Efficiency of Hybrid Solar Collectors Application in Building Heating Systems

dc.citation.epage12
dc.citation.issue1
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage7
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorШаповал, Степан
dc.contributor.authorПришляк, Юрій
dc.contributor.authorІващишин, Федір
dc.contributor.authorГулай, Богдан
dc.contributor.authorКасинець, Мар’яна
dc.contributor.authorМисак, Степан
dc.contributor.authorShapoval, Stepan
dc.contributor.authorPryshliak, Yurii
dc.contributor.authorIvashchyshyn, Fedir
dc.contributor.authorGulai, Bogdan
dc.contributor.authorKasynets, Mariana
dc.contributor.authorMysak, Stepan
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-03-10T08:12:23Z
dc.date.created2024-02-28
dc.date.issued2024-02-28
dc.description.abstractСтаття присвячена використанню гібридних сонячних колекторів, як одного із способів підвищення ефективності геліосистем у цілому. Авторами розглянуто конструкцію сонячного колектора з розташуванням трубок циркуляції над теплопоглинаючою поверхнею із прозорим покриттям. Досліджено геліосистему із природною циркуляцією теплоносія (води). За результатами досліджень розроблено номограму взаємозв'язку коефіцієнта теплової ефективності геліопокриття з прозорим покриттям із розташуванням трубок контуру циркуляції теплоносія над теплопоглиначем залежно від кутів та густини потоку випромінювання. Як результат отримано функціональну залежність, яка дозволяє точно визначати коефіцієнт теплової ефективності для конкретних параметрів і вхідних даних. Наведені дослідження вказують на потребу у застосуванні гібридних сонячних колекторів для забезпечення ефективного збору сонячної енергії та підкреслюють важливість подальших досліджень і вдосконалення конструкції елементів таких систем для зменшення забруднення навколишнього середовища і підвищення стійкості систем теплопостачання.
dc.description.abstractThe article focuses on the use of hybrid solar collectors as one of the ways to increase the efficiency of solar systems in general. The authors consider the design of a solar collector with the arrangement of circulation pipes above the heat-absorbing surface with a transparent coating. A solar system with natural circulation of the heat carrier (water) has been investigated. Based on the research results, a nomogram has been developed to define the relationship between the thermal efficiency coefficient of the solar cover with a transparent coating and the arrangement of pipes of the heat carrier circulation loop above the heat absorber depending on the angles and the intensity of the radiation flux. As a result, a functional dependence is obtained, which allows accurately determining the coefficient of thermal efficiency for specific parameters and input data. This research indicates the need for the use of hybrid solar collectors to ensure efficient collection of solar energy and emphasizes the importance of further research and improvement of the design of elements of such systems to reduce environmental pollution and increase the stability of heating systems.
dc.format.extent7-12
dc.format.pages6
dc.identifier.citationEfficiency of Hybrid Solar Collectors Application in Building Heating Systems / Stepan Shapoval, Yurii Pryshliak, Fedir Ivashchyshyn, Bogdan Gulai, Mariana Kasynets, Stepan Mysak // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 7–12.
dc.identifier.citationenEfficiency of Hybrid Solar Collectors Application in Building Heating Systems / Stepan Shapoval, Yurii Pryshliak, Fedir Ivashchyshyn, Bogdan Gulai, Mariana Kasynets, Stepan Mysak // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 1. — P. 7–12.
dc.identifier.doidoi.org/10.23939/jeecs2024.01.007
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/64040
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 1 (10), 2024
dc.relation.ispartofEnergy Engineering and Control Systems, 1 (10), 2024
dc.relation.references[1] Ricci, M., Sdringola, P., Tamburrino, S., Puglisi, G., Di Donato, E., Ancona, M. A., & Melino, F. (2022). Efficient district heating in a decarbonisation perspective: A case study in italy. Energies, 15(3). DOI: 10.3390/en15030948. https://doi.org/10.3390/en15030948
dc.relation.references[2] He, Y.-L., Qiu, Y., Wang, K., Yuan, F., Wang, W.-Q., Li, M.-J., & Guo, J.-Q. (2020). Perspective of concentrating solar power. Energy, 198, 117373. https://doi.org/10.1016/j.energy.2020.117373.
dc.relation.references[3] Patel, K., Patel, P., & Patel, J. (2012). Review of solar water heating systems. International Journal of Advanced Engineering Technology, 3(4), 146–149.
dc.relation.references[4] Ivashkiv, I., & Trukhan, L. (2019). Development of alternative fuel sources in Ukraine. Economic Analysis, 29(1). http://dx.doi.org/10.35774/econa2019.01.178
dc.relation.references[5] Goel, M., Verma, V. S., Tripathi, N. G. (2022). Solar Collectors and Low-Temperature Solar Energy for Homes. In: Solar Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2099-8_6
dc.relation.references[6] Kalogirou, S. A., & Tripanagnostopoulos, Y. (2006). Hybrid PV/T solar systems for domestic hot water and electricity production. Energy conversion and management, 47(18-19), 3368–3382. https://www.researchgate.net/publication/238741144
dc.relation.references[7] Chen, L., Zhang, Y. F., Liu, W. J., Yin, J. H. (2013). Discussions on Integration Designs of Solar Collectors and Building Envelopes. In: Chen, F., Liu, Y., Hua, G. (eds) LTLGB 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34651-4_122
dc.relation.references[8] Zhelykh, V., Venhryn, I., Kozak, K. & Shapoval,S.(2020). Solar collectors integrated into transparent facades. Production Engineering Archives, 26(3), 84–87. https://doi.org/10.30657/pea.2020.26.17
dc.relation.references[9] Venhryn, І., Shapoval S., Kasynets M., Piznak B. Thermal efficiency analysis of solar heat supply unit combined with glass facade of building. Energy Engineering and Control Systems, 2020, Vol. 6, No. 1, pp. 1–6. https://doi.org/10.23939/jeecs2020.01.001
dc.relation.references[10] Ulewicz, M., Zhelykh, V., Kozak, K., Furdas, Y.: Application of thermosiphon solar collectors for ventilation of premises. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds.) Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering, pp. 180–187. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-27011-7_23
dc.relation.references[11] Zhelykh, V., Shapoval, P., Shapoval, S., Kasynets, M. (2021). Influence of Orientation of Buildings Facades on the Level of Solar Energy Supply to Them. Lecture Notes in Civil Engineering, 100 LNCE, 499–504. https://www.springer.com/series/15087. DOI: 10.1007/978-3-030-57340-9_61
dc.relation.references[12] Arvizu, D., Balaya, P., Cabeza, L., Hollands, K., Jäger-Waldau, A., Kondo, M., Konseibo, C., Meleshko, V., Stein, W., Tamaura, Y., Xu, H., Zilles, R., Weyers, P. (2012). Direct Solar Energy. DOI: 10.1017/CBO9781139151153.007
dc.relation.references[13] Venhryn, I. (2019). Research on Solar Collectors Integrated into the Glass Façade Construction of Buildings/Structures: Necessity and Specifics. Theory and Building Practice, 1(1), 38–46. https://doi.org/10.23939/jtbp2019.01.038
dc.relation.references[14] Davidenko, Y. P. (2016). Passive Use of Solar Energy in Architectural Forms. Energy Efficiency in Construction and Architecture, 8, 107–112. http://science.knuba.edu.ua/source/vydannya/energoefektyvnist/energoefektyvnist-08-2016
dc.relation.references[15] Kasynets, M., Kuznetsova, M., Sukholova, I., & Datsko, O. (2021). Improving the Efficiency of Solar Collector Systems. Молодий вчений, 6(94), 100–103. https://doi.org/10.32839/2304-5809/2021-6-94-22
dc.relation.references[16] Doroshenko, A. V., & Khalak, V. F. (2018). Solar Polymer Liquid Collectors: Analysis of Existing Results. New Solutions Refrigeration Engineering and Technology, 54(5), 44–52. https://doi.org/10.15673/ret.v54i5.1250
dc.relation.references[17] Kasynets, M., Kozak, K., Piznak, B., & Venhryn, I. (2023). Enhancing of Efficiency of Solar Panels Combined with Buildings Coating. Lecture Notes in Civil Engineering, 290 LNCE, 136–149. https://www.springer.com/series/15087 ISBN: 978-303114140-9 DOI: 10.1007/978-3-031-14141-6_14
dc.relation.references[18] Voznyak, O., Spodyniuk, N., Antypov, I., Dudkiewicz, E., Kasynets, M., Savchenko, O., & Tarasenko, S. (2023). Efficiency Improvement of Eco-Friendly Solar Heat Supply System as a Building Coating (Open Access). Sustainability (Switzerland), 15(3), Article No. 2831. http://www.mdpi.com/journal/sustainability/ DOI: 10.3390/su15032831.
dc.relation.referencesen[1] Ricci, M., Sdringola, P., Tamburrino, S., Puglisi, G., Di Donato, E., Ancona, M. A., & Melino, F. (2022). Efficient district heating in a decarbonisation perspective: A case study in italy. Energies, 15(3). DOI: 10.3390/en15030948. https://doi.org/10.3390/en15030948
dc.relation.referencesen[2] He, Y.-L., Qiu, Y., Wang, K., Yuan, F., Wang, W.-Q., Li, M.-J., & Guo, J.-Q. (2020). Perspective of concentrating solar power. Energy, 198, 117373. https://doi.org/10.1016/j.energy.2020.117373.
dc.relation.referencesen[3] Patel, K., Patel, P., & Patel, J. (2012). Review of solar water heating systems. International Journal of Advanced Engineering Technology, 3(4), 146–149.
dc.relation.referencesen[4] Ivashkiv, I., & Trukhan, L. (2019). Development of alternative fuel sources in Ukraine. Economic Analysis, 29(1). http://dx.doi.org/10.35774/econa2019.01.178
dc.relation.referencesen[5] Goel, M., Verma, V. S., Tripathi, N. G. (2022). Solar Collectors and Low-Temperature Solar Energy for Homes. In: Solar Energy. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-2099-8_6
dc.relation.referencesen[6] Kalogirou, S. A., & Tripanagnostopoulos, Y. (2006). Hybrid PV/T solar systems for domestic hot water and electricity production. Energy conversion and management, 47(18-19), 3368–3382. https://www.researchgate.net/publication/238741144
dc.relation.referencesen[7] Chen, L., Zhang, Y. F., Liu, W. J., Yin, J. H. (2013). Discussions on Integration Designs of Solar Collectors and Building Envelopes. In: Chen, F., Liu, Y., Hua, G. (eds) LTLGB 2012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34651-4_122
dc.relation.referencesen[8] Zhelykh, V., Venhryn, I., Kozak, K. & Shapoval,S.(2020). Solar collectors integrated into transparent facades. Production Engineering Archives, 26(3), 84–87. https://doi.org/10.30657/pea.2020.26.17
dc.relation.referencesen[9] Venhryn, I., Shapoval S., Kasynets M., Piznak B. Thermal efficiency analysis of solar heat supply unit combined with glass facade of building. Energy Engineering and Control Systems, 2020, Vol. 6, No. 1, pp. 1–6. https://doi.org/10.23939/jeecs2020.01.001
dc.relation.referencesen[10] Ulewicz, M., Zhelykh, V., Kozak, K., Furdas, Y., Application of thermosiphon solar collectors for ventilation of premises. In: Blikharskyy, Z., Koszelnik, P., Mesaros, P. (eds.) Proceedings of CEE 2019: Advances in Resource-saving Technologies and Materials in Civil and Environmental Engineering, pp. 180–187. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-27011-7_23
dc.relation.referencesen[11] Zhelykh, V., Shapoval, P., Shapoval, S., Kasynets, M. (2021). Influence of Orientation of Buildings Facades on the Level of Solar Energy Supply to Them. Lecture Notes in Civil Engineering, 100 LNCE, 499–504. https://www.springer.com/series/15087. DOI: 10.1007/978-3-030-57340-9_61
dc.relation.referencesen[12] Arvizu, D., Balaya, P., Cabeza, L., Hollands, K., Jäger-Waldau, A., Kondo, M., Konseibo, C., Meleshko, V., Stein, W., Tamaura, Y., Xu, H., Zilles, R., Weyers, P. (2012). Direct Solar Energy. DOI: 10.1017/CBO9781139151153.007
dc.relation.referencesen[13] Venhryn, I. (2019). Research on Solar Collectors Integrated into the Glass Façade Construction of Buildings/Structures: Necessity and Specifics. Theory and Building Practice, 1(1), 38–46. https://doi.org/10.23939/jtbp2019.01.038
dc.relation.referencesen[14] Davidenko, Y. P. (2016). Passive Use of Solar Energy in Architectural Forms. Energy Efficiency in Construction and Architecture, 8, 107–112. http://science.knuba.edu.ua/source/vydannya/energoefektyvnist/energoefektyvnist-08-2016
dc.relation.referencesen[15] Kasynets, M., Kuznetsova, M., Sukholova, I., & Datsko, O. (2021). Improving the Efficiency of Solar Collector Systems. Molodii vchenii, 6(94), 100–103. https://doi.org/10.32839/2304-5809/2021-6-94-22
dc.relation.referencesen[16] Doroshenko, A. V., & Khalak, V. F. (2018). Solar Polymer Liquid Collectors: Analysis of Existing Results. New Solutions Refrigeration Engineering and Technology, 54(5), 44–52. https://doi.org/10.15673/ret.v54i5.1250
dc.relation.referencesen[17] Kasynets, M., Kozak, K., Piznak, B., & Venhryn, I. (2023). Enhancing of Efficiency of Solar Panels Combined with Buildings Coating. Lecture Notes in Civil Engineering, 290 LNCE, 136–149. https://www.springer.com/series/15087 ISBN: 978-303114140-9 DOI: 10.1007/978-3-031-14141-6_14
dc.relation.referencesen[18] Voznyak, O., Spodyniuk, N., Antypov, I., Dudkiewicz, E., Kasynets, M., Savchenko, O., & Tarasenko, S. (2023). Efficiency Improvement of Eco-Friendly Solar Heat Supply System as a Building Coating (Open Access). Sustainability (Switzerland), 15(3), Article No. 2831. http://www.mdpi.com/journal/sustainability/ DOI: 10.3390/su15032831.
dc.relation.urihttps://doi.org/10.3390/en15030948
dc.relation.urihttps://doi.org/10.1016/j.energy.2020.117373
dc.relation.urihttp://dx.doi.org/10.35774/econa2019.01.178
dc.relation.urihttps://doi.org/10.1007/978-981-19-2099-8_6
dc.relation.urihttps://www.researchgate.net/publication/238741144
dc.relation.urihttps://doi.org/10.1007/978-3-642-34651-4_122
dc.relation.urihttps://doi.org/10.30657/pea.2020.26.17
dc.relation.urihttps://doi.org/10.23939/jeecs2020.01.001
dc.relation.urihttps://doi.org/10.1007/978-3-030-27011-7_23
dc.relation.urihttps://www.springer.com/series/15087
dc.relation.urihttps://doi.org/10.23939/jtbp2019.01.038
dc.relation.urihttp://science.knuba.edu.ua/source/vydannya/energoefektyvnist/energoefektyvnist-08-2016
dc.relation.urihttps://doi.org/10.32839/2304-5809/2021-6-94-22
dc.relation.urihttps://doi.org/10.15673/ret.v54i5.1250
dc.relation.urihttp://www.mdpi.com/journal/sustainability/
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectгібридний сонячний колектор
dc.subjectтеплопоглинач
dc.subjectгеліосистема
dc.subjectкоефіцієнт теплової ефективності
dc.subjecthybrid solar collector
dc.subjectheat absorber
dc.subjectsolar system
dc.subjectcoefficient of thermal efficiency
dc.titleEfficiency of Hybrid Solar Collectors Application in Building Heating Systems
dc.title.alternativeЕфективність застосування гібридних сонячних колекторів у системах теплозабезпечення будівель
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n1_Shapoval_S-Efficiency_of_Hybrid_Solar_7-12.pdf
Size:
1.6 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n1_Shapoval_S-Efficiency_of_Hybrid_Solar_7-12__COVER.png
Size:
422.7 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.99 KB
Format:
Plain Text
Description: