2-97-106
dc.relation.urihttp://dx.doi.org/10.1109/PESC.2000.880463
dc.relation.urihttp://dx.doi.org/10.1109/CCA.2003.1223166
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectсистема наведення озброєння
dc.subjectточність позиціонування
dc.subjectшвидкодія
dc.subjectкомп’ютерна модель
dc.subjectarmament guidance system
dc.subjectpositioning accuracy
dc.subjectperformance
dc.subjectcomputer model
dc.titleVerification of computer Simulink-model for electromechanical system of armament complex guidance of combat vehicle
dc.title.alternativeВерифікація комп’ютерної Simulink-моделі електромеханічної системи механізму наведення комплексу озброєння бойової машини
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v6n1_Paranchuk_Y-Verification_of_computer_43-50.pdf
Size:
469.23 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v6n1_Paranchuk_Y-Verification_of_computer_43-50__COVER.png
Size:
436.14 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Plain Text
Description: