Mathematical model of the boundary layer of airflow over a flat surface

dc.citation.epage36
dc.citation.issue1
dc.citation.journalTitleУкраїнський журнал із машинобудування і матеріалознавства
dc.citation.spage28
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorLanets, Oleksiy
dc.contributor.authorDmytriv, Taras
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-11-18T11:37:56Z
dc.date.created2025-02-27
dc.date.issued2025-02-27
dc.description.abstractIn fluid and gas mechanics, a subject that has been the focus of considerable scholarly attention is the modeling of flow phenomena on streamlined surfaces. These surfaces, which are typically installed in a parallel orientation to the direction of the free stream, play a pivotal role in the study of fluid dynamics. The boundary layer theory represents a pivotal branch of fluid dynamics, given the airflow plate is characterized by a high Reynolds number of airflow velocity entering the plate’s plane surface contexts. The complexity of the problem is due to the nonlinearity and multidimensional nature of the governing equations. This study proposes a straightforward numerical methodology that can address a range of nonlinear problems in surface flow mechanics, particularly in the context of near-wall boundary layers of a planar nature. The paper considers the process of air motion as an isotropic Newtonian medium on the surface as an isotropic Newtonian medium layer. The resulting differential equation is expressed in dimensionless quantities and then solved numerically using the Runge – Kutta method. The velocity distribution in the boundary layer on a flat airflow plate is obtained. As the airflow velocity entering the plate surface increases, so too do the tangential stresses. The nature of the change in tangential stresses is linear in the initial coordinate, corresponding to the onset of airflow entering the plate surface, with two transition points identified at Mach number M = 1 and M = 3. It is evident that along the entire length of the surface of the flat plate, the nature of the change in tangential stresses is not a linear dependence. Consequently, with an increase in the distance from the end face of the plate from 1 mm to 100 mm (a 100-fold increase), the tangential stresses decrease by 10 times within a given length interval. Furthermore, within the length interval ranging from 0.1 m to 1.0 m, the tangential stresses undergo a reduction by a factor of 3. The presented method of modeling the distribution of velocity and tangential stresses in the boundary layer on a flat airflow surface makes it possible to calculate the force loads on the surface in the entire range of flow velocities for an incompressible medium.
dc.format.extent28-36
dc.format.pages9
dc.identifier.citationLanets O. Mathematical model of the boundary layer of airflow over a flat surface / Oleksiy Lanets, Taras Dmytriv // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 1. — P. 28–36.
dc.identifier.citationenLanets O. Mathematical model of the boundary layer of airflow over a flat surface / Oleksiy Lanets, Taras Dmytriv // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2025. — Vol 11. — No 1. — P. 28–36.
dc.identifier.doidoi.org/10.23939/ujmems2025.01.028
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/120172
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofУкраїнський журнал із машинобудування і матеріалознавства, 1 (11), 2025
dc.relation.ispartofUkrainian Journal of Mechanical Engineering and Materials Science, 1 (11), 2025
dc.relation.references[1] F.M. White, "Viscous Fluid Flow", Second Edition, McGraw Hill, Inc., p. 104, 1991.
dc.relation.references[2] H. Schlichting, et al., Boudary Layer Theory, Springer, New York, 2000.
dc.relation.references[3] H. Blasius, "Grenzschichten in Flu¨ssigkeiten mit kleiner Reibung", Z Math Phys., Vol. 56, pp. 1-37, 1908.
dc.relation.references[4] B.K. Datta, "Analytic solution for the Blasius equation", Indian Journal of Pure and Applied Mathematics, Vol. 34(2), pp. 237-240, 2003.
dc.relation.references[5] J.H. He, "A simple perturbation approach to Blasius equation", Appl. Math. Comput., Vol. 140(2-3), pp. 217-222, 2003. DOI: 10.1016/S0096-3003(02)00189-3
dc.relation.references[6] J.H. He, "Approximate analytical solution of Blasius' equation", Communications in Nonlinear Science & Numerical Simulation, Vol. 13(4), 1998.
dc.relation.references[7] A.M. Wazwaz, "The variational iteration method for solving two forms of Blasius equation on a half infinite domain", Appl. Math. Comput., Vol. 188(1), pp. 485-491, 2007. DOI: 10.1016/j.amc.2006.10.009
dc.relation.references[8] Y.M. Aiyesimi and O.O. Niyi, "Computational analysis of the non-linear boundary layer flow over a flat plate using Variational Iterative Method (VIM)", American Journal of Computational and Applied Mathematics, Vol. 1(2), pp. 94-97, 2011. DOI: 10.5923/j.ajcam.20110102.18
dc.relation.references[9] R. Fazio, "Numerical transformation methods: Blasius problem and its variants", Appl. Math. Comput., Vol. 215(4), pp. 1513-1521, 2009. doi:10.1016/j.amc.2009.07.019
dc.relation.references[10] A. Asaithambi, "Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients", J. Comput. Appl. Math., Vol. 176(1), pp. 203-214, 2005. https://doi.org/10.1016/j.cam.2004.07.013
dc.relation.references[11] A. Akgül, "A novel method for the solution of blasius equation in semi-infinite domains", An International Journal of Optimization and Control: Theories & Applications, Vol. 7(2), pp. 225-233, 2017. http://doi.org/10.11121/ijocta.01.2017.00363
dc.relation.references[12] L. Howarth, Laminar boundary layers, In Handbuch der Physik, pp. 264-350. Springer-Verlag, Berlin-Gottingen-Heidelberg, 1959. https://doi.org/10.1007/978-3-642-45914-6_3
dc.relation.references[13] K. Parand, M. Dehghan, and A. Pirkhedri, "Sinc collocation method for solving the Blasius equation", Phys. Lett. A, Vol. 373(44), pp. 4060-4065, 2009. DOI : 10.1007/s11071-021-06596-9
dc.relation.references[14] B. Yao, and J. Chen, "A new analytical solution branch for the Blasius equation with a shrinking sheet", Appl. Math. Comput., Vol. 215(3), pp. 1146-1153, 2009. https://doi.org/10.1016/j.amc.2009.06.057
dc.relation.references[15] S. J. Liao, "An explicit, totally analytic approximate solution for Blasius' viscous flow problems", Internat. J. Non-Linear Mech., Vol. 34(4), pp. 759-778, 1999. http://dx.doi.org/10.1016/S0020-7462(98)00056-0
dc.relation.references[16] C.I. Gheorghiu, "Laguerre collocation solutions to boundary layer type problems", Numer. Algor. Vol. 64, pp. 385-401, 2012. DOI: 10.1007/s11075-015-0083-6
dc.relation.references[17] J. Lin, "A new approximate iteration solution of Blasius equation", Commun, Nonlinear Sci. Numer. Simul., Vol. 4(2), pp. 91-99, 1999. DOI: 10.1016/s1007-5704(99)90017-5
dc.relation.references[18] L.T. Yu and C.K. Chen, "The solution of the Blasius equation by the differential transformation method", Math. Comput. Modelling, Vol. 28(1), pp. 101-111, 1998.
dc.relation.references[19] H.A. Peker, O. Karaoğlu and G. Oturanç, "The differential transformation method and Pade approximant for a form of Blasius equation", Math. Comput. Appl., Vol. 16(2), pp. 507-513, 2011. https://doi.org/10.3390/mca16020507
dc.relation.references[20] S. Abbasbandy, "A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method", Chaos, Solutions and Fractals, Vol. 3, pp. 257-260, 2007. https://doi.org/10.1016/j.chaos.2005.10.071
dc.relation.references[21] L. Wang, "A new algorithm for solving classical Blasius equation", Applied Mathematics and Computation, Vol. 157, pp. 1-9, 2004. DOI: 10.1016/j.amc.2003.06.011
dc.relation.references[22] T. Tajvidi, M. Razzaghi, M. "Dehghan, Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate", Chaos, Solutions and Fractals, Vol. 35, pp. 59-66, 2008.
dc.relation.references[23] G. A. Jr. Baker, "The theory and application of the pade approximant method", In Advances in Theoretical Physics, Vol. 1 (Ed. K. A. Brueckner). New York: Academic Press, 1965/
dc.relation.references[24] B.A. Finlayson, "The Method of Weighted Residuals and Variational Principles With Applications in Fluid Mechanics", Academic Press, New York and London, 1972.
dc.relation.references[25] A. Majidian, M. Khaki, M. Khazayinejad, "Analytical Solution of Laminar Boundary Layer Equations Over A Flat Plate by Homotopy Perturbation Method", International Journal of Applied Mathematical Research, Vol. 1(4), pp. 581-592, 2012.
dc.relation.references[26] H.A. Mutuk, "Neural Network Study of Blasius Equation", Neural Processing Letters, Vol. 51, pp. 2179-2194, 2020. DOI: https://doi.org/10.1007/s11063-019-10184-9
dc.relation.references[27] Fazio R. A Non-Iterative Transformation Method for an Extended Blasius Problem. Mathematical Methods in the Applied Sciences. Vol. 44, Is. 2, р. 1996-2001, 2021. DOI: 10.1002/mma.6902
dc.relation.references[28] S. Anil Lal and M. Martin, "Accurate benchmark results of Blasius boundary layer problem using a leaping Taylor's series that converges for all real values", Advances and Applications in Fluid Mechanics, Vol. 28, pp. 41-58, 2022. http://dx.doi.org/10.17654/0973468622004
dc.relation.references[29] S. Anil Lal and M. Neeraj Paul, "An Accurate Taylors Series Solution with High Radius of Convergence for the Blasius Function and Parameters of Asymptotic Variation", Journal of Applied Fluid Mechanics, Vol. 7(4), pp. 557-564, 2014. DOI: 10.36884/jafm.7.04.21339
dc.relation.references[30] E. F. Jaguaribe, "Conflicting Aspects in the Flat Plate Boundary Layer Conventional Solution", Mathematical Problems in Engineering, 2964231, 2020. https://doi.org/10.1155/2020/2964231
dc.relation.references[31] A. Khanfer, L. Bougoffa, S. Bougouffa, "Analytic Approximate Solution of the Extended Blasius Equation with Temperature‑Dependent Viscosity", Journal of Nonlinear Mathematical Physics, Vol. 30, pp. 287-302, 2023. https://doi.org/10.1007/s44198-022-00084-3
dc.relation.references[32] T.V. Dmytriv, M.M. Mykyychuk, V.T. Dmytriv, "Analytical model of dynamic boundary layer on the surface under laminar flow mode", Machinery and Energetics, Vol. 12(3), pp. 93-98, 2021. DOI: 10.31548/machenergy2021.03.093
dc.relation.referencesen[1] F.M. White, "Viscous Fluid Flow", Second Edition, McGraw Hill, Inc., p. 104, 1991.
dc.relation.referencesen[2] H. Schlichting, et al., Boudary Layer Theory, Springer, New York, 2000.
dc.relation.referencesen[3] H. Blasius, "Grenzschichten in Flu¨ssigkeiten mit kleiner Reibung", Z Math Phys., Vol. 56, pp. 1-37, 1908.
dc.relation.referencesen[4] B.K. Datta, "Analytic solution for the Blasius equation", Indian Journal of Pure and Applied Mathematics, Vol. 34(2), pp. 237-240, 2003.
dc.relation.referencesen[5] J.H. He, "A simple perturbation approach to Blasius equation", Appl. Math. Comput., Vol. 140(2-3), pp. 217-222, 2003. DOI: 10.1016/S0096-3003(02)00189-3
dc.relation.referencesen[6] J.H. He, "Approximate analytical solution of Blasius' equation", Communications in Nonlinear Science & Numerical Simulation, Vol. 13(4), 1998.
dc.relation.referencesen[7] A.M. Wazwaz, "The variational iteration method for solving two forms of Blasius equation on a half infinite domain", Appl. Math. Comput., Vol. 188(1), pp. 485-491, 2007. DOI: 10.1016/j.amc.2006.10.009
dc.relation.referencesen[8] Y.M. Aiyesimi and O.O. Niyi, "Computational analysis of the non-linear boundary layer flow over a flat plate using Variational Iterative Method (VIM)", American Journal of Computational and Applied Mathematics, Vol. 1(2), pp. 94-97, 2011. DOI: 10.5923/j.ajcam.20110102.18
dc.relation.referencesen[9] R. Fazio, "Numerical transformation methods: Blasius problem and its variants", Appl. Math. Comput., Vol. 215(4), pp. 1513-1521, 2009. doi:10.1016/j.amc.2009.07.019
dc.relation.referencesen[10] A. Asaithambi, "Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients", J. Comput. Appl. Math., Vol. 176(1), pp. 203-214, 2005. https://doi.org/10.1016/j.cam.2004.07.013
dc.relation.referencesen[11] A. Akgül, "A novel method for the solution of blasius equation in semi-infinite domains", An International Journal of Optimization and Control: Theories & Applications, Vol. 7(2), pp. 225-233, 2017. http://doi.org/10.11121/ijocta.01.2017.00363
dc.relation.referencesen[12] L. Howarth, Laminar boundary layers, In Handbuch der Physik, pp. 264-350. Springer-Verlag, Berlin-Gottingen-Heidelberg, 1959. https://doi.org/10.1007/978-3-642-45914-6_3
dc.relation.referencesen[13] K. Parand, M. Dehghan, and A. Pirkhedri, "Sinc collocation method for solving the Blasius equation", Phys. Lett. A, Vol. 373(44), pp. 4060-4065, 2009. DOI : 10.1007/s11071-021-06596-9
dc.relation.referencesen[14] B. Yao, and J. Chen, "A new analytical solution branch for the Blasius equation with a shrinking sheet", Appl. Math. Comput., Vol. 215(3), pp. 1146-1153, 2009. https://doi.org/10.1016/j.amc.2009.06.057
dc.relation.referencesen[15] S. J. Liao, "An explicit, totally analytic approximate solution for Blasius' viscous flow problems", Internat. J. Non-Linear Mech., Vol. 34(4), pp. 759-778, 1999. http://dx.doi.org/10.1016/S0020-7462(98)00056-0
dc.relation.referencesen[16] C.I. Gheorghiu, "Laguerre collocation solutions to boundary layer type problems", Numer. Algor. Vol. 64, pp. 385-401, 2012. DOI: 10.1007/s11075-015-0083-6
dc.relation.referencesen[17] J. Lin, "A new approximate iteration solution of Blasius equation", Commun, Nonlinear Sci. Numer. Simul., Vol. 4(2), pp. 91-99, 1999. DOI: 10.1016/s1007-5704(99)90017-5
dc.relation.referencesen[18] L.T. Yu and C.K. Chen, "The solution of the Blasius equation by the differential transformation method", Math. Comput. Modelling, Vol. 28(1), pp. 101-111, 1998.
dc.relation.referencesen[19] H.A. Peker, O. Karaoğlu and G. Oturanç, "The differential transformation method and Pade approximant for a form of Blasius equation", Math. Comput. Appl., Vol. 16(2), pp. 507-513, 2011. https://doi.org/10.3390/mca16020507
dc.relation.referencesen[20] S. Abbasbandy, "A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method", Chaos, Solutions and Fractals, Vol. 3, pp. 257-260, 2007. https://doi.org/10.1016/j.chaos.2005.10.071
dc.relation.referencesen[21] L. Wang, "A new algorithm for solving classical Blasius equation", Applied Mathematics and Computation, Vol. 157, pp. 1-9, 2004. DOI: 10.1016/j.amc.2003.06.011
dc.relation.referencesen[22] T. Tajvidi, M. Razzaghi, M. "Dehghan, Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate", Chaos, Solutions and Fractals, Vol. 35, pp. 59-66, 2008.
dc.relation.referencesen[23] G. A. Jr. Baker, "The theory and application of the pade approximant method", In Advances in Theoretical Physics, Vol. 1 (Ed. K. A. Brueckner). New York: Academic Press, 1965/
dc.relation.referencesen[24] B.A. Finlayson, "The Method of Weighted Residuals and Variational Principles With Applications in Fluid Mechanics", Academic Press, New York and London, 1972.
dc.relation.referencesen[25] A. Majidian, M. Khaki, M. Khazayinejad, "Analytical Solution of Laminar Boundary Layer Equations Over A Flat Plate by Homotopy Perturbation Method", International Journal of Applied Mathematical Research, Vol. 1(4), pp. 581-592, 2012.
dc.relation.referencesen[26] H.A. Mutuk, "Neural Network Study of Blasius Equation", Neural Processing Letters, Vol. 51, pp. 2179-2194, 2020. DOI: https://doi.org/10.1007/s11063-019-10184-9
dc.relation.referencesen[27] Fazio R. A Non-Iterative Transformation Method for an Extended Blasius Problem. Mathematical Methods in the Applied Sciences. Vol. 44, Is. 2, r. 1996-2001, 2021. DOI: 10.1002/mma.6902
dc.relation.referencesen[28] S. Anil Lal and M. Martin, "Accurate benchmark results of Blasius boundary layer problem using a leaping Taylor's series that converges for all real values", Advances and Applications in Fluid Mechanics, Vol. 28, pp. 41-58, 2022. http://dx.doi.org/10.17654/0973468622004
dc.relation.referencesen[29] S. Anil Lal and M. Neeraj Paul, "An Accurate Taylors Series Solution with High Radius of Convergence for the Blasius Function and Parameters of Asymptotic Variation", Journal of Applied Fluid Mechanics, Vol. 7(4), pp. 557-564, 2014. DOI: 10.36884/jafm.7.04.21339
dc.relation.referencesen[30] E. F. Jaguaribe, "Conflicting Aspects in the Flat Plate Boundary Layer Conventional Solution", Mathematical Problems in Engineering, 2964231, 2020. https://doi.org/10.1155/2020/2964231
dc.relation.referencesen[31] A. Khanfer, L. Bougoffa, S. Bougouffa, "Analytic Approximate Solution of the Extended Blasius Equation with Temperature‑Dependent Viscosity", Journal of Nonlinear Mathematical Physics, Vol. 30, pp. 287-302, 2023. https://doi.org/10.1007/s44198-022-00084-3
dc.relation.referencesen[32] T.V. Dmytriv, M.M. Mykyychuk, V.T. Dmytriv, "Analytical model of dynamic boundary layer on the surface under laminar flow mode", Machinery and Energetics, Vol. 12(3), pp. 93-98, 2021. DOI: 10.31548/machenergy2021.03.093
dc.relation.urihttps://doi.org/10.1016/j.cam.2004.07.013
dc.relation.urihttp://doi.org/10.11121/ijocta.01.2017.00363
dc.relation.urihttps://doi.org/10.1007/978-3-642-45914-6_3
dc.relation.urihttps://doi.org/10.1016/j.amc.2009.06.057
dc.relation.urihttp://dx.doi.org/10.1016/S0020-7462(98)00056-0
dc.relation.urihttps://doi.org/10.3390/mca16020507
dc.relation.urihttps://doi.org/10.1016/j.chaos.2005.10.071
dc.relation.urihttps://doi.org/10.1007/s11063-019-10184-9
dc.relation.urihttp://dx.doi.org/10.17654/0973468622004
dc.relation.urihttps://doi.org/10.1155/2020/2964231
dc.relation.urihttps://doi.org/10.1007/s44198-022-00084-3
dc.rights.holder© Національний університет "Львівська політехніка", 2025
dc.rights.holder© Lanets O., Dmytriv T., 2025
dc.subjectmodel
dc.subjectstress
dc.subjectReynolds number
dc.subjectflat plate
dc.subjectacceleration
dc.subjectvelocity
dc.subjectboundary layer
dc.subjectMach number
dc.subjectviscosity
dc.subjectdimensionless number
dc.titleMathematical model of the boundary layer of airflow over a flat surface
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2025v11n1_Lanets_O-Mathematical_model_of_the_28-36.pdf
Size:
1.52 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2025v11n1_Lanets_O-Mathematical_model_of_the_28-36__COVER.png
Size:
498.96 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.76 KB
Format:
Plain Text
Description: