Thermodynamic parameters of 5-(nitrophenyl)-furan-2-carboxylic acids solutions in propan-2-ol
dc.citation.epage | 21 | |
dc.citation.issue | 1 | |
dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
dc.citation.spage | 15 | |
dc.citation.volume | 6 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Львівський національний університет ім. Івана Франка | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Ivan Franko National University of Lviv | |
dc.contributor.author | Горак, Ю. І. | |
dc.contributor.author | Шевченко, Д. С. | |
dc.contributor.author | Собечко, І. Б. | |
dc.contributor.author | Horak, Y. I. | |
dc.contributor.author | Shevchenko, D. S. | |
dc.contributor.author | Sobechko, I. B. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-02-09T09:24:48Z | |
dc.date.available | 2024-02-09T09:24:48Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | На основі температурної залежності розчинності 5-(2-нітрофеніл)-фуран-2-карбонової кислоти, 5-(3-нітрофеніл)-фуран-2-карбонової кислоти та 5-(4-нітрофеніл)-фуран-2-карбонової кислоти в пропан-2-олі розраховано ентальпію та ентропію їх розчинення. З урахуванням ентальпії та ентропії плавлення, перерахованих до 298 К, розраховано ентальпії та ентропії змішування. Визначено залежність розчинності карбоксилвмісних речовин при 298 К від їхньої температури плавлення. | |
dc.description.abstract | Based on the temperature dependence of the solubility of 5-(2-nitrophenyl)-furan-2-carboxylic acid, 5-(3-nitrophenyl)-furan-2-carboxylic acid and 5-(4-nitrophenyl)-furan-2-carboxylic acid in propan-2-ol, the enthalpy and entropy of their dissolution were calculated. Taking into account the enthalpy and entropy of melting recalculated to 298 K, the enthalpies and entropies of mixing were calculated. The dependence of the solubility of carboxyl-containing substances at 298 K on their melting point was determined. | |
dc.format.extent | 15-21 | |
dc.format.pages | 7 | |
dc.identifier.citation | Horak Y. I. Thermodynamic parameters of 5-(nitrophenyl)-furan-2-carboxylic acids solutions in propan-2-ol / Y. I. Horak, D. S. Shevchenko, I. B. Sobechko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 15–21. | |
dc.identifier.citationen | Horak Y. I. Thermodynamic parameters of 5-(nitrophenyl)-furan-2-carboxylic acids solutions in propan-2-ol / Y. I. Horak, D. S. Shevchenko, I. B. Sobechko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 6. — No 1. — P. 15–21. | |
dc.identifier.doi | doi.org/10.23939/ctas2023.01.015 | |
dc.identifier.issn | 2617-7307 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61189 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 1 (6), 2023 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (6), 2023 | |
dc.relation.references | 1. Sun, M., Ma, C., Zhou, S.-J. et al. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho-quinone methides with 2- indolylmethanols. Angew. Chem. Int. Ed, 58, 8703−8708. doi: 10.1002/ange.201901955. | |
dc.relation.references | 2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. et al. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita–baylis–hillman carbonates. J. Org. Chem, 83, 10060−10069. doi: 10.1021/acs.joc.8b01390. | |
dc.relation.references | 3. Wang, C.-S., Cheng, Y.-C., Zhou, J. et al. (2018). Metal-catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. J. Org. Chem, 83, 13861−13873. doi: 10.1021/acs.joc.8b02186. | |
dc.relation.references | 4. Jiang, F., Zhao, D., Yang, X. et al. (2017). Catalyst-controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catal, 7, 6984−6989. doi: 10.1021/acscatal.7b02279. | |
dc.relation.references | 5. Karateev, A., Koryagin, A., Litvinov, D. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 1, 19–23. | |
dc.relation.references | 6. Wang, Y., Furukawa, S., Fu, X., Yan, N. (2019). Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. doi: 10.1021/acscatal.9b03744. | |
dc.relation.references | 7. Hakim Siddiki, S. M. A., Toyao, T., Shimizu, K.-I. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem, 20, 2933–2952. doi: 10.1039/C8GC00451J. | |
dc.relation.references | 8. Lipshutz, B. H. (1986). Five-membered heteroaromatic rings as intermediates in organic synthesis Chem. Rev., 86, 795−819. | |
dc.relation.references | 9. Gandini, M., Belgacem, N. (1997) Furans in polymer chemistry. Progress in Polymer Science 22, (6). 1203–1379. | |
dc.relation.references | 10. Meng, C., Qingsong, Yu., Hongmin, S. (2013). Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci., 14, 18488-18501. doi: 10.3390/ijms140918488. | |
dc.relation.references | 11. Holla, B. S., Akberali, P. M., Shivananda M. K. (2000). Studies on arylfuran derivatives: part X Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco, 55, (4). 256–263. doi: 10.1016/s0014-827x(00)00030-6. | |
dc.relation.references | 12. Subrahmanya Bhat Κ.,, Shivarama Holla, Β. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic communications. 6, (6). 625–628. doi: 10.1515/HC.2003.9.6.625. | |
dc.relation.references | 13. Ridka, O., Matiychuk, V., Sobechko, I., Tyshchenko, N., Novyk, M., Sergeev, V., Goshko, L. (2019). Thermodynamic properties of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in Organic Solutions. French-Ukrainian Journal of Chemistry, 7(2), 1–8. doi: 10.17721/fujcv7i2p1-8. | |
dc.relation.references | 14. Sobechko, I. B., Van-Chin-Syan, Yu. Ya., Gorak, Yu. I. et al. (2015). Thermodynamic characteristics of the melting and dissolution of crystalline furan-2-carboxylic and 3-(furyl)-2-propenoic in organic solvent. Russian Journal of Physical Chemistry (A), 89, (6), 919–925. doi: 10.1134/S003602441506028X. | |
dc.relation.references | 15. Sobechko, I., Dibrivnyi, V., Horak Y. et al. (2017). Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents. Chemistry & Chemical Technology. 11, (4), 397–404. doi: 10.23939/chcht11.04.397. | |
dc.relation.references | 16. Sobechko I., Horak Y., Dibrivnyi, V. et al. (2019). Thermodynamic properties of 2-methyl-5-arylfuran-3 carboxylic acids chlorine derivatives in organic solvents. Chemistry & Chemical Technology, 13, (3), 280–287. doi: 10.23939/chcht13.03.280. | |
dc.relation.references | 17. Marshalek, А. S., Prokop, R. T., Sobechko, I. B. et al. (2017). Thermodynamic properties of some paranitrophenyl disubstituted furan derivatives. Questions of chemistry and chemical technology, 2, (111), 36–41. | |
dc.relation.references | 18. Li, Z., Guo, J., Hu, B., Zhou, C., Zheng, Y., Zhao, H., Li, Q. (2022). Solubility measurement, modeling, and solvent effect of M-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15–325.15) K. Journal of Molecular Liquids, 353, 118798. https://doi.org/10.1016/j.molliq.2022.118798. | |
dc.relation.references | 19. Maharana, A., Sarkar, D. (2019). Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilibria, 497, 33–54. https://doi.org/10.1016/j.fluid.2019.06.004. | |
dc.relation.references | 20. Huang, W., Wang, H., Li, C., Wen, T., Xu, J., Ouyang, J., Zhang, C. (2021). Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven monosolvents. Journal of Molecular Liquids, 333, 115894. https://doi.org/10.1016/j.molliq.2021.115894. | |
dc.relation.references | 21. Sobechko, I. B. (2021). Thermodynamic properties of oxygen- and nitrogen-containing heterocyclic compounds and their solutions : dis. … Doc. of Chem. Sci. : 02.00.04. Lviv. 525. | |
dc.relation.references | 22. Wu, Y., Zhang, X., Di, Y., Zhang, Y. (2017). Solubility determination and modelling of 4-Nitro-1,2- phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamicproperties of solutions. The Journal of Chemical Thermodynamics, 106, 22–35. https://doi.org/10.1016/j.jct.2016.11.014. | |
dc.relation.references | 23. Li, X., Wang, M., Du, C., Cong, Y., Zhao, H. (2017). Thermodynamic functions for solubility of 3-nitro- O -toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 110, 87–98. https://doi.org/10.1016/j.jct.2017.02.017. | |
dc.relation.references | 24. Wu, Y., Di, Y., Zhang, X., Zhang, Y. (2016). Solubility determination and thermodynamic modeling of 3-methyl-4-nitrobenzoic acid in twelve organic solvents from T = (283.15 – 318.15) K and mixing properties of solutions. The Journal of Chemical Thermodynamics, 102, 257–269. https://doi.org/10.1016/j.jct.2016.07.023. | |
dc.relation.referencesen | 1. Sun, M., Ma, C., Zhou, S.-J. et al. (2019). Catalytic Asymmetric (4+3) Cyclizations of in situ generated ortho-quinone methides with 2- indolylmethanols. Angew. Chem. Int. Ed, 58, 8703−8708. doi: 10.1002/ange.201901955. | |
dc.relation.referencesen | 2. Jiang, F., Luo, G.-Z., Zhu, Z.-Q. et al. (2018). Application of naphthylindole-derived phosphines as organocatalysts in [4 + 1] cyclizations of o-quinone methides with morita–baylis–hillman carbonates. J. Org. Chem, 83, 10060−10069. doi: 10.1021/acs.joc.8b01390. | |
dc.relation.referencesen | 3. Wang, C.-S., Cheng, Y.-C., Zhou, J. et al. (2018). Metal-catalyzed oxa-[4+2] cyclizations of quinone methides with alkynyl benzyl alcohols. J. Org. Chem, 83, 13861−13873. doi: 10.1021/acs.joc.8b02186. | |
dc.relation.referencesen | 4. Jiang, F., Zhao, D., Yang, X. et al. (2017). Catalyst-controlled chemoselective and enantioselective reactions of tryptophols with isatin-derived imines. ACS Catal, 7, 6984−6989. doi: 10.1021/acscatal.7b02279. | |
dc.relation.referencesen | 5. Karateev, A., Koryagin, A., Litvinov, D. (2008). New network polymers based on furfurylglysidil ether. Chemistry& Chemical Technology, 1, 19–23. | |
dc.relation.referencesen | 6. Wang, Y., Furukawa, S., Fu, X., Yan, N. (2019). Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. doi: 10.1021/acscatal.9b03744. | |
dc.relation.referencesen | 7. Hakim Siddiki, S. M. A., Toyao, T., Shimizu, K.-I. (2018). Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem, 20, 2933–2952. doi: 10.1039/P.8GC00451J. | |
dc.relation.referencesen | 8. Lipshutz, B. H. (1986). Five-membered heteroaromatic rings as intermediates in organic synthesis Chem. Rev., 86, 795−819. | |
dc.relation.referencesen | 9. Gandini, M., Belgacem, N. (1997) Furans in polymer chemistry. Progress in Polymer Science 22, (6). 1203–1379. | |
dc.relation.referencesen | 10. Meng, C., Qingsong, Yu., Hongmin, S. (2013). Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci., 14, 18488-18501. doi: 10.3390/ijms140918488. | |
dc.relation.referencesen | 11. Holla, B. S., Akberali, P. M., Shivananda M. K. (2000). Studies on arylfuran derivatives: part X Synthesis and antibacterial properties of arylfuryl-delta2-pyrazolines. Farmaco, 55, (4). 256–263. doi: 10.1016/s0014-827x(00)00030-6. | |
dc.relation.referencesen | 12. Subrahmanya Bhat K.,, Shivarama Holla, B. (2003). Facile synthesis of 5-aryl-furan-2-aldehyde and 5-aryl-furan-2- carboxylic acid using ceric ammonium nitrate. Heterocyclic communications. 6, (6). 625–628. doi: 10.1515/HC.2003.9.6.625. | |
dc.relation.referencesen | 13. Ridka, O., Matiychuk, V., Sobechko, I., Tyshchenko, N., Novyk, M., Sergeev, V., Goshko, L. (2019). Thermodynamic properties of methyl 4-(4-methoxyphenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate in Organic Solutions. French-Ukrainian Journal of Chemistry, 7(2), 1–8. doi: 10.17721/fujcv7i2p1-8. | |
dc.relation.referencesen | 14. Sobechko, I. B., Van-Chin-Syan, Yu. Ya., Gorak, Yu. I. et al. (2015). Thermodynamic characteristics of the melting and dissolution of crystalline furan-2-carboxylic and 3-(furyl)-2-propenoic in organic solvent. Russian Journal of Physical Chemistry (A), 89, (6), 919–925. doi: 10.1134/S003602441506028X. | |
dc.relation.referencesen | 15. Sobechko, I., Dibrivnyi, V., Horak Y. et al. (2017). Thermodynamic properties of solubility of 2-methyl-5-arylfuran-3-carboxylic acids in organic solvents. Chemistry & Chemical Technology. 11, (4), 397–404. doi: 10.23939/chcht11.04.397. | |
dc.relation.referencesen | 16. Sobechko I., Horak Y., Dibrivnyi, V. et al. (2019). Thermodynamic properties of 2-methyl-5-arylfuran-3 carboxylic acids chlorine derivatives in organic solvents. Chemistry & Chemical Technology, 13, (3), 280–287. doi: 10.23939/chcht13.03.280. | |
dc.relation.referencesen | 17. Marshalek, A. S., Prokop, R. T., Sobechko, I. B. et al. (2017). Thermodynamic properties of some paranitrophenyl disubstituted furan derivatives. Questions of chemistry and chemical technology, 2, (111), 36–41. | |
dc.relation.referencesen | 18. Li, Z., Guo, J., Hu, B., Zhou, C., Zheng, Y., Zhao, H., Li, Q. (2022). Solubility measurement, modeling, and solvent effect of M-hydroxyacetophenone in ten pure and binary mixed solvents from T = (289.15–325.15) K. Journal of Molecular Liquids, 353, 118798. https://doi.org/10.1016/j.molliq.2022.118798. | |
dc.relation.referencesen | 19. Maharana, A., Sarkar, D. (2019). Solubility measurements and thermodynamic modeling of pyrazinamide in five different solvent-antisolvent mixtures. Fluid Phase Equilibria, 497, 33–54. https://doi.org/10.1016/j.fluid.2019.06.004. | |
dc.relation.referencesen | 20. Huang, W., Wang, H., Li, C., Wen, T., Xu, J., Ouyang, J., Zhang, C. (2021). Measurement and correlation of solubility, Hansen solubility parameters and thermodynamic behavior of clozapine in eleven monosolvents. Journal of Molecular Liquids, 333, 115894. https://doi.org/10.1016/j.molliq.2021.115894. | |
dc.relation.referencesen | 21. Sobechko, I. B. (2021). Thermodynamic properties of oxygen- and nitrogen-containing heterocyclic compounds and their solutions : dis. … Doc. of Chem. Sci. : 02.00.04. Lviv. 525. | |
dc.relation.referencesen | 22. Wu, Y., Zhang, X., Di, Y., Zhang, Y. (2017). Solubility determination and modelling of 4-Nitro-1,2- phenylenediamine in eleven organic solvents from T = (283.15 to 318.15) K and thermodynamicproperties of solutions. The Journal of Chemical Thermodynamics, 106, 22–35. https://doi.org/10.1016/j.jct.2016.11.014. | |
dc.relation.referencesen | 23. Li, X., Wang, M., Du, C., Cong, Y., Zhao, H. (2017). Thermodynamic functions for solubility of 3-nitro- O -toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions. The Journal of Chemical Thermodynamics, 110, 87–98. https://doi.org/10.1016/j.jct.2017.02.017. | |
dc.relation.referencesen | 24. Wu, Y., Di, Y., Zhang, X., Zhang, Y. (2016). Solubility determination and thermodynamic modeling of 3-methyl-4-nitrobenzoic acid in twelve organic solvents from T = (283.15 – 318.15) K and mixing properties of solutions. The Journal of Chemical Thermodynamics, 102, 257–269. https://doi.org/10.1016/j.jct.2016.07.023. | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2022.118798 | |
dc.relation.uri | https://doi.org/10.1016/j.fluid.2019.06.004 | |
dc.relation.uri | https://doi.org/10.1016/j.molliq.2021.115894 | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2016.11.014 | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2017.02.017 | |
dc.relation.uri | https://doi.org/10.1016/j.jct.2016.07.023 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | розчинність | |
dc.subject | ентальпія розчинення | |
dc.subject | ентальпія змішування | |
dc.subject | ентальпія плавлення | |
dc.subject | 5-(2-нітрофеніл)-фуран-2-карбонова кислота | |
dc.subject | 5-(3-нітрофеніл)-фуран-2-карбонова кислота | |
dc.subject | 5-(4-нітрофеніл)-фуран-2-карбонова кислота | |
dc.subject | solubility | |
dc.subject | enthalpy of dissolution | |
dc.subject | enthalpy of mixing | |
dc.subject | enthalpy of melting | |
dc.subject | 5-(2-nitrophenyl)-furan-2-carboxylic acid | |
dc.subject | 5-(3-nitrophenyl)-furan-2-carboxylic acid | |
dc.subject | 5-(4-nitrophenyl)-furan-2-carboxylic acid | |
dc.title | Thermodynamic parameters of 5-(nitrophenyl)-furan-2-carboxylic acids solutions in propan-2-ol | |
dc.title.alternative | Термодинамічні параметри розчинів 5-(нітрофеніл)-фуран-2-карбонових кислот у пропан-2-олі | |
dc.type | Article |
Files
License bundle
1 - 1 of 1