Thermodynamic parameters of 5-(nitrophenyl)-furan-2-carboxylic acids solutions in propan-2-ol

dc.citation.epage21
dc.citation.issue1
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage15
dc.citation.volume6
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationЛьвівський національний університет ім. Івана Франка
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationIvan Franko National University of Lviv
dc.contributor.authorГорак, Ю. І.
dc.contributor.authorШевченко, Д. С.
dc.contributor.authorСобечко, І. Б.
dc.contributor.authorHorak, Y. I.
dc.contributor.authorShevchenko, D. S.
dc.contributor.authorSobechko, I. B.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-02-09T09:24:48Z
dc.date.available2024-02-09T09:24:48Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractНа основі температурної залежності розчинності 5-(2-нітрофеніл)-фуран-2-карбонової кислоти, 5-(3-нітрофеніл)-фуран-2-карбонової кислоти та 5-(4-нітрофеніл)-фуран-2-карбонової кислоти в пропан-2-олі розраховано ентальпію та ентропію їх розчинення. З урахуванням ентальпії та ентропії плавлення, перерахованих до 298 К, розраховано ентальпії та ентропії змішування. Визначено залежність розчинності карбоксилвмісних речовин при 298 К від їхньої температури плавлення.
dc.description.abstractBased on the temperature dependence of the solubility of 5-(2-nitrophenyl)-furan-2-carboxylic acid, 5-(3-nitrophenyl)-furan-2-carboxylic acid and 5-(4-nitrophenyl)-furan-2-carboxylic acid in propan-2-ol, the enthalpy and entropy of their dissolution were calculated. Taking into account the enthalpy and entropy of melting recalculated to 298 K, the enthalpies and entropies of mixing were calculated. The dependence of the solubility of carboxyl-containing substances at 298 K on their melting point was determined.
dc.format.extent15-21
dc.format.pages7
dc.identifier.citationHorak Y. I. Thermodynamic parameters of 5-(nitrophenyl)-furan-2-carboxylic acids solutions in propan-2-ol / Y. I. Horak, D. S. Shevchenko, I. B. Sobechko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 15–21.
dc.identifier.citationenHorak Y. I. Thermodynamic parameters of 5-(nitrophenyl)-furan-2-carboxylic acids solutions in propan-2-ol / Y. I. Horak, D. S. Shevchenko, I. B. Sobechko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 15–21.
dc.identifier.doidoi.org/10.23939/ctas2023.01.015
dc.identifier.issn2617-7307
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/61189
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 1 (6), 2023
dc.relation.ispartofChemistry, Technology and Application of Substances, 1 (6), 2023
dc.relation.references1. Sun, M., Ma, C., Zhou, S.-J. et al. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho-quinone methides with 2- indolylmethanols. Angew. Chem. Int. Ed, 58, 8703−8708. doi: 10.1002/ange.201901955.
dc.relation.references2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. et al. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita–baylis–hillman carbonates. J. Org. Chem, 83, 10060−10069. doi: 10.1021/acs.joc.8b01390.
dc.relation.references3. Wang, C.-S., Cheng, Y.-C., Zhou, J. et al. (2018). Metal-catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. J. Org. Chem, 83, 13861−13873. doi: 10.1021/acs.joc.8b02186.
dc.relation.references4. Jiang, F., Zhao, D., Yang, X. et al. (2017). Catalyst-controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catal, 7, 6984−6989. doi: 10.1021/acscatal.7b02279.
dc.relation.references5. Karateev, A., Koryagin, A., Litvinov, D. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 1, 19–23.
dc.relation.references6. Wang, Y., Furukawa, S., Fu, X., Yan, N. (2019). Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. doi: 10.1021/acscatal.9b03744.
dc.relation.references7. Hakim Siddiki, S. M. A., Toyao, T., Shimizu, K.-I. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem, 20, 2933–2952. doi: 10.1039/C8GC00451J.
dc.relation.references8. Lipshutz, B. H. (1986). Five-membered heteroaromatic rings as intermediates in organic synthesis Chem. Rev., 86, 795−819.
dc.relation.references9. Gandini, M., Belgacem, N. (1997) Furans in polymer chemistry. Progress in Polymer Science 22, (6). 1203–1379.
dc.relation.references10. Meng, C., Qingsong, Yu., Hongmin, S. (2013). Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci., 14, 18488-18501. doi: 10.3390/ijms140918488.
dc.relation.references11. Holla, B. S., Akberali, P. M., Shivananda M. K. (2000). Studies on arylfuran derivatives: part X Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco, 55, (4). 256–263. doi: 10.1016/s0014-827x(00)00030-6.
dc.relation.references12. Subrahmanya Bhat Κ.,, Shivarama Holla, Β. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic communications. 6, (6). 625–628. doi: 10.1515/HC.2003.9.6.625.
dc.relation.references13. Ridka, O., Matiychuk, V., Sobechko, I., Tyshchenko, N., Novyk, M., Sergeev, V., Goshko, L. (2019). Thermodynamic properties of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in Organic Solutions. French-Ukrainian Journal of Chemistry, 7(2), 1–8. doi: 10.17721/fujcv7i2p1-8.
dc.relation.references14. Sobechko, I. B., Van-Chin-Syan, Yu. Ya., Gorak, Yu. I. et al. (2015). Thermodynamic characteristics of the melting and dissolution of crystalline furan-2-carboxylic and 3-(furyl)-2-propenoic in organic solvent. Russian Journal of Physical Chemistry (A), 89, (6), 919–925. doi: 10.1134/S003602441506028X.
dc.relation.references15. Sobechko, I., Dibrivnyi, V., Horak Y. et al. (2017). Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents. Chemistry & Chemical Technology. 11, (4), 397–404. doi: 10.23939/chcht11.04.397.
dc.relation.references16. Sobechko I., Horak Y., Dibrivnyi, V. et al. (2019). Thermodynamic properties of 2-methyl-5-arylfuran-3 carboxylic acids chlorine derivatives in organic solvents. Chemistry & Chemical Technology, 13, (3), 280–287. doi: 10.23939/chcht13.03.280.
dc.relation.references17. Marshalek, А. S., Prokop, R. T., Sobechko, I. B. et al. (2017). Thermodynamic properties of some paranitrophenyl disubstituted furan derivatives. Questions of chemistry and chemical technology, 2, (111), 36–41.
dc.relation.references18. Li, Z., Guo, J., Hu, B., Zhou, C., Zheng, Y., Zhao, H., Li, Q. (2022). Solubility measurement, modeling, and solvent effect of M-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15–325.15) K. Journal of Molecular Liquids, 353, 118798. https://doi.org/10.1016/j.molliq.2022.118798.
dc.relation.references19. Maharana, A., Sarkar, D. (2019). Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilibria, 497, 33–54. https://doi.org/10.1016/j.fluid.2019.06.004.
dc.relation.references20. Huang, W., Wang, H., Li, C., Wen, T., Xu, J., Ouyang, J., Zhang, C. (2021). Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven monosolvents. Journal of Molecular Liquids, 333, 115894. https://doi.org/10.1016/j.molliq.2021.115894.
dc.relation.references21. Sobechko, I. B. (2021). Thermodynamic properties of oxygen- and nitrogen-containing heterocyclic compounds and their solutions : dis. … Doc. of Chem. Sci. : 02.00.04. Lviv. 525.
dc.relation.references22. Wu, Y., Zhang, X., Di, Y., Zhang, Y. (2017). Solubility determination and modelling of 4-Nitro-1,2- phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamicproperties of solutions. The Journal of Chemical Thermodynamics, 106, 22–35. https://doi.org/10.1016/j.jct.2016.11.014.
dc.relation.references23. Li, X., Wang, M., Du, C., Cong, Y., Zhao, H. (2017). Thermodynamic functions for solubility of 3-nitro- O -toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 110, 87–98. https://doi.org/10.1016/j.jct.2017.02.017.
dc.relation.references24. Wu, Y., Di, Y., Zhang, X., Zhang, Y. (2016). Solubility determination and thermodynamic modeling of 3-methyl-4-nitrobenzoic acid in twelve organic solvents from T = (283.15 – 318.15) K and mixing properties of solutions. The Journal of Chemical Thermodynamics, 102, 257–269. https://doi.org/10.1016/j.jct.2016.07.023.
dc.relation.referencesen1. Sun, M., Ma, C., Zhou, S.-J. et al. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho-quinone methides with 2- indolylmethanols. Angew. Chem. Int. Ed, 58, 8703−8708. doi: 10.1002/ange.201901955.
dc.relation.referencesen2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. et al. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita–baylis–hillman carbonates. J. Org. Chem, 83, 10060−10069. doi: 10.1021/acs.joc.8b01390.
dc.relation.referencesen3. Wang, C.-S., Cheng, Y.-C., Zhou, J. et al. (2018). Metal-catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. J. Org. Chem, 83, 13861−13873. doi: 10.1021/acs.joc.8b02186.
dc.relation.referencesen4. Jiang, F., Zhao, D., Yang, X. et al. (2017). Catalyst-controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catal, 7, 6984−6989. doi: 10.1021/acscatal.7b02279.
dc.relation.referencesen5. Karateev, A., Koryagin, A., Litvinov, D. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 1, 19–23.
dc.relation.referencesen6. Wang, Y., Furukawa, S., Fu, X., Yan, N. (2019). Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. doi: 10.1021/acscatal.9b03744.
dc.relation.referencesen7. Hakim Siddiki, S. M. A., Toyao, T., Shimizu, K.-I. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem, 20, 2933–2952. doi: 10.1039/P.8GC00451J.
dc.relation.referencesen8. Lipshutz, B. H. (1986). Five-membered heteroaromatic rings as intermediates in organic synthesis Chem. Rev., 86, 795−819.
dc.relation.referencesen9. Gandini, M., Belgacem, N. (1997) Furans in polymer chemistry. Progress in Polymer Science 22, (6). 1203–1379.
dc.relation.referencesen10. Meng, C., Qingsong, Yu., Hongmin, S. (2013). Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci., 14, 18488-18501. doi: 10.3390/ijms140918488.
dc.relation.referencesen11. Holla, B. S., Akberali, P. M., Shivananda M. K. (2000). Studies on arylfuran derivatives: part X Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco, 55, (4). 256–263. doi: 10.1016/s0014-827x(00)00030-6.
dc.relation.referencesen12. Subrahmanya Bhat K.,, Shivarama Holla, B. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic communications. 6, (6). 625–628. doi: 10.1515/HC.2003.9.6.625.
dc.relation.referencesen13. Ridka, O., Matiychuk, V., Sobechko, I., Tyshchenko, N., Novyk, M., Sergeev, V., Goshko, L. (2019). Thermodynamic properties of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in Organic Solutions. French-Ukrainian Journal of Chemistry, 7(2), 1–8. doi: 10.17721/fujcv7i2p1-8.
dc.relation.referencesen14. Sobechko, I. B., Van-Chin-Syan, Yu. Ya., Gorak, Yu. I. et al. (2015). Thermodynamic characteristics of the melting and dissolution of crystalline furan-2-carboxylic and 3-(furyl)-2-propenoic in organic solvent. Russian Journal of Physical Chemistry (A), 89, (6), 919–925. doi: 10.1134/S003602441506028X.
dc.relation.referencesen15. Sobechko, I., Dibrivnyi, V., Horak Y. et al. (2017). Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents. Chemistry & Chemical Technology. 11, (4), 397–404. doi: 10.23939/chcht11.04.397.
dc.relation.referencesen16. Sobechko I., Horak Y., Dibrivnyi, V. et al. (2019). Thermodynamic properties of 2-methyl-5-arylfuran-3 carboxylic acids chlorine derivatives in organic solvents. Chemistry & Chemical Technology, 13, (3), 280–287. doi: 10.23939/chcht13.03.280.
dc.relation.referencesen17. Marshalek, A. S., Prokop, R. T., Sobechko, I. B. et al. (2017). Thermodynamic properties of some paranitrophenyl disubstituted furan derivatives. Questions of chemistry and chemical technology, 2, (111), 36–41.
dc.relation.referencesen18. Li, Z., Guo, J., Hu, B., Zhou, C., Zheng, Y., Zhao, H., Li, Q. (2022). Solubility measurement, modeling, and solvent effect of M-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15–325.15) K. Journal of Molecular Liquids, 353, 118798. https://doi.org/10.1016/j.molliq.2022.118798.
dc.relation.referencesen19. Maharana, A., Sarkar, D. (2019). Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilibria, 497, 33–54. https://doi.org/10.1016/j.fluid.2019.06.004.
dc.relation.referencesen20. Huang, W., Wang, H., Li, C., Wen, T., Xu, J., Ouyang, J., Zhang, C. (2021). Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven monosolvents. Journal of Molecular Liquids, 333, 115894. https://doi.org/10.1016/j.molliq.2021.115894.
dc.relation.referencesen21. Sobechko, I. B. (2021). Thermodynamic properties of oxygen- and nitrogen-containing heterocyclic compounds and their solutions : dis. … Doc. of Chem. Sci. : 02.00.04. Lviv. 525.
dc.relation.referencesen22. Wu, Y., Zhang, X., Di, Y., Zhang, Y. (2017). Solubility determination and modelling of 4-Nitro-1,2- phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamicproperties of solutions. The Journal of Chemical Thermodynamics, 106, 22–35. https://doi.org/10.1016/j.jct.2016.11.014.
dc.relation.referencesen23. Li, X., Wang, M., Du, C., Cong, Y., Zhao, H. (2017). Thermodynamic functions for solubility of 3-nitro- O -toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 110, 87–98. https://doi.org/10.1016/j.jct.2017.02.017.
dc.relation.referencesen24. Wu, Y., Di, Y., Zhang, X., Zhang, Y. (2016). Solubility determination and thermodynamic modeling of 3-methyl-4-nitrobenzoic acid in twelve organic solvents from T = (283.15 – 318.15) K and mixing properties of solutions. The Journal of Chemical Thermodynamics, 102, 257–269. https://doi.org/10.1016/j.jct.2016.07.023.
dc.relation.urihttps://doi.org/10.1016/j.molliq.2022.118798
dc.relation.urihttps://doi.org/10.1016/j.fluid.2019.06.004
dc.relation.urihttps://doi.org/10.1016/j.molliq.2021.115894
dc.relation.urihttps://doi.org/10.1016/j.jct.2016.11.014
dc.relation.urihttps://doi.org/10.1016/j.jct.2017.02.017
dc.relation.urihttps://doi.org/10.1016/j.jct.2016.07.023
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectрозчинність
dc.subjectентальпія розчинення
dc.subjectентальпія змішування
dc.subjectентальпія плавлення
dc.subject5-(2-нітрофеніл)-фуран-2-карбонова кислота
dc.subject5-(3-нітрофеніл)-фуран-2-карбонова кислота
dc.subject5-(4-нітрофеніл)-фуран-2-карбонова кислота
dc.subjectsolubility
dc.subjectenthalpy of dissolution
dc.subjectenthalpy of mixing
dc.subjectenthalpy of melting
dc.subject5-(2-nitrophenyl)-furan-2-carboxylic acid
dc.subject5-(3-nitrophenyl)-furan-2-carboxylic acid
dc.subject5-(4-nitrophenyl)-furan-2-carboxylic acid
dc.titleThermodynamic parameters of 5-(nitrophenyl)-furan-2-carboxylic acids solutions in propan-2-ol
dc.title.alternativeТермодинамічні параметри розчинів 5-(нітрофеніл)-фуран-2-карбонових кислот у пропан-2-олі
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v6n1_Horak_Y_I-Thermodynamic_parameters_15-21.pdf
Size:
1.44 MB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v6n1_Horak_Y_I-Thermodynamic_parameters_15-21__COVER.png
Size:
463.39 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: