Research of the effect of filament humidity on the quality of 3D printing
| dc.citation.epage | 168 | |
| dc.citation.issue | 3 | |
| dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
| dc.citation.spage | 160 | |
| dc.contributor.affiliation | Національний університет "Львівська політехніка" | |
| dc.contributor.affiliation | Національний університет "Львівська політехніка" | |
| dc.contributor.affiliation | Національний університет "Львівська політехніка" | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Олійник, Богдан | |
| dc.contributor.author | Здобицький, Андрій | |
| dc.contributor.author | Марунич, Остап | |
| dc.contributor.author | Oliinyk, Bohdan | |
| dc.contributor.author | Zdobytskyi, Andriy | |
| dc.contributor.author | Marunchyn, Ostap | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-16T08:40:57Z | |
| dc.description.abstract | У статті досліджено процес 3D-друку моделі з кількома типами ниток за різних від- сотків вологості матеріалу. Через унікальні характеристики окремих пластиків кожен відбиток потребує попереднього налаштування як принтера, так і процесу друку, також важливо підготувати відповідний матеріал. Нехтування хоча б одним із цих нюансів призведе до некоректного друку і, як наслідок, до погіршення якості деталі. Мета дослідження – на основі порівняння фізичних об’єктів, надрукованих у різних умовах та за різної вологості матеріалу, визначити значення відсотка вмісту вологи в найпоширеніших видах філамента за умови високоякісного друку. Тест-об’єктом вибрано модель екзоскелета хребця. Результат засвідчив істотне покращення якості у разі дотримання пра- вильних вимог щодо вологості нитки та відповідного регулювання процесу друку для кожного пластику. | |
| dc.description.abstract | This study investigates the process of 3D printing a model with several types of filament at different percentages of material moisture. Due to the unique characteristics of individual plastics, each print requires preliminary setup of both the printer and the printing process, it is also important to prepare the appropriate material. Neglecting at least one of these nuances will lead to an incorrect printing process and, as a result, a deterioration in the quality of the part. The purpose of the study is to determine the value of the percentage of moisture content in the most common types of filament under the condition of high-quality printing, by comparing physical objects printed under different conditions and at different material moisture. An exoskeleton vertebra model was chosen as a test object. The result shows a significant improvement in quality when observing the correct filament moisture requirements and adjusting the printing process accordingly for each plastic | |
| dc.format.extent | 160-168 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Oliinyk B. Research of the effect of filament humidity on the quality of 3D printing / Bohdan Oliinyk, Andriy Zdobytskyi, Ostap Marunchyn // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 3. — P. 160–168. | |
| dc.identifier.citation2015 | Oliinyk B., Marunchyn O. Research of the effect of filament humidity on the quality of 3D printing // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 3. P. 160–168. | |
| dc.identifier.citationenAPA | Oliinyk, B., Zdobytskyi, A., & Marunchyn, O. (2024). Research of the effect of filament humidity on the quality of 3D printing. Computer Systems of Design. Theory and Practice, 6(3), 160-168. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Oliinyk B., Zdobytskyi A., Marunchyn O. (2024) Research of the effect of filament humidity on the quality of 3D printing. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 3, pp. 160-168. | |
| dc.identifier.doi | https://doi.org/10.23939/cds2024.03.160 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124091 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 3 (6), 2024 | |
| dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 3 (6), 2024 | |
| dc.relation.references | [1] ASTM F2792-12a, Standard terminology for additive manufacturing technologies. ASTM International. West Conshohocken, PA, 2012. | |
| dc.relation.references | [2] W. Yuanbin, Blache, & X. Xun, “Selection of additive manufacturing processes”, Rapid Prototyping Journal, Vol. 23, No. 2, pp. 434–447, 2017. | |
| dc.relation.references | [3] A. Muller, & S. Karevska, “How will 3D printing make your company the strongest link in the value chain?”, EY’s Global 3D printing Report 2016, 2016 [Online]. Available: https://www.ey.com/Publication/vwLUAssets/ey-global-3d-printing-report-2016-fullreport/$FILE/ey-global-3d-printing-report-2016-full-report.pdf | |
| dc.relation.references | [4] A. M. T. Syed, P. K. Elias, B. Amit, B. Susmita, O. Lisa, & C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities”, Materials today, Vol. 1, pp. 1–16, 2017. | |
| dc.relation.references | [5] J. W. Stansbury, & M. J. Idacavage, “3D Printing with polymers: Challenges among expanding options and opportunities”, Dental Materials, Vol. 32, pp. 54–64, 2016. | |
| dc.relation.references | [6] L. Y. Yee, S. E. T. Yong, K. J. T. Heang, K. P. Zheng, Y. L. Xue, Y. Y. Wai, C. H. T. Siang,& L. Augustinus, “3D Printed Bio-models for Medical Applications”, Rapid Prototyping Journal, Vol. 23, No. 2,pp. 227–235, 2017. | |
| dc.relation.references | [7] M. A. Caminero, J. M. Chacon, I. Garcia-Moreno, & G. P. Rodriguez, “Impact damage resistance of 3D printed continues fibre reinforced thermoplastic composites using fused deposition modeling”, Composite Part B:Engineering, Vol. 148, pp. 93–103, 2018. | |
| dc.relation.references | [8] J. R.C. Dizon, A. H. E. Jr, Q. Chen, R. C. Advincula, “Mechanical characterization of 3D-printed polymers”, Additive Manufacturing, Vol. 20, pp. 44–67, 2018. | |
| dc.relation.references | [9] W. Xin, J. Man, Z. Zuowan, G. Jihua, & H. David, “3D printing of polymer matrix composites: A review and prospective”, Composites Part B, Vol. 110, pp. 442–458, 2017. | |
| dc.relation.references | [10] L. Hitzler, F. Alifui-Segbaya, P. William, B. Heine, M. Heitzmann, W. Hall, M. Merkel, & A. Ochner, “Additive manufacturing of cobalt based dental alloys: analysis of microstructure and physicomechanical properties”,Advances in Materials Science and Engineering, Vol. 8, pp. 1–12, 2018. | |
| dc.relation.references | [11] 3D FOR YOU [Online]. Available: https://3d4u.com.ua/uk/blog/post/3-pla-plastic-for-3d-printingproperties-applications-benefits | |
| dc.relation.references | [12] MonoFilament [Online]. Available: https://monofilament.com.ua/ua/publikatsiji/ | |
| dc.relation.references | [13] ARTLINE [Online]. Available: https://artline.ua/uk/blogs | |
| dc.relation.referencesen | [1] ASTM F2792-12a, Standard terminology for additive manufacturing technologies. ASTM International. West Conshohocken, PA, 2012. | |
| dc.relation.referencesen | [2] W. Yuanbin, Blache, & X. Xun, "Selection of additive manufacturing processes", Rapid Prototyping Journal, Vol. 23, No. 2, pp. 434–447, 2017. | |
| dc.relation.referencesen | [3] A. Muller, & S. Karevska, "How will 3D printing make your company the strongest link in the value chain?", EY’s Global 3D printing Report 2016, 2016 [Online]. Available: https://www.ey.com/Publication/vwLUAssets/ey-global-3d-printing-report-2016-fullreport/$FILE/ey-global-3d-printing-report-2016-full-report.pdf | |
| dc.relation.referencesen | [4] A. M. T. Syed, P. K. Elias, B. Amit, B. Susmita, O. Lisa, & C. Charitidis, "Additive manufacturing: scientific and technological challenges, market uptake and opportunities", Materials today, Vol. 1, pp. 1–16, 2017. | |
| dc.relation.referencesen | [5] J. W. Stansbury, & M. J. Idacavage, "3D Printing with polymers: Challenges among expanding options and opportunities", Dental Materials, Vol. 32, pp. 54–64, 2016. | |
| dc.relation.referencesen | [6] L. Y. Yee, S. E. T. Yong, K. J. T. Heang, K. P. Zheng, Y. L. Xue, Y. Y. Wai, C. H. T. Siang,& L. Augustinus, "3D Printed Bio-models for Medical Applications", Rapid Prototyping Journal, Vol. 23, No. 2,pp. 227–235, 2017. | |
| dc.relation.referencesen | [7] M. A. Caminero, J. M. Chacon, I. Garcia-Moreno, & G. P. Rodriguez, "Impact damage resistance of 3D printed continues fibre reinforced thermoplastic composites using fused deposition modeling", Composite Part B:Engineering, Vol. 148, pp. 93–103, 2018. | |
| dc.relation.referencesen | [8] J. R.C. Dizon, A. H. E. Jr, Q. Chen, R. C. Advincula, "Mechanical characterization of 3D-printed polymers", Additive Manufacturing, Vol. 20, pp. 44–67, 2018. | |
| dc.relation.referencesen | [9] W. Xin, J. Man, Z. Zuowan, G. Jihua, & H. David, "3D printing of polymer matrix composites: A review and prospective", Composites Part B, Vol. 110, pp. 442–458, 2017. | |
| dc.relation.referencesen | [10] L. Hitzler, F. Alifui-Segbaya, P. William, B. Heine, M. Heitzmann, W. Hall, M. Merkel, & A. Ochner, "Additive manufacturing of cobalt based dental alloys: analysis of microstructure and physicomechanical properties",Advances in Materials Science and Engineering, Vol. 8, pp. 1–12, 2018. | |
| dc.relation.referencesen | [11] 3D FOR YOU [Online]. Available: https://3d4u.com.ua/uk/blog/post/3-pla-plastic-for-3d-printingproperties-applications-benefits | |
| dc.relation.referencesen | [12] MonoFilament [Online]. Available: https://monofilament.com.ua/ua/publikatsiji/ | |
| dc.relation.referencesen | [13] ARTLINE [Online]. Available: https://artline.ua/uk/blogs | |
| dc.relation.uri | https://www.ey.com/Publication/vwLUAssets/ey-global-3d-printing-report-2016-fullreport/$FILE/ey-global-3d-printing-report-2016-full-report.pdf | |
| dc.relation.uri | https://3d4u.com.ua/uk/blog/post/3-pla-plastic-for-3d-printingproperties-applications-benefits | |
| dc.relation.uri | https://monofilament.com.ua/ua/publikatsiji/ | |
| dc.relation.uri | https://artline.ua/uk/blogs | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Oliinyk B., Zdobytskyi A., Marunchyn O., 2024 | |
| dc.subject | 3D-друк | |
| dc.subject | нитка | |
| dc.subject | вологість | |
| dc.subject | якість деталей | |
| dc.subject | 3D-принтер | |
| dc.subject | екзоскелет хребця | |
| dc.subject | 3D printing | |
| dc.subject | filament | |
| dc.subject | humidity | |
| dc.subject | part quality | |
| dc.subject | 3D printer | |
| dc.subject | exoskeleton vertebra | |
| dc.title | Research of the effect of filament humidity on the quality of 3D printing | |
| dc.title.alternative | Дослідження впливу вологості нитки на якість 3D друку | |
| dc.type | Article |