Measures to Improve Metrological and Technical Characteristics of the Film Gas Flowmeter

dc.citation.epage119
dc.citation.issue2
dc.citation.journalTitleЕнергетика та системи керування
dc.citation.spage110
dc.citation.volume10
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorПарнета, Оксана
dc.contributor.authorСтасюк, Іван
dc.contributor.authorДілай, Ігор
dc.contributor.authorДемків, Ігор
dc.contributor.authorParneta, Oksana
dc.contributor.authorStasiuk, Ivan
dc.contributor.authorDilay, Ihor
dc.contributor.authorDemkiv, Ihor
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-10-20T09:16:18Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractПроблеми вимірювання малих витрат (зокрема підвищення точності та розширення діапазону вимірювання) актуальні як для сучасних технологій, так і під час експериментальних досліджень. Похибка плівкового витратоміра залежить від його виконання, якості градуювання, а також властивостей досліджуваного газу та плівкоутворювальної рідини. У роботі розглянуто питання оптимізації складу плівкоутворювальної рідини плівкового витратоміра з метою підвищення точності вимірювання мікровитрат газів. Досліджено можливість збільшення тривалості існування плівок за допомогою введення у плівкоутворювальну рідину стабілізатора – високомолекулярної домішки (полімера) поліакриламіду (ПАА). Досліджено властивості плівок, утворених із різних розчинів, визначено оптимальний склад плівкоутворювача із застосуванням ПАА і запропоновано використовувати його у плівкових витратомірах з метою підвищення точності та надійності вимірювання мікровитрат газів. У роботі також розглянуто механізм трансфузії газів через плівку та оцінено його вплив на точність вимірювання витрати. Подано рекомендації щодо зменшення (усунення) похибки внаслідок впливу трансфузії. Досліджено вплив шару плівкоутворювача всередині мірної трубки та умови його існування, розглянуто властивості внутрішньої поверхні мірної трубки, зокрема матування внутрішньої поверхні трубки.
dc.description.abstractThe problems of low flow rate measurement (in particular, increasing the accuracy and expanding the measurement range) are relevant both in modern technologies and in experimental studies. The error of a film flowmeter depends on its design, the quality of calibration, as well as the properties of the gas under study and the film-forming liquid. The paper considers the issues of optimizing the composition of the film-forming liquid of a film flowmeter in order to improve the accuracy of measuring the gas microflow rates. The possibility of increasing the lifetime of films by introducing a stabilizer, i. e. a high-molecular-weight impurity (polymer) polyacrylamide (PAM), into the film forming liquid has been studied. The properties of films formed from various solutions have been studied, the optimal composition of a film-forming agent have been obtained using PAM and it has been proposed to use it in film flowmeters in order to improve the accuracy and reliability of measuring the gas microflow rates. The paper also focuses on the mechanism of gas transfusion through the film and assesses its impact on the accuracy of flow measurement, as well as provides recommendations for reducing (eliminating) the error due to the effect of transfusion. The influence of a filmformer layer inside the measuring tube and the conditions of its existence have been studied, and the properties of the inner surface of the measuring tube have been considered, in particular, the matte finish of the inner surface of the tube.
dc.format.extent110-119
dc.format.pages10
dc.identifier.citationMeasures to Improve Metrological and Technical Characteristics of the Film Gas Flowmeter / Oksana Parneta, Ivan Stasiuk, Ihor Dilay, Ihor Demkiv // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 110–119.
dc.identifier.citationenMeasures to Improve Metrological and Technical Characteristics of the Film Gas Flowmeter / Oksana Parneta, Ivan Stasiuk, Ihor Dilay, Ihor Demkiv // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 10. — No 2. — P. 110–119.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/113850
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofЕнергетика та системи керування, 2 (10), 2024
dc.relation.ispartofEnergy Engineering and Control Systems, 2 (10), 2024
dc.relation.references[1] Kremlevskyi, P. P. (2015). Flowmeters and counters of the amount of substances. Book 2: handbook. 5th ed. St. Peterburg: Politekhnika, 412 p. (in Russian).
dc.relation.references[2] Levy, A. (1964). The accuracy of the bubble meter method for gas flow measurements. Journal of Scientific Instruments, 41(7), 449–453. https://doi.org/10.1088/0950-7671/41/7/309
dc.relation.references[3] Schone, G. (1980). Seifenfilmstromungsmesser mit digitaler Anzeige der Stromungsgeschwindigkeit. GDR Patent No. 143 823.
dc.relation.references[4] Stonestrom, D. A. (1990). Soap film flowmeter device for measuring gas flow rates. US Patent No. 4, 914, 955.
dc.relation.references[5] Danko, A. F., Ignashkin, I. S. (1997). Film flowmeter. Ukraine Patent No. 13107 (in Ukrainian).
dc.relation.references[6] Pistun, Ye. P., Stasiuk, I. D. (1998). Method of assessing the volume of the measuring tube of the film flowmeter. Ukraine Patent No. 23852 (in Ukrainian).
dc.relation.references[7] Hill, S. L. (1987). Soap film gas flowmeter. US Patent No. 4,691,577.
dc.relation.references[8] Small, P. (1982) Bubble flowmeter. UK Patent No. 2,092,742 A.
dc.relation.references[9] Patterson, D. (1989) Soap film flowmeter. US Patent No. 4,879,907.
dc.relation.references[10] Lashkari, S., Kruczek, B. (2008). Development of a fully automated soap flowmeter for micro flow measurements. Flow Measurement and Instrumentation, 19(6), 397–403. https://doi.org/10.1016/j.flowmeasinst.2008.08.001
dc.relation.references[11] Fursenko, R. V., Odintsov, E. S. (2022). A novel concept of automatic soap flowmeter with bubble detection by closing an electrical circuit. Flow Measurement and Instrumentation, 85, 102165. https://doi.org/10.1016/j.flowmeasinst.2022.102165
dc.relation.references[12] Odintsov, E. S., Fursenko, R. V., Chusov, D. V. (2020). Filmbubble flowmeter. RF Patent No. 2,723,905.
dc.relation.references[13] Zhikhua, L., Zhitsyan, Z., Zhen, L., Li, S. (2022). Electronic film flowmeter. CN Patent No. 217637486 U.
dc.relation.references[14] Pistun, Ye. P., Tepliukh, Z. M., Stasiuk, I. D. (1982). Determination of flow characteristics of throttle elements. Automation and instrumentation in the oil refining and petrochemical industries (in Russian).
dc.relation.references[15] Tepliukh, Z. M., Parneta, O. Z. (1999). Working fluid of the film flowmeter. Bulletin of Lviv Polytechnic State University, Thermal Power Engineering. Environmental Engineering. Automation, 378, 73–76 (in Ukrainian).
dc.relation.references[16] Tepliukh, Z. M., Parneta, O. Z. (2000). The influence of high-molecular admixtures on the quality of films in micro flowmeters. Bulletin of Lviv Polytechnic National University, Thermal Power Engineering. Environmental Engineering. Automation, 404, 103–105 (in Ukrainian).
dc.relation.references[17] Kruhliakov, P. M., Ekserova, D. R. (1990). Foam and foam films. Moscow: Khimiia (in Russian).
dc.relation.references[18] Parneta, O. Z., Tepliukh, Z. M. (2008). Influence of gas transfusion on the accuracy of flow measurement using a film flowmeter. Bulletin of Lviv Polytechnic National University, Thermal Power Engineering. Environmental Engineering. Automation, 617, 179–183 (in Ukrainian).
dc.relation.references[19] Poling, B. E., Prausnitz, J. M. (2000). The properties of gases and liquids. 5th ed. McGraw Hill, 803 p.
dc.relation.references[20] Elliot, J. R. (2023). The properties of gases and liquids. 6th ed. McGraw Hill, 784 p.
dc.relation.references[21] Parneta, O. Z., Tepliukh, Z. M. (2010). Influence of the measuring tube surface on the characteristics of a film flowmeter. Bulletin of Lviv Polytechnic National University, Thermal Power Engineering. Environmental Engineering. Automation, 677, 134–138 (in Ukrainian).
dc.relation.referencesen[1] Kremlevskyi, P. P. (2015). Flowmeters and counters of the amount of substances. Book 2: handbook. 5th ed. St. Peterburg: Politekhnika, 412 p. (in Russian).
dc.relation.referencesen[2] Levy, A. (1964). The accuracy of the bubble meter method for gas flow measurements. Journal of Scientific Instruments, 41(7), 449–453. https://doi.org/10.1088/0950-7671/41/7/309
dc.relation.referencesen[3] Schone, G. (1980). Seifenfilmstromungsmesser mit digitaler Anzeige der Stromungsgeschwindigkeit. GDR Patent No. 143 823.
dc.relation.referencesen[4] Stonestrom, D. A. (1990). Soap film flowmeter device for measuring gas flow rates. US Patent No. 4, 914, 955.
dc.relation.referencesen[5] Danko, A. F., Ignashkin, I. S. (1997). Film flowmeter. Ukraine Patent No. 13107 (in Ukrainian).
dc.relation.referencesen[6] Pistun, Ye. P., Stasiuk, I. D. (1998). Method of assessing the volume of the measuring tube of the film flowmeter. Ukraine Patent No. 23852 (in Ukrainian).
dc.relation.referencesen[7] Hill, S. L. (1987). Soap film gas flowmeter. US Patent No. 4,691,577.
dc.relation.referencesen[8] Small, P. (1982) Bubble flowmeter. UK Patent No. 2,092,742 A.
dc.relation.referencesen[9] Patterson, D. (1989) Soap film flowmeter. US Patent No. 4,879,907.
dc.relation.referencesen[10] Lashkari, S., Kruczek, B. (2008). Development of a fully automated soap flowmeter for micro flow measurements. Flow Measurement and Instrumentation, 19(6), 397–403. https://doi.org/10.1016/j.flowmeasinst.2008.08.001
dc.relation.referencesen[11] Fursenko, R. V., Odintsov, E. S. (2022). A novel concept of automatic soap flowmeter with bubble detection by closing an electrical circuit. Flow Measurement and Instrumentation, 85, 102165. https://doi.org/10.1016/j.flowmeasinst.2022.102165
dc.relation.referencesen[12] Odintsov, E. S., Fursenko, R. V., Chusov, D. V. (2020). Filmbubble flowmeter. RF Patent No. 2,723,905.
dc.relation.referencesen[13] Zhikhua, L., Zhitsyan, Z., Zhen, L., Li, S. (2022). Electronic film flowmeter. CN Patent No. 217637486 U.
dc.relation.referencesen[14] Pistun, Ye. P., Tepliukh, Z. M., Stasiuk, I. D. (1982). Determination of flow characteristics of throttle elements. Automation and instrumentation in the oil refining and petrochemical industries (in Russian).
dc.relation.referencesen[15] Tepliukh, Z. M., Parneta, O. Z. (1999). Working fluid of the film flowmeter. Bulletin of Lviv Polytechnic State University, Thermal Power Engineering. Environmental Engineering. Automation, 378, 73–76 (in Ukrainian).
dc.relation.referencesen[16] Tepliukh, Z. M., Parneta, O. Z. (2000). The influence of high-molecular admixtures on the quality of films in micro flowmeters. Bulletin of Lviv Polytechnic National University, Thermal Power Engineering. Environmental Engineering. Automation, 404, 103–105 (in Ukrainian).
dc.relation.referencesen[17] Kruhliakov, P. M., Ekserova, D. R. (1990). Foam and foam films. Moscow: Khimiia (in Russian).
dc.relation.referencesen[18] Parneta, O. Z., Tepliukh, Z. M. (2008). Influence of gas transfusion on the accuracy of flow measurement using a film flowmeter. Bulletin of Lviv Polytechnic National University, Thermal Power Engineering. Environmental Engineering. Automation, 617, 179–183 (in Ukrainian).
dc.relation.referencesen[19] Poling, B. E., Prausnitz, J. M. (2000). The properties of gases and liquids. 5th ed. McGraw Hill, 803 p.
dc.relation.referencesen[20] Elliot, J. R. (2023). The properties of gases and liquids. 6th ed. McGraw Hill, 784 p.
dc.relation.referencesen[21] Parneta, O. Z., Tepliukh, Z. M. (2010). Influence of the measuring tube surface on the characteristics of a film flowmeter. Bulletin of Lviv Polytechnic National University, Thermal Power Engineering. Environmental Engineering. Automation, 677, 134–138 (in Ukrainian).
dc.relation.urihttps://doi.org/10.1088/0950-7671/41/7/309
dc.relation.urihttps://doi.org/10.1016/j.flowmeasinst.2008.08.001
dc.relation.urihttps://doi.org/10.1016/j.flowmeasinst.2022.102165
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectплівковий витратомір
dc.subjectмірна трубка
dc.subjectвимірювання витрати газу
dc.subjectмильний витратомір
dc.subjectплівкоутворювальна рідина
dc.subjectfilm flowmeter
dc.subjectmeasuring tube
dc.subjectgas flow measurement
dc.subjectsoap flowmeter
dc.subjectfilm-forming liquid
dc.titleMeasures to Improve Metrological and Technical Characteristics of the Film Gas Flowmeter
dc.title.alternativeЗаходи із покращення метрологічних і технічних характеристик плівкового витратоміра газів
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v10n2_Parneta_O-Measures_to_Improve_Metrological_110-119.pdf
Size:
2.61 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v10n2_Parneta_O-Measures_to_Improve_Metrological_110-119__COVER.png
Size:
395.48 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description: