Methods of increasing the seismic resistance of metal structures
| dc.citation.epage | 130 | |
| dc.citation.issue | 1 | |
| dc.citation.journalTitle | Архітектурні дослідження | |
| dc.citation.spage | 118 | |
| dc.contributor.affiliation | Західно-Казахстанський аграрно-технічний університет імені Жангир-хана | |
| dc.contributor.affiliation | Західно-Казахстанський аграрно-технічний університет імені Жангир-хана | |
| dc.contributor.affiliation | Західно-Казахстанський аграрно-технічний університет імені Жангир-хана | |
| dc.contributor.affiliation | Кизилординський університет імені Коркит Ата | |
| dc.contributor.affiliation | Кизилординський університет імені Коркит Ата | |
| dc.contributor.affiliation | West Kazakhstan Agrarian and Technical University named after Zhangir Khan | |
| dc.contributor.affiliation | West Kazakhstan Agrarian and Technical University named after Zhangir Khan | |
| dc.contributor.affiliation | West Kazakhstan Agrarian and Technical University named after Zhangir Khan | |
| dc.contributor.affiliation | Korkyt Ata Kyzylorda University | |
| dc.contributor.affiliation | Korkyt Ata Kyzylorda University | |
| dc.contributor.author | Монтаєв, Сарсенбек | |
| dc.contributor.author | Шингужиєва, Алтинай | |
| dc.contributor.author | Аділова, Нургуль | |
| dc.contributor.author | Қаршига, Галимжан | |
| dc.contributor.author | Абдікерова, Улія | |
| dc.contributor.author | Montayev, Sarsenbek | |
| dc.contributor.author | Shinguzhieva, Altynay | |
| dc.contributor.author | Adilova, Nurgul | |
| dc.contributor.author | Karshyga, Galymzhan | |
| dc.contributor.author | Abdikerova, Uliya | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-11-24T12:02:57Z | |
| dc.date.created | 2025-04-10 | |
| dc.date.issued | 2025-04-10 | |
| dc.description.abstract | Дослідження було спрямоване на вивчення методів підвищення сейсмостійкості металоконструкцій для поліпшення їхньої стійкості до сейсмічних впливів. Під час дослідження застосовувались методи динамічного та сейсмічного аналізу, а також порівняльний підхід для оцінки ефективності матеріалів і систем під час впливу сейсмічних навантажень. Проаналізовано різні методи підвищення сейсмостійкості металоконструкцій, включно з використанням високоміцних матеріалів, посиленням з’єднань, впровадженням еластичних елементів, що демпферують, та оптимізацією проєктних рішень. Було встановлено, що застосування сучасних високоміцних сталей і сплавів істотно підвищує стійкість конструкцій до сейсмічних впливів, завдяки їхній поліпшеній пластичності та здатності до деформації без руйнування. Посилення зварних і болтових з’єднань сприяє підвищенню загальної жорсткості та міцності конструкції, особливо в місцях, схильних до максимальних навантажень. Введення демпферних елементів, таких як гумометалеві подушки, дає змогу ефективно знижувати вібраційні коливання, тим самим зменшуючи навантаження на конструкцію під час землетрусів. Також було підтверджено, що використання арматурних каркасів і посилення фундаменту за допомогою пальових конструкцій значно збільшує сейсмостійкість будівель і споруд. Крім того, було виявлено, що використання сейсмостійких технологій проєктування, таких як розподіл навантажень і застосування додаткових конструктивних елементів, значно підвищує стабільність металоконструкцій в умовах сильних сейсмічних впливів. Дослідження показало, що ретельне дотримання сейсмічних норм і стандартів під час проєктування є ключовим фактором для забезпечення надійності та безпеки будівельних об’єктів у сейсмічно небезпечних регіонах. У результаті дослідження було зроблено висновок про необхідність комплексного підходу до проєктування металоконструкцій з урахуванням сейсмічної активності регіону, що дасть змогу забезпечити їхню довгострокову експлуатацію в умовах сейсмічних ризиків | |
| dc.description.abstract | The purpose of the study was to investigate methods to increase the seismic resistance of steel structures to improve their seismic resistance. The research applied dynamic and seismic analysis methods and a comparative approach to evaluate the performance of materials and systems under seismic loads. Various methods of increasing the seismic resistance of metal structures were analysed, including the use of high-strength materials, reinforcement of joints, the introduction of elastic damping elements, and optimisation of design solutions. It was found that the use of modern high-strength steels and alloys significantly increases the resistance of structures to seismic influences, due to their improved plasticity and ability to deform without fracture. Reinforcement of welded and bolted joints helps to increase the overall rigidity and strength of the structure, especially in areas subject to maximum loads. The introduction of damping elements, such as rubber-metal cushions, helps to effectively reduce vibrational oscillations, thereby reducing the load on the structure during earthquakes. It was also confirmed that the use of reinforcing frames and reinforcement of the foundation by means of pile structures significantly increases the seismic resistance of buildings and structures. In addition, it was found that the use of earthquake-resistant design technologies, such as load distribution and the use of additional structural elements, significantly increases the stability of metal structures in conditions of strong seismic impacts. The study showed that careful compliance with seismic norms and standards in the design process is a key factor in ensuring the reliability and safety of construction facilities in earthquake-prone regions. As a result of the study, it was concluded that an integrated approach to the design of metal structures is necessary, considering the seismic activity of the region, which will ensure their long-term operation in conditions of seismic risks | |
| dc.format.extent | 118-130 | |
| dc.format.pages | 13 | |
| dc.identifier.citation | Methods of increasing the seismic resistance of metal structures / Sarsenbek Montayev, Altynay Shinguzhieva, Nurgul Adilova, Galymzhan Karshyga, Uliya Abdikerova // Architectural Studies. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 1. — P. 118–130. | |
| dc.identifier.citation2015 | Methods of increasing the seismic resistance of metal structures / Montayev S. та ін. // Architectural Studies, Lviv. 2025. Vol 11. No 1. P. 118–130. | |
| dc.identifier.citationenAPA | Montayev, S., Shinguzhieva, A., Adilova, N., Karshyga, G., & Abdikerova, U. (2025). Methods of increasing the seismic resistance of metal structures. Architectural Studies, 11(1), 118-130. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Montayev S., Shinguzhieva A., Adilova N., Karshyga G., Abdikerova U. (2025) Methods of increasing the seismic resistance of metal structures. Architectural Studies (Lviv), vol. 11, no 1, pp. 118-130. | |
| dc.identifier.doi | 10.56318/as/1.2025.118 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/121566 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Архітектурні дослідження, 1 (11), 2025 | |
| dc.relation.ispartof | Architectural Studies, 1 (11), 2025 | |
| dc.relation.references | [1] Al-Dala’ien, R.N., Syamsir, A., Kodrg, A.-F.J., Usman, F., & Abdullah, M.J. (2024). The effect of continuous rectangular spiral shear reinforcement on the dynamic behavior of RC solid slab subjected to low-velocity impact loading. Results in Engineering, 21, article number 101942. doi: 10.1016/j.rineng.2024.101942. | |
| dc.relation.references | [2] Amey, R., et al. (2023). Improving urban seismic risk estimates for Bishkek, Kyrgyzstan, through incorporating recently gained geological knowledge of hazards. Natural Hazards, 116(1), 365-399. doi: 10.31223/X5KG9X. | |
| dc.relation.references | [3] Amirbekova, A., Karabayev, G., & Mamedov, S. (2023). Architecture and planning of residential complexes in Kazakhstan. International Society for the Study of Vernacular Settlements, 8(10), 213-222. | |
| dc.relation.references | [4] An, Q., Wang, C., Ma, T., Zou, F., Fan, Z., Zhou, E., Ge, E., Chen, M., & Chen, M. (2024). Aeronautical composite/metal bolted joint and its mechanical properties: A review. Journal of Intelligent Manufacturing and Special Equipment, 5(1), 70-91. doi: 10.1108/JIMSE-12-2023-0012. | |
| dc.relation.references | [5] Bannikov, D., Radkevich, A., & Nikiforova, N. (2019). Features of the design of steel frame structures in India for seismic areas. Materials Science Forum, 968, 348-354. doi: 10.4028/www.scientific.net/MSF.968.348. | |
| dc.relation.references | [6] Biryukova, T. (2023). Renovation: Demolition or modernization. Retrieved from https://dknews.kz/ru/chitayte-v-nomere-dk/274759-renovaciya-snos-ili-modernizaciya. | |
| dc.relation.references | [7] Cao, X.Y., Shen, D., Feng, D.C., Wang, C.L., Qu, Z., & Wu, G. (2022). Seismic retrofitting of existing frame buildings through externally attached sub-structures: State of the art review and future perspectives. Journal of Building Engineering, 57, article number 104904. doi: 10.1016/j.jobe.2022.104904. | |
| dc.relation.references | [8] Cerapon, A.M., Cotetiu, R.-I., & Nasui, V. (2023). Considerations on the current state of research on vibration testing of rubber-metal products. Scientific Bulletin, Series C: Fascicle Mechanics, Tribology, Machine Manufacturing Technology, 2023(37), 10-13. | |
| dc.relation.references | [9] Deterioration of houses and utilities in Bishkek. Which multi-story buildings are dangerous to live in? (2019). Retrieved from https://oper.kaktus.media/doc/395181_iznoshennost_domov_i_kommynikaciy_v_bishkeke._v_kakih_mnogoetajkah_jit_opasno.html. | |
| dc.relation.references | [10] Fang, C., Wang, W., Qiu, C., Hu, S., MacRae, G.A., & Eatherton, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. Journal of Constructional Steel Research, 191, article number 107172. doi: 10.1016/j.jcsr.2022.107172. | |
| dc.relation.references | [11] Ghandil, M., Riahi, H.T., & Behnamfar, F. (2022). Introduction of a new metallic-yielding pistonic damper for seismic control of structures. Journal of Constructional Steel Research, 194, article number 107299. doi: 10.1016/j.jcsr.2022.107299. | |
| dc.relation.references | [12] Gonultas, B., & Ali Gurtas, M. (2016). Turkey unveils 3rd Bosphorus bridge. Retrieved from https://www.aa.com.tr/en/economy/turkey-unveils-3rd-bosphorus-bridge/636056. | |
| dc.relation.references | [13] Hassan, W.M., & Elmorsy, M. (2021). Database trends and critical review of seismic performance tests on high strength steel reinforced concrete components. Engineering Structures, 239, article number 112092. doi: 10.1016/j.engstruct.2021.112092. | |
| dc.relation.references | [14] He, W., He, K., Yao, C., Liu, P., & Zou, C. (2022). Comparison of damping performance of an aluminum bridge via material damping, support damping and external damping methods. Structures, 45, 1139-1155. doi: 10.1016/j.istruc.2022.09.089. | |
| dc.relation.references | [15] Huang, L., Li, H., Xu, S., & Dai, B. (2023). Structural system design and earthquake response analysis of prefabricated pile-plate bridge. Journal of Asian Architecture and Building Engineering, 22(4), 2263-2274. doi: 10.1080/13467581.2022.2145217. | |
| dc.relation.references | [16] Iervolino, I., Baraschino, R., & Spillatura, A. (2023). Evolution of seismic reliability of code-conforming Italian buildings. Journal of Earthquake Engineering, 27(7), 1740-1768. doi: 10.1080/13632469.2022.2087801. | |
| dc.relation.references | [17] Kasimzade, A.A., & Nematli, E. (2023). New structural seismic isolation system for tower structures. In A. Kasimzade, M. Erdik, T. Kundu, H. Sucuoğlu & P. Clemente (Eds.), International congress on advanced earthquake resistant structures (pp. 3-43). Cham: Springer. doi: 10.1007/978-3-031-65407-7_1. | |
| dc.relation.references | [18] Kharnoob, M.M., Hammood, A.I., & Hasan, A.H.J. (2021). A review: The structures of vibration control devices of Zn and Fe based on memory system alloy. Materials Today: Proceedings, 42(5), 3035-3040. doi: 10.1016/j.matpr.2020.12.825. | |
| dc.relation.references | [19] Kriukova, O., Pavliy, O., Hlabets, S., & Kukhta, I. (2024). Application of ultrasound and radiographic methods of non-destructive control for quality assessment of metal products of additive production. Technologies and Engineering, 25(1), 60-66. doi: 10.30857/2786-5371.2024.1.6. | |
| dc.relation.references | [20] Li, H., Askari, M., Li, J., Li, Y., & Yu, Y. (2021). A novel structural seismic protection system with negative stiffness and controllable damping. Structural Control and Health Monitoring, 28(10), article number e2810. doi: 10.1002/stc.2810. | |
| dc.relation.references | [21] Li, Z., et al. (2021). Enhanced strengthening and hardening via self-stabilized dislocation network in additively manufactured metals. Materials Today, 50, 79-88. doi: 10.1016/j.mattod.2021.06.002. | |
| dc.relation.references | [22] Liu, X.C., Tao, Y.L., Chen, X., & Cui, F.Y. (2021). Seismic performance of welded-bolted joint between double channel beam and CFST column. Engineering Structures, 247, article number 113202. doi: 10.1016/j.engstruct.2021.113202. | |
| dc.relation.references | [23] Lokkas, P., Papadimitriou, E., Alamanis, N., Papageorgiou, G., Christodoulou, D., & Chrisanidis, T. (2021). Significant foundation techniques for education: A critical analysis. WSEAS Transactions on Advances in Engineering Education, 18, 7-26. doi: 10.37394/232010.2021.18.2. | |
| dc.relation.references | [24] Marti, M., Dallo, I., Roth, P., Papadopoulos, A.N., & Zaugg, S. (2023). Illustrating the impact of earthquakes: Evidence-based and user-centered recommendations on how to design earthquake scenarios and rapid impact assessments. International Journal of Disaster Risk Reduction, 90, article number 103674. doi: 10.1016/j.ijdrr.2023.103674. | |
| dc.relation.references | [25] Memisoglu Apaydin, N., Zulfikar, A.C., & Cetindemir, O. (2022). Structural health monitoring systems of long-span bridges in Turkey and lessons learned from experienced extreme events. Journal of Civil Structural Health Monitoring, 12(6), 1375-1412. doi: 10.1007/s13349-022-00551-x. | |
| dc.relation.references | [26] Mohammadi, A., Edalati, P., Arita, M., Bae, J.W., Kim, H.S., & Edalati, K. (2023). High strength and high ductility of a severely deformed high-entropy alloy in the presence of hydrogen. Corrosion Science, 216, article number 111097. doi: 10.1016/j.corsci.2023.111097. | |
| dc.relation.references | [27] Peleshenko, S., Korzhyk, V., Voitenko, O., Khaskin, V., & Tkachuk, V. (2017). Analysis of the current state of additive welding technologies for manufacturing volume metallic products (review). Eastern-European Journal of Enterprise Technologies, 3(1(87)), 42-52. doi: 10.15587/1729-4061.2017.99666. | |
| dc.relation.references | [28] Ribeiro, T., Bernardo, L., Carrazedo, R., & De Domenico, D. (2022). Seismic design of bolted connections in steel structures – a critical assessment of practice and research. Buildings, 12(1), article number 32. doi: 10.3390/buildings12010032. | |
| dc.relation.references | [29] Ridwan, R., Jemaa, Y., & Yuniarto, E. (2023). Various methods of strengthening reinforced concrete beam-column joint subjected earthquake-type loading using fibre-reinforced polymers: A critical review. Journal of Applied Materials and Technology, 4(2), 42-55. doi: 10.31258/Jamt.4.2.42-55. | |
| dc.relation.references | [30] Rieß, S., Kaal, W., & Herath, K. (2021). Frequency-adaptable tuned mass damper using metal cushions. Vibration, 4(1), 77-90. doi: 10.3390/vibration4010007. | |
| dc.relation.references | [31] Rusho, M.A., Azizova, R., Mykhalevskiy, D., Karyonov, M., & Hasanova, H. (2024). Advanced earthquake prediction: unifying networks, algorithms, and attention-driven LSTM modelling. International Journal of GEOMATE, 27(119), 135-142. doi: 10.21660/2024.119.m2415. | |
| dc.relation.references | [32] Sakhno, S., Popruha, D., & Mokryak, H. (2024). Peculiarities of the work of a concrete beam with basalt armature. Mining Journal of Kryvyi Rih National University, 22(1), 7-12. doi: 10.31721/2306-5435-2024-1-112-7-12. | |
| dc.relation.references | [33] Sawamura, Y., Inagami, K., Nishihara, T., Kosaka, T., Hattori, M., & Kimura, M. (2021). Seismic performance of group pile foundation with ground improvement during liquefaction. Soils and Foundations, 61(4), 944-959. doi: 10.1016/j.sandf.2021.06.010. | |
| dc.relation.references | [34] Shahjalal, M., Yahia, A.K., Morshed, A.S., & Tanha, N.I. (2024). Earthquake-resistant building design: Innovations and challenges. Global Mainstream Journal of Innovation, Engineering & Emerging Technology, 3(4), 101-119. doi: 10.62304/jieet.v3i04.209. | |
| dc.relation.references | [35] Su, J., Li, Z.X., Dhakal, R.P., Li, C., & Wang, F. (2021). Comparative study on seismic vulnerability of RC bridge piers reinforced with normal and high-strength steel bars. Structures, 29, 1562-1581. doi: 10.1016/j.istruc.2020.12.048. | |
| dc.relation.references | [36] Su, L., Wan, H.P., Lu, J., Ling, X., Elgamal, A., & Arulmoli, A.K. (2021). Seismic performance evaluation of a pile-supported wharf system at two seismic hazard levels. Ocean Engineering, 219, article number 108333. doi: 10.1016/j.oceaneng.2020.108333. | |
| dc.relation.references | [37] Tokyo Skytree. (2024). Retrieved from https://www.japan-guide.com/e/e3064.html. | |
| dc.relation.references | [38] Waheeb, R. (2023). Keys to successful design of earthquake-resistant buildings. SSRN. | |
| dc.relation.references | [39] Waqas, H.A., Sahil, M., Khan, M.M., Anwar, A.W., Shah, M.U., & Usman, M. (2024). Optimizing reinforcement strategies for robust beam-column joints in seismic-resistant structures. Arabian Journal for Science and Engineering, 49(4), 6107-6124. doi: 10.1007/s13369-023-08591-1. | |
| dc.relation.references | [40] Xu, Q., Chen, H., Li, W., Zheng, S., & Zhang, X. (2022). Experimental investigation on seismic behavior of steel welded connections considering the influence of structural forms. Engineering Failure Analysis, 139, article number 106499. doi: 10.1016/j.engfailanal.2022.106499. | |
| dc.relation.references | [41] Zakharova, I. (2024). Welding processes in the restoration of industrial and energy facilities. Machinery & Energetics, 15(1), 56-64. doi: 10.31548/machinery/1.2024.56. | |
| dc.relation.references | [42] Zakian, P., & Kaveh, A. (2023). Seismic design optimization of engineering structures: A comprehensive review. Acta Mechanica, 234(4), 1305-1330. doi: 10.1007/s00707-022-03470-6. | |
| dc.relation.references | [43] Zhang, J.-L., Li, G., Yu, D.-H., & Dong, Z.-Q. (2024). Framework for seismic risk analysis of engineering structures considering the coupling damage from multienvironmental factors. Journal of Structural Engineering, 150(10). doi: 10.1061/JSENDH.STENG-13340. | |
| dc.relation.references | [44] Zhang, Y., Fung, J.F., Johnson, K.J., & Sattar, S. (2022). Review of seismic risk mitigation policies in earthquake-prone countries: Lessons for earthquake resilience in the United States. Journal of Earthquake Engineering, 26(12), 6208-6235. doi: 10.1080/13632469.2021.1911889. | |
| dc.relation.referencesen | [1] Al-Dala’ien, R.N., Syamsir, A., Kodrg, A.-F.J., Usman, F., & Abdullah, M.J. (2024). The effect of continuous rectangular spiral shear reinforcement on the dynamic behavior of RC solid slab subjected to low-velocity impact loading. Results in Engineering, 21, article number 101942. doi: 10.1016/j.rineng.2024.101942. | |
| dc.relation.referencesen | [2] Amey, R., et al. (2023). Improving urban seismic risk estimates for Bishkek, Kyrgyzstan, through incorporating recently gained geological knowledge of hazards. Natural Hazards, 116(1), 365-399. doi: 10.31223/X5KG9X. | |
| dc.relation.referencesen | [3] Amirbekova, A., Karabayev, G., & Mamedov, S. (2023). Architecture and planning of residential complexes in Kazakhstan. International Society for the Study of Vernacular Settlements, 8(10), 213-222. | |
| dc.relation.referencesen | [4] An, Q., Wang, C., Ma, T., Zou, F., Fan, Z., Zhou, E., Ge, E., Chen, M., & Chen, M. (2024). Aeronautical composite/metal bolted joint and its mechanical properties: A review. Journal of Intelligent Manufacturing and Special Equipment, 5(1), 70-91. doi: 10.1108/JIMSE-12-2023-0012. | |
| dc.relation.referencesen | [5] Bannikov, D., Radkevich, A., & Nikiforova, N. (2019). Features of the design of steel frame structures in India for seismic areas. Materials Science Forum, 968, 348-354. doi: 10.4028/www.scientific.net/MSF.968.348. | |
| dc.relation.referencesen | [6] Biryukova, T. (2023). Renovation: Demolition or modernization. Retrieved from https://dknews.kz/ru/chitayte-v-nomere-dk/274759-renovaciya-snos-ili-modernizaciya. | |
| dc.relation.referencesen | [7] Cao, X.Y., Shen, D., Feng, D.C., Wang, C.L., Qu, Z., & Wu, G. (2022). Seismic retrofitting of existing frame buildings through externally attached sub-structures: State of the art review and future perspectives. Journal of Building Engineering, 57, article number 104904. doi: 10.1016/j.jobe.2022.104904. | |
| dc.relation.referencesen | [8] Cerapon, A.M., Cotetiu, R.-I., & Nasui, V. (2023). Considerations on the current state of research on vibration testing of rubber-metal products. Scientific Bulletin, Series C: Fascicle Mechanics, Tribology, Machine Manufacturing Technology, 2023(37), 10-13. | |
| dc.relation.referencesen | [9] Deterioration of houses and utilities in Bishkek. Which multi-story buildings are dangerous to live in? (2019). Retrieved from https://oper.kaktus.media/doc/395181_iznoshennost_domov_i_kommynikaciy_v_bishkeke._v_kakih_mnogoetajkah_jit_opasno.html. | |
| dc.relation.referencesen | [10] Fang, C., Wang, W., Qiu, C., Hu, S., MacRae, G.A., & Eatherton, M.R. (2022). Seismic resilient steel structures: A review of research, practice, challenges and opportunities. Journal of Constructional Steel Research, 191, article number 107172. doi: 10.1016/j.jcsr.2022.107172. | |
| dc.relation.referencesen | [11] Ghandil, M., Riahi, H.T., & Behnamfar, F. (2022). Introduction of a new metallic-yielding pistonic damper for seismic control of structures. Journal of Constructional Steel Research, 194, article number 107299. doi: 10.1016/j.jcsr.2022.107299. | |
| dc.relation.referencesen | [12] Gonultas, B., & Ali Gurtas, M. (2016). Turkey unveils 3rd Bosphorus bridge. Retrieved from https://www.aa.com.tr/en/economy/turkey-unveils-3rd-bosphorus-bridge/636056. | |
| dc.relation.referencesen | [13] Hassan, W.M., & Elmorsy, M. (2021). Database trends and critical review of seismic performance tests on high strength steel reinforced concrete components. Engineering Structures, 239, article number 112092. doi: 10.1016/j.engstruct.2021.112092. | |
| dc.relation.referencesen | [14] He, W., He, K., Yao, C., Liu, P., & Zou, C. (2022). Comparison of damping performance of an aluminum bridge via material damping, support damping and external damping methods. Structures, 45, 1139-1155. doi: 10.1016/j.istruc.2022.09.089. | |
| dc.relation.referencesen | [15] Huang, L., Li, H., Xu, S., & Dai, B. (2023). Structural system design and earthquake response analysis of prefabricated pile-plate bridge. Journal of Asian Architecture and Building Engineering, 22(4), 2263-2274. doi: 10.1080/13467581.2022.2145217. | |
| dc.relation.referencesen | [16] Iervolino, I., Baraschino, R., & Spillatura, A. (2023). Evolution of seismic reliability of code-conforming Italian buildings. Journal of Earthquake Engineering, 27(7), 1740-1768. doi: 10.1080/13632469.2022.2087801. | |
| dc.relation.referencesen | [17] Kasimzade, A.A., & Nematli, E. (2023). New structural seismic isolation system for tower structures. In A. Kasimzade, M. Erdik, T. Kundu, H. Sucuoğlu & P. Clemente (Eds.), International congress on advanced earthquake resistant structures (pp. 3-43). Cham: Springer. doi: 10.1007/978-3-031-65407-7_1. | |
| dc.relation.referencesen | [18] Kharnoob, M.M., Hammood, A.I., & Hasan, A.H.J. (2021). A review: The structures of vibration control devices of Zn and Fe based on memory system alloy. Materials Today: Proceedings, 42(5), 3035-3040. doi: 10.1016/j.matpr.2020.12.825. | |
| dc.relation.referencesen | [19] Kriukova, O., Pavliy, O., Hlabets, S., & Kukhta, I. (2024). Application of ultrasound and radiographic methods of non-destructive control for quality assessment of metal products of additive production. Technologies and Engineering, 25(1), 60-66. doi: 10.30857/2786-5371.2024.1.6. | |
| dc.relation.referencesen | [20] Li, H., Askari, M., Li, J., Li, Y., & Yu, Y. (2021). A novel structural seismic protection system with negative stiffness and controllable damping. Structural Control and Health Monitoring, 28(10), article number e2810. doi: 10.1002/stc.2810. | |
| dc.relation.referencesen | [21] Li, Z., et al. (2021). Enhanced strengthening and hardening via self-stabilized dislocation network in additively manufactured metals. Materials Today, 50, 79-88. doi: 10.1016/j.mattod.2021.06.002. | |
| dc.relation.referencesen | [22] Liu, X.C., Tao, Y.L., Chen, X., & Cui, F.Y. (2021). Seismic performance of welded-bolted joint between double channel beam and CFST column. Engineering Structures, 247, article number 113202. doi: 10.1016/j.engstruct.2021.113202. | |
| dc.relation.referencesen | [23] Lokkas, P., Papadimitriou, E., Alamanis, N., Papageorgiou, G., Christodoulou, D., & Chrisanidis, T. (2021). Significant foundation techniques for education: A critical analysis. WSEAS Transactions on Advances in Engineering Education, 18, 7-26. doi: 10.37394/232010.2021.18.2. | |
| dc.relation.referencesen | [24] Marti, M., Dallo, I., Roth, P., Papadopoulos, A.N., & Zaugg, S. (2023). Illustrating the impact of earthquakes: Evidence-based and user-centered recommendations on how to design earthquake scenarios and rapid impact assessments. International Journal of Disaster Risk Reduction, 90, article number 103674. doi: 10.1016/j.ijdrr.2023.103674. | |
| dc.relation.referencesen | [25] Memisoglu Apaydin, N., Zulfikar, A.C., & Cetindemir, O. (2022). Structural health monitoring systems of long-span bridges in Turkey and lessons learned from experienced extreme events. Journal of Civil Structural Health Monitoring, 12(6), 1375-1412. doi: 10.1007/s13349-022-00551-x. | |
| dc.relation.referencesen | [26] Mohammadi, A., Edalati, P., Arita, M., Bae, J.W., Kim, H.S., & Edalati, K. (2023). High strength and high ductility of a severely deformed high-entropy alloy in the presence of hydrogen. Corrosion Science, 216, article number 111097. doi: 10.1016/j.corsci.2023.111097. | |
| dc.relation.referencesen | [27] Peleshenko, S., Korzhyk, V., Voitenko, O., Khaskin, V., & Tkachuk, V. (2017). Analysis of the current state of additive welding technologies for manufacturing volume metallic products (review). Eastern-European Journal of Enterprise Technologies, 3(1(87)), 42-52. doi: 10.15587/1729-4061.2017.99666. | |
| dc.relation.referencesen | [28] Ribeiro, T., Bernardo, L., Carrazedo, R., & De Domenico, D. (2022). Seismic design of bolted connections in steel structures – a critical assessment of practice and research. Buildings, 12(1), article number 32. doi: 10.3390/buildings12010032. | |
| dc.relation.referencesen | [29] Ridwan, R., Jemaa, Y., & Yuniarto, E. (2023). Various methods of strengthening reinforced concrete beam-column joint subjected earthquake-type loading using fibre-reinforced polymers: A critical review. Journal of Applied Materials and Technology, 4(2), 42-55. doi: 10.31258/Jamt.4.2.42-55. | |
| dc.relation.referencesen | [30] Rieß, S., Kaal, W., & Herath, K. (2021). Frequency-adaptable tuned mass damper using metal cushions. Vibration, 4(1), 77-90. doi: 10.3390/vibration4010007. | |
| dc.relation.referencesen | [31] Rusho, M.A., Azizova, R., Mykhalevskiy, D., Karyonov, M., & Hasanova, H. (2024). Advanced earthquake prediction: unifying networks, algorithms, and attention-driven LSTM modelling. International Journal of GEOMATE, 27(119), 135-142. doi: 10.21660/2024.119.m2415. | |
| dc.relation.referencesen | [32] Sakhno, S., Popruha, D., & Mokryak, H. (2024). Peculiarities of the work of a concrete beam with basalt armature. Mining Journal of Kryvyi Rih National University, 22(1), 7-12. doi: 10.31721/2306-5435-2024-1-112-7-12. | |
| dc.relation.referencesen | [33] Sawamura, Y., Inagami, K., Nishihara, T., Kosaka, T., Hattori, M., & Kimura, M. (2021). Seismic performance of group pile foundation with ground improvement during liquefaction. Soils and Foundations, 61(4), 944-959. doi: 10.1016/j.sandf.2021.06.010. | |
| dc.relation.referencesen | [34] Shahjalal, M., Yahia, A.K., Morshed, A.S., & Tanha, N.I. (2024). Earthquake-resistant building design: Innovations and challenges. Global Mainstream Journal of Innovation, Engineering & Emerging Technology, 3(4), 101-119. doi: 10.62304/jieet.v3i04.209. | |
| dc.relation.referencesen | [35] Su, J., Li, Z.X., Dhakal, R.P., Li, C., & Wang, F. (2021). Comparative study on seismic vulnerability of RC bridge piers reinforced with normal and high-strength steel bars. Structures, 29, 1562-1581. doi: 10.1016/j.istruc.2020.12.048. | |
| dc.relation.referencesen | [36] Su, L., Wan, H.P., Lu, J., Ling, X., Elgamal, A., & Arulmoli, A.K. (2021). Seismic performance evaluation of a pile-supported wharf system at two seismic hazard levels. Ocean Engineering, 219, article number 108333. doi: 10.1016/j.oceaneng.2020.108333. | |
| dc.relation.referencesen | [37] Tokyo Skytree. (2024). Retrieved from https://www.japan-guide.com/e/e3064.html. | |
| dc.relation.referencesen | [38] Waheeb, R. (2023). Keys to successful design of earthquake-resistant buildings. SSRN. | |
| dc.relation.referencesen | [39] Waqas, H.A., Sahil, M., Khan, M.M., Anwar, A.W., Shah, M.U., & Usman, M. (2024). Optimizing reinforcement strategies for robust beam-column joints in seismic-resistant structures. Arabian Journal for Science and Engineering, 49(4), 6107-6124. doi: 10.1007/s13369-023-08591-1. | |
| dc.relation.referencesen | [40] Xu, Q., Chen, H., Li, W., Zheng, S., & Zhang, X. (2022). Experimental investigation on seismic behavior of steel welded connections considering the influence of structural forms. Engineering Failure Analysis, 139, article number 106499. doi: 10.1016/j.engfailanal.2022.106499. | |
| dc.relation.referencesen | [41] Zakharova, I. (2024). Welding processes in the restoration of industrial and energy facilities. Machinery & Energetics, 15(1), 56-64. doi: 10.31548/machinery/1.2024.56. | |
| dc.relation.referencesen | [42] Zakian, P., & Kaveh, A. (2023). Seismic design optimization of engineering structures: A comprehensive review. Acta Mechanica, 234(4), 1305-1330. doi: 10.1007/s00707-022-03470-6. | |
| dc.relation.referencesen | [43] Zhang, J.-L., Li, G., Yu, D.-H., & Dong, Z.-Q. (2024). Framework for seismic risk analysis of engineering structures considering the coupling damage from multienvironmental factors. Journal of Structural Engineering, 150(10). doi: 10.1061/JSENDH.STENG-13340. | |
| dc.relation.referencesen | [44] Zhang, Y., Fung, J.F., Johnson, K.J., & Sattar, S. (2022). Review of seismic risk mitigation policies in earthquake-prone countries: Lessons for earthquake resilience in the United States. Journal of Earthquake Engineering, 26(12), 6208-6235. doi: 10.1080/13632469.2021.1911889. | |
| dc.relation.uri | https://dknews.kz/ru/chitayte-v-nomere-dk/274759-renovaciya-snos-ili-modernizaciya | |
| dc.relation.uri | https://oper.kaktus.media/doc/395181_iznoshennost_domov_i_kommynikaciy_v_bishkeke._v_kakih_mnogoetajkah_jit_opasno.html | |
| dc.relation.uri | https://www.aa.com.tr/en/economy/turkey-unveils-3rd-bosphorus-bridge/636056 | |
| dc.relation.uri | https://www.japan-guide.com/e/e3064.html | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2025 | |
| dc.subject | високоміцні матеріали | |
| dc.subject | посилення з’єднань | |
| dc.subject | демпфуючі елементи | |
| dc.subject | пластичність | |
| dc.subject | вібраційні коливання | |
| dc.subject | арматурні каркаси | |
| dc.subject | high-strength materials | |
| dc.subject | reinforcement of joints | |
| dc.subject | damping elements | |
| dc.subject | plasticity | |
| dc.subject | vibrational oscillations | |
| dc.subject | reinforcing frames | |
| dc.subject.udc | 624.042.7 | |
| dc.title | Methods of increasing the seismic resistance of metal structures | |
| dc.title.alternative | Методи підвищення сейсмостійкості металоконструкцій | |
| dc.type | Article |