Recent movements of the earth's surface of the Carpathian Mountain system according to GNSS data

dc.citation.epage15
dc.citation.issue2(37)
dc.citation.journalTitleГеодинаміка
dc.citation.spage5
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСавчин, Ігор
dc.contributor.authorБілашук, Артем
dc.contributor.authorSavchyn, Ihop
dc.contributor.authorBilashuk, Artem
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T09:56:05Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractМета дослідження – диференціація сучасних геодинамічних процесів у межах Карпатських гір на основі вільнодоступних ГНСС-даних. Методика. Методика передбачала збирання, оброблення та аналіз ГНСС-даних. Запропоновано алгоритм оброблення, який складався із п’яти основних етапів: перетворення даних у внутрішній формат, перевірка часових рядів на відповідність вимогам, визначення горизонтальних швидкостей, розподіл мережі ГНСС на трикутники, визначення параметрів деформацій. Результати. У цьому дослідженні здійснено комплексний аналіз сучасних геодинамічних процесів, виконаний на основі ГНСС-даних, що надаються у вільному доступі в Невадській геодезичній лабораторії. Враховуючи вимоги до часових рядів, було відібрано та опрацьовано дані 50 ГНСС-станцій. Загалом отримано та проаналізовано абсолютні та регіональні швидкості протягом 2000–2023 рр. Регіональні швидкості горизонтальних рухів використано для розрахунку тензора деформацій та деформаційних параметрів. Результати дослідження, які узгоджуються і добре корелюють із результатами інших вчених, підтверджують наявність активних геодинамічних процесів у межах Карпат. Наукова новизна. Запропонований підхід дав змогу оцінити основні деформаційні параметри (величину і напрямок осей деформацій, загальний зсув і дилатацію) у межах Карпат. Це дає можливість аналізувати та прогнозувати сучасні геодинамічні процеси в регіоні. Практична цінність. На основі розрахованих значень побудовано карти розподілу векторів абсолютних і регіональних горизонтальних швидкостей, загальних швидкостей зсуву, дилатації та швидкостей обертання.
dc.description.abstractThe purpose of the research is differentiation of recent geodynamic processes within the Carpathian Mountains on the basis of freely available GNSS data. Methodology. The methodology included GNSS data collection, processing and analysis. An algorithm for processing was proposed, which consisted of 5 main stages: transformation of data into an internal format, verification of time series for compliance with requirements, determination of horizontal velocities, division of the GNSS network into triangles, and determination of deformation parameters. Results. This study presents a comprehensive analysis of recent geodynamic processes based on GNSS data freely available from the Nevada Geological Survey. Taking into account the requirements for time series, 50 GNSS stations were selected and processed. In general, absolute and regional velocities were obtained and analysed during 2000–2023. Regional velocities of horizontal movements were used to calculate the deformation tensor and deformation parameters. The results of the study are consistent and correlate well with the studies of other scientists. The obtained results confirm the presence of active geodynamic processes within the Carpathians. Originality. The proposed approach made it possible to estimate the main deformation parameters (value and direction of deformation axes, total shear and dilation) within the Carpathian Mountains. This makes it possible to analyse and predict recent geodynamic processes in the region. Practical significance. On the basis of the calculated values, maps of the distribution of vectors of absolute and regional horizontal velocities, total shear rates, dilatation rates, and rotation rates were constructed.
dc.format.extent5-15
dc.format.pages11
dc.identifier.citationSavchyn I. Recent movements of the earth's surface of the Carpathian Mountain system according to GNSS data / Ihop Savchyn, Artem Bilashuk // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 2(37). — P. 5–15.
dc.identifier.citationenSavchyn I. Recent movements of the earth's surface of the Carpathian Mountain system according to GNSS data / Ihop Savchyn, Artem Bilashuk // Geodynamics. — Lviv : Lviv Politechnic Publishing House, 2024. — No 2(37). — P. 5–15.
dc.identifier.doidoi.org/10.23939/jgd2024.02.005
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113869
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofГеодинаміка, 2(37), 2024
dc.relation.ispartofGeodynamics, 2(37), 2024
dc.relation.referencesAlizadeh-Khameneh, M. A., Eshagh, M., & Jensen, A. B. (2018). Optimization of deformation monitoring networks using finite element strain analysis. Journal of Applied Geodesy, 12(2), 187–197.
dc.relation.referencesAltamimi, Z., Métivier, L., Rebischung, P., Rouby, H., & Collilieux, X. (2017). ITRF2014 plate motion model. Geophysical Journal International, 209(3), 1906-1912. DOI: 10.1093/gji/ggx136
dc.relation.referencesAltamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the
dc.relation.referencesInternational Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109-6131. DOI: 10.1002/2016jb013098
dc.relation.referencesArgus, D. F., & Gordon, R. G. (1996). Tests of the rigid-plate hypothesis and bounds on intraplate deformation using geodetic data from very long baseline interferometry. Journal of Geophysical Research: Solid Earth, 101(B6), 13555–13572. DOI: 10.1029/95jb03775
dc.relation.referencesBednárik, M., Papco, J., Pohánka, V., Bezák, V., Kohút, I., & Brimich, L. (2016). Surface strain rate colour map of the Tatra Mountains region (Slovakia) based on GNSS data. Geologica Carpathica, 67(6), 509.
dc.relation.referencesBird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). DOI: 10.1029/2001gc000252
dc.relation.referencesBlewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos, 99(2), e2020943118. doi: 10.1029/2018EO104623
dc.relation.referencesBraclawska, A., & Idziak, A. F. (2019). Unification of data from various seismic catalogues to study seismic activity in the Carpathians Mountain arc. Open Geosciences, 11(1), 837–842.
dc.relation.referencesBrusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals “GeoTerrace-2021” (Vol. 2021, No. 1, pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215 K3013
dc.relation.referencesCaporali, A. (2003). Average strain rate in the Italian crust inferred from a permanent GPS network – I. Statistical analysis of the time-series of permanent GPS stations. Geophysical Journal International, 155(1), 241–253, p. 205.
dc.relation.referencesCaporali, A., Aichhorn, C., Barlik, M., Becker, M., Fejes, I., Gerhatova, L., ... & Virag, G. (2009). Surface kinematics in the Alpine – Carpathian Dinaric and Balkan region inferred from a new multi-network GPS combination solution. Tectonophysics, 474(1–2), 295–321.
dc.relation.referencesCaporali, A., Aichhorn, C., Becker, M., Fejes, I., Gerhatova, L., Ghitau, D., ... & Zablotskyi, F. (2008). Geokinematics of Central Europe: new insights from the CERGOP-2/Environment Project. Journal of Geodynamics, 45(4–5), 246–256.
dc.relation.referencesCaporali, A., Martin, S., & Massironi, M. (2003). Average strain rate in the Italian crust inferred from a permanent GPS network – II. Strain rate versus seismicity and structural geology. Geophysical Journal International, 155(1), 254–268, p. 218.
dc.relation.referencesCaporali, A., Zurutuza, J., Bertocco, M., Ishchenko, M., & Khoda, O. (2019). Present day geokinematics of central Europe. Journal of Geodynamics, 132, 101652.
dc.relation.referencesCronin, V. S., and Resor, P. G. (2021). Algorithm for triangle-strain analysis: accessible via https://croninprojects.org/Vince/Geodesy/TriangleStrainAlgorithm-20211220.docx
dc.relation.referencesCsontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1–56.
dc.relation.referencesDelaunay B. Sur la sphère vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7:793–800, 1934.
dc.relation.referencesDoskich, S. (2021). Deformations of the land crust of the Carpathian region according to the data of GNSS observation. Cartography, and Aerial Photography, 93(1), 35–41.
dc.relation.referencesFazilova, D. S., & Sichugova, L. V. (2021). Deformation analysis based on GNSS measurements in Tashkent region. In E3S Web of Conferences (Vol. 227, p. 04002). EDP Sciences.
dc.relation.referencesIsmail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh, S., & Panza, G. (2012). Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics, 530, 50−79.
dc.relation.referencesKondracki, J. A. (2023). Carpathian Mountains. Encyclopedia Britannica. https://www.britannica.com/place/Carpathian-Mountains
dc.relation.referencesKowalczyk, K., Bogusz, J., & Figurski, M. (2014). The analysis of the selected data from Polish Active Geodetic Network stations with the view on creating a model of vertical crustal movements. In Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE (Vol. 9, p. 1). Vilnius Gediminas Technical University, Department of Construction Economics & Property.
dc.relation.referencesKreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10), 3849–3889. DOI: 10.1002/2014gc005407.
dc.relation.referencesLazos, I., Sboras, S., Pikridas, C., Pavlides, S., & Chatzipetros, A. (2021). Geodetic analysis of the tectonic crustal deformation pattern in the North Aegean Sea, Greece. Mediterranean Geoscience Reviews, 3, 79−94. DOI: 10.1007/s42990-021-00049-6
dc.relation.referencesMárton, E., Rauch-Włodarska, M., Krejčí, O., Tokarski A. K., & Bubík, M. (2009). An integrated palaeomagnetic and AMS study of the Tertiary flysch from the Outer Western Carpathians. Geophysical Journal International, 177(3), 925–940.
dc.relation.referencesMatenco, L., Bertotti, G., Leever, K., Cloetingh, S. A.., Schmid, S. M., Tărăpoancă, M., & Dinu, C. (2007). Large-scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics, 26(4).
dc.relation.referencesMráz, P., & Ronikier, M. (2016). Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biological journal of the Linnean Society, 119(3), 528–559.
dc.relation.referencesMüller, B., Heidbach, O., Negut, M., Sperner, B., & Buchmann, T. (2010). Attached or not attachedevidence from crustal stress observations for a weak coupling of the Vrancea slab in Romania. Tectonophysics, 482(1−4), 139–149.
dc.relation.referencesPorkoláb, K., Broerse, T., Kenyeres, A., Békési, E., Tóth, S., Magyar, B., & Wesztergom, V. (2023). Active tectonics of the Circum-Pannonian region in the light of updated GNSS network data. Acta Geodaetica et Geophysica, 58(2), 149–173.
dc.relation.referencesRoštínský, P., Pospíšil, L., Švábenský, O., Kašing, M., & Nováková, E. (2020). Risk faults in stable crust of the eastern Bohemian Massif identified by integrating GNSS, levelling, geological, geomorphological and geophysical data. Tectonophysics, 785, 228427.
dc.relation.referencesSandulescu, M. (1988). Cenozoic tectonic history of the Carpathians: Chapter 2.
dc.relation.referencesSavchyn, I., & Bilashuk, A. (2023, October). Differentiation of recent geodynamic processes within the Carpathian Mountains based on GNSS data. In International Conference of Young Professionals “GeoTerrace-2023” (Vol. 2023, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. DOI: 10.3997/2214-4609.2023510011
dc.relation.referencesSavchyn, I., & Vaskovets, S. (2018). Local geodynamics of the territory of Dniester pumped storage power plant. Acta Geodyn. Geomater, 15(1), DOI: 10.13168/AGG.2018.0002
dc.relation.referencesSavchyn, I., Lozynskyi, V., Petryk, Y., & Marusazh, K. (2020, May). Geodetic monitoring of the protective dam of the Lviv MSW landfill after reconstruction. In Geoinformatics: Theoretical and Applied Aspects 2020 (Vol. 2020, No. 1, pp. 1–5). European Association of Geoscientists & Engineers. DOI: 10.3997/2214-4609.2020geo130 Savchyn, I., Tretyak, K., Hlotov, V., Shylo, Y., Bubniak, I., Golubinka, I., & Nikulishyn, V. (2021). Recent local geodynamic processes in the Penola strait-Lemaire channel fault area (West Antarctica). Acta Geodynamica et Geomaterialia, 18(2). DOI: 10.13168/AGG.2021.0018
dc.relation.referencesSchmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., ... & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
dc.relation.referencesSperner, B., Ioane, D., & Lillie, R. J. (2004). Slabbehaviour and its surface expression: new insights from gravity modelling in the SE-Carpathians. Tectonophysics, 382(1–2), 51–84. Staniszewska, D., Liwosz, T., Pachuta, A., Próchniewicz, D., & Szpunar, R. (2023). Geodynamic studies in the Pieniny Klippen Belt in 2004-2020. Artificial Satellites, 58(2), 88–104.
dc.relation.referencesSzűcs, E., Bozsó, I., Kovács, I. J., Bányai, L., Gál, Á., Szakács, A., & Wesztergom, V. (2018). Probing tectonic processes with space geodesy in the south Carpathians: insights from archive SAR data. Acta Geodaetica et Geophysica, 53, 331–345.
dc.relation.referencesTretyak, K. R., & Brusak, І. (2020). The research of interrelation between seismic activity and modern horizontal movements of the Carpathian-Balkan region based on the data from permanent GNSS stations. Geodynamics, 28(1), 5–18.
dc.relation.referencesTretyak, K. R., & Vovk, A. I. (2012). Study of the dynamics of horizontal movements of the European earth’s crust based on GNSS observations (2000–2010). Geodynamics.
dc.relation.referencesTretyak, K., Korliatovych, T., & Brusak, I. (2021, October). Applying the statistical method of GNSS time series analysis for the detection of vertical displacements of Dnister HPP-1 dam. In International Conference of Young Professionals “GeoTerrace-2021” (Vol. 2021, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3012
dc.relation.referencesZurutuza, J., Caporali, A., Bertocco, M., Ishchenko, M., Khoda, O., Steffen, H., ... & Nykiel, G. (2019). The central European GNSS research network (CEGRN) dataset. Data in brief, 27, 104762.
dc.relation.referencesenAlizadeh-Khameneh, M. A., Eshagh, M., & Jensen, A. B. (2018). Optimization of deformation monitoring networks using finite element strain analysis. Journal of Applied Geodesy, 12(2), 187–197.
dc.relation.referencesenAltamimi, Z., Métivier, L., Rebischung, P., Rouby, H., & Collilieux, X. (2017). ITRF2014 plate motion model. Geophysical Journal International, 209(3), 1906-1912. DOI: 10.1093/gji/ggx136
dc.relation.referencesenAltamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the
dc.relation.referencesenInternational Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121(8), 6109-6131. DOI: 10.1002/2016jb013098
dc.relation.referencesenArgus, D. F., & Gordon, R. G. (1996). Tests of the rigid-plate hypothesis and bounds on intraplate deformation using geodetic data from very long baseline interferometry. Journal of Geophysical Research: Solid Earth, 101(B6), 13555–13572. DOI: 10.1029/95jb03775
dc.relation.referencesenBednárik, M., Papco, J., Pohánka, V., Bezák, V., Kohút, I., & Brimich, L. (2016). Surface strain rate colour map of the Tatra Mountains region (Slovakia) based on GNSS data. Geologica Carpathica, 67(6), 509.
dc.relation.referencesenBird, P. (2003). An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems, 4(3). DOI: 10.1029/2001gc000252
dc.relation.referencesenBlewitt, G., Hammond, W., & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science. Eos, 99(2), e2020943118. doi: 10.1029/2018EO104623
dc.relation.referencesenBraclawska, A., & Idziak, A. F. (2019). Unification of data from various seismic catalogues to study seismic activity in the Carpathians Mountain arc. Open Geosciences, 11(1), 837–842.
dc.relation.referencesenBrusak, I., & Tretyak, K. (2021, October). On the impact of non-tidal atmospheric loading on the GNSS stations of regional networks and engineering facilities. In International Conference of Young Professionals "GeoTerrace-2021" (Vol. 2021, No. 1, pp. 1–5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215 K3013
dc.relation.referencesenCaporali, A. (2003). Average strain rate in the Italian crust inferred from a permanent GPS network – I. Statistical analysis of the time-series of permanent GPS stations. Geophysical Journal International, 155(1), 241–253, p. 205.
dc.relation.referencesenCaporali, A., Aichhorn, C., Barlik, M., Becker, M., Fejes, I., Gerhatova, L., ... & Virag, G. (2009). Surface kinematics in the Alpine – Carpathian Dinaric and Balkan region inferred from a new multi-network GPS combination solution. Tectonophysics, 474(1–2), 295–321.
dc.relation.referencesenCaporali, A., Aichhorn, C., Becker, M., Fejes, I., Gerhatova, L., Ghitau, D., ... & Zablotskyi, F. (2008). Geokinematics of Central Europe: new insights from the CERGOP-2/Environment Project. Journal of Geodynamics, 45(4–5), 246–256.
dc.relation.referencesenCaporali, A., Martin, S., & Massironi, M. (2003). Average strain rate in the Italian crust inferred from a permanent GPS network – II. Strain rate versus seismicity and structural geology. Geophysical Journal International, 155(1), 254–268, p. 218.
dc.relation.referencesenCaporali, A., Zurutuza, J., Bertocco, M., Ishchenko, M., & Khoda, O. (2019). Present day geokinematics of central Europe. Journal of Geodynamics, 132, 101652.
dc.relation.referencesenCronin, V. S., and Resor, P. G. (2021). Algorithm for triangle-strain analysis: accessible via https://croninprojects.org/Vince/Geodesy/TriangleStrainAlgorithm-20211220.docx
dc.relation.referencesenCsontos, L., & Vörös, A. (2004). Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeography, Palaeoclimatology, Palaeoecology, 210(1), 1–56.
dc.relation.referencesenDelaunay B. Sur la sphère vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7:793–800, 1934.
dc.relation.referencesenDoskich, S. (2021). Deformations of the land crust of the Carpathian region according to the data of GNSS observation. Cartography, and Aerial Photography, 93(1), 35–41.
dc.relation.referencesenFazilova, D. S., & Sichugova, L. V. (2021). Deformation analysis based on GNSS measurements in Tashkent region. In E3S Web of Conferences (Vol. 227, p. 04002). EDP Sciences.
dc.relation.referencesenIsmail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh, S., & Panza, G. (2012). Geodynamics and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): current state-of-the art. Tectonophysics, 530, 50−79.
dc.relation.referencesenKondracki, J. A. (2023). Carpathian Mountains. Encyclopedia Britannica. https://www.britannica.com/place/Carpathian-Mountains
dc.relation.referencesenKowalczyk, K., Bogusz, J., & Figurski, M. (2014). The analysis of the selected data from Polish Active Geodetic Network stations with the view on creating a model of vertical crustal movements. In Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE (Vol. 9, p. 1). Vilnius Gediminas Technical University, Department of Construction Economics & Property.
dc.relation.referencesenKreemer, C., Blewitt, G., & Klein, E. C. (2014). A geodetic plate motion and Global Strain Rate Model. Geochemistry, Geophysics, Geosystems, 15(10), 3849–3889. DOI: 10.1002/2014gc005407.
dc.relation.referencesenLazos, I., Sboras, S., Pikridas, C., Pavlides, S., & Chatzipetros, A. (2021). Geodetic analysis of the tectonic crustal deformation pattern in the North Aegean Sea, Greece. Mediterranean Geoscience Reviews, 3, 79−94. DOI: 10.1007/s42990-021-00049-6
dc.relation.referencesenMárton, E., Rauch-Włodarska, M., Krejčí, O., Tokarski A. K., & Bubík, M. (2009). An integrated palaeomagnetic and AMS study of the Tertiary flysch from the Outer Western Carpathians. Geophysical Journal International, 177(3), 925–940.
dc.relation.referencesenMatenco, L., Bertotti, G., Leever, K., Cloetingh, S. A.., Schmid, S. M., Tărăpoancă, M., & Dinu, C. (2007). Large-scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics, 26(4).
dc.relation.referencesenMráz, P., & Ronikier, M. (2016). Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biological journal of the Linnean Society, 119(3), 528–559.
dc.relation.referencesenMüller, B., Heidbach, O., Negut, M., Sperner, B., & Buchmann, T. (2010). Attached or not attachedevidence from crustal stress observations for a weak coupling of the Vrancea slab in Romania. Tectonophysics, 482(1−4), 139–149.
dc.relation.referencesenPorkoláb, K., Broerse, T., Kenyeres, A., Békési, E., Tóth, S., Magyar, B., & Wesztergom, V. (2023). Active tectonics of the Circum-Pannonian region in the light of updated GNSS network data. Acta Geodaetica et Geophysica, 58(2), 149–173.
dc.relation.referencesenRoštínský, P., Pospíšil, L., Švábenský, O., Kašing, M., & Nováková, E. (2020). Risk faults in stable crust of the eastern Bohemian Massif identified by integrating GNSS, levelling, geological, geomorphological and geophysical data. Tectonophysics, 785, 228427.
dc.relation.referencesenSandulescu, M. (1988). Cenozoic tectonic history of the Carpathians: Chapter 2.
dc.relation.referencesenSavchyn, I., & Bilashuk, A. (2023, October). Differentiation of recent geodynamic processes within the Carpathian Mountains based on GNSS data. In International Conference of Young Professionals "GeoTerrace-2023" (Vol. 2023, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. DOI: 10.3997/2214-4609.2023510011
dc.relation.referencesenSavchyn, I., & Vaskovets, S. (2018). Local geodynamics of the territory of Dniester pumped storage power plant. Acta Geodyn. Geomater, 15(1), DOI: 10.13168/AGG.2018.0002
dc.relation.referencesenSavchyn, I., Lozynskyi, V., Petryk, Y., & Marusazh, K. (2020, May). Geodetic monitoring of the protective dam of the Lviv MSW landfill after reconstruction. In Geoinformatics: Theoretical and Applied Aspects 2020 (Vol. 2020, No. 1, pp. 1–5). European Association of Geoscientists & Engineers. DOI: 10.3997/2214-4609.2020geo130 Savchyn, I., Tretyak, K., Hlotov, V., Shylo, Y., Bubniak, I., Golubinka, I., & Nikulishyn, V. (2021). Recent local geodynamic processes in the Penola strait-Lemaire channel fault area (West Antarctica). Acta Geodynamica et Geomaterialia, 18(2). DOI: 10.13168/AGG.2021.0018
dc.relation.referencesenSchmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., ... & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139–183.
dc.relation.referencesenSperner, B., Ioane, D., & Lillie, R. J. (2004). Slabbehaviour and its surface expression: new insights from gravity modelling in the SE-Carpathians. Tectonophysics, 382(1–2), 51–84. Staniszewska, D., Liwosz, T., Pachuta, A., Próchniewicz, D., & Szpunar, R. (2023). Geodynamic studies in the Pieniny Klippen Belt in 2004-2020. Artificial Satellites, 58(2), 88–104.
dc.relation.referencesenSzűcs, E., Bozsó, I., Kovács, I. J., Bányai, L., Gál, Á., Szakács, A., & Wesztergom, V. (2018). Probing tectonic processes with space geodesy in the south Carpathians: insights from archive SAR data. Acta Geodaetica et Geophysica, 53, 331–345.
dc.relation.referencesenTretyak, K. R., & Brusak, I. (2020). The research of interrelation between seismic activity and modern horizontal movements of the Carpathian-Balkan region based on the data from permanent GNSS stations. Geodynamics, 28(1), 5–18.
dc.relation.referencesenTretyak, K. R., & Vovk, A. I. (2012). Study of the dynamics of horizontal movements of the European earth’s crust based on GNSS observations (2000–2010). Geodynamics.
dc.relation.referencesenTretyak, K., Korliatovych, T., & Brusak, I. (2021, October). Applying the statistical method of GNSS time series analysis for the detection of vertical displacements of Dnister HPP-1 dam. In International Conference of Young Professionals "GeoTerrace-2021" (Vol. 2021, No. 1, pp. 1−5). European Association of Geoscientists & Engineers. https://doi.org/10.3997/2214-4609.20215K3012
dc.relation.referencesenZurutuza, J., Caporali, A., Bertocco, M., Ishchenko, M., Khoda, O., Steffen, H., ... & Nykiel, G. (2019). The central European GNSS research network (CEGRN) dataset. Data in brief, 27, 104762.
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215
dc.relation.urihttps://croninprojects.org/Vince/Geodesy/TriangleStrainAlgorithm-20211220.docx
dc.relation.urihttps://www.britannica.com/place/Carpathian-Mountains
dc.relation.urihttps://doi.org/10.3997/2214-4609.20215K3012
dc.rights.holder© Національний університет “Львівська політехніка”, 2024; © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2024
dc.rights.holder© I. Savchyn, A. Bilashuk
dc.subjectКарпати
dc.subjectГНСС-станції
dc.subjectгоризонтальні швидкості
dc.subjectтензор деформацій
dc.subjectдеформаційні процеси
dc.subjectCarpathian Mountain
dc.subjectGNSS stations
dc.subjecthorizontal velocities
dc.subjectstrain rates
dc.subjectdeformation processes
dc.subject.udc550.34
dc.subject.udc551.24
dc.subject.udc528.94
dc.titleRecent movements of the earth's surface of the Carpathian Mountain system according to GNSS data
dc.title.alternativeСучасні рухи земної поверхні Карпатської гірської системи за даними ГНСС
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024n2_37__Savchyn_I-Recent_movements_of_the_earth_5-15.pdf
Size:
707.86 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024n2_37__Savchyn_I-Recent_movements_of_the_earth_5-15__COVER.png
Size:
536.67 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: