Calculated model for determining the subcritical growth period of corrosion-mechanical crack in plate under long-term static and time concentrated quasi-dynamic loadings

dc.citation.conferenceLitteris et Artibus
dc.contributor.affiliationKarpenko Physico-Mechanical Institute of the NAS of Ukraineuk_UA
dc.contributor.authorShtoyko, Ivan
dc.coverage.countryUAuk_UA
dc.coverage.placenameLvivuk_UA
dc.date.accessioned2018-05-02T07:14:41Z
dc.date.available2018-05-02T07:14:41Z
dc.date.issued2016
dc.description.abstractThe calculation model for determining of residual durability of plate with straight corrosion-mechanical crack under long-term static tension and multiple time concentrated quasi-dynamic load is proposed. The model based on the energy approach for a study of delayed crack growth, models of pulsed load applying and the main mechanisms of corrosion-mechanical crack propagation. Based on this model, the dependence of residual life of the plate of X60 pipeline steel on a number of time concentrated quasi-dynamic loadings is investigated.uk_UA
dc.format.pages332-335
dc.identifier.citationShtoyko I. Calculated model for determining the subcritical growth period of corrosion-mechanical crack in plate under long-term static and time concentrated quasi-dynamic loadings / Ivan Shtoyko // Litteris et Artibus : proceedings of the 6th International youth science forum, November 24–26, 2016, Lviv, Ukraine / Lviv Polytechnic National University. – Lviv : Lviv Polytechnic Publishing House, 2016. – P. 332–335. – Bibliography: 19 titles.uk_UA
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/40901
dc.language.isoenuk_UA
dc.publisherLviv Polytechnic Publishing Houseuk_UA
dc.relation.referencesen[1] A. Y. Krasowsky, A. A. Dolgiy and V. M. Torop, “Charpy testing to estimate pipeline steel degradation after 30 years of operation”, in Proc. “Charpy Centary Conference”, Poitiers, vol. 1, 2001, pp. 489–495. [2] O. T. Tsyrulnyk et al., “Embrittlement of the steel of an oil-trunk pipeline”, Materials Science, vol. 40, № 2, 2004, pp. 302–304. [3] O. T. Tsyrulnyk et al., “Hydrogen degradation of steels in gas mains after long periods of operation”, Materials Science, vol. 43, № 5, 2007, pp. 708–717. [4] H. M. Nykyforchyn and O. T. Tsyrul’nyk, “Specific features of the in-service bulk degradation of structural steels under the action of corrosive media”, Strength of Materials, vol. 41, № 6, 2009, pp. 651–663. [5] A. Y. Krasowsky, I. V. Lokhman and I. V. Orynyak, “Stress-corrosion failures of main pipelines”, Strength of Materials, vol. 44, № 2, 2012, pp. 129–143. [6] E. I. Kryzhanivs’kyi, R. S. Hrabovs’kyi and O. M. Mandryk. “Estimation of the serviceability of oil and gas pipelines after long-term operation according to the parameters of their defectiveness”, Materials Science, vol. 49, № 1, 2013, pp. 117–123. [7] O. E. Andreikiv et al., “Evaluation of the residual lifetime of a section of a main gas pipeline after long- term operation”, Material Science, vol. 48, № 2, 2012, pp. 231–238. [8] O. E. Andreikiv and N. B. Sas, “Strength of thin-walled structural elements with cracks under the conditions of creep”, Material Science, vol. 43, № 2, 2007, pp. 174–182. [9] O. E. Andreikiv and N. B. Sas, “Fracture mechanics of metal plates under hightemperature creep” Material Science, vol. 42, № 2, 2006, pp. 210–219. [10] Handbook of Fatigue Crack Propagation in Metallic Structures, A. Carpinteri, Ed. – Elsevier, 1994, vol. 1, 952 p. [11] O. E. Andreikiv and O. V. Hembara, “Fracture Mechanics and Durability of Metallic Materials in Hydrogen-Containing Media” [in Ukrainian], Kyiv: Naukova Dumka, 2008. [12] Y. T. Li and R. Wong, “Integral and series represen-tations of the Dirac delta function”, Commun. Pure Appl. Anal., vol. 7, № 2, 2008, pp. 229–247. [13] N. I. Tym'yak and O. E. Andreikiv, “Evaluation of crack-growth rate under conditions of simultaneous action of static loading and corrosive media”, Materials Science, vol. 31, № 2, 1995, pp. 219−225. [14]Hembara O. V., Terlets’ka Z. O., Chepil’ O. Ya. Determination of electric fields in electrolyte-metal systems // Material Science, vol. 43, № 2, 2007, pp. 222−229. [15] M. Elboujdaini, “Initiation of environmentally assisted cracking in line pipe steel”, in 16th European on Fraсture (ECF16th) “Fracture of Nano and Engineering materials and structures”, Alexandropoulos, Greece, July 3-7, 2006. – Dordrecht: Springer, 2006, pp. 1007–1008. [16] Z. V. Slobodian, H. M. Nykyforchyn and O. I. Petrush-chak, “Corrosion resistance of pipe steel in petroleum-water media”, Material Science, № 3, 2002, pp. 93-96. [17] Handbook of Fatigue Crack Propagation in Metallic Structures, A. Carpinteri, Ed. – Elsevier, 1994, vol. 2, 1764 p. [18] H. Nykyforchyn et al., “In service degradation of mechanical and corrosion-mechanical properties of transit gas pipeline steels” in Proc. of 14th international conference Mechanica, Kaunas, Lithuiania, 2009, pp. 278–283 [19] O. T. Tsyrul’nyk et al., “Influence of operation of KH52 steel on corrosion processes in a model solution of gas condensate”. Material Science, vol. 42, № 5, 2006, pp. 219–229.uk_UA
dc.subjectpipeline steeluk_UA
dc.subjectcrackuk_UA
dc.subjectmodeluk_UA
dc.subjectenergy approachuk_UA
dc.subjectresidual lifeuk_UA
dc.titleCalculated model for determining the subcritical growth period of corrosion-mechanical crack in plate under long-term static and time concentrated quasi-dynamic loadingsuk_UA
dc.typeConference Abstractuk_UA

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LEA-2016-332-335.pdf
Size:
790.85 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
2.99 KB
Format:
Item-specific license agreed upon to submission
Description: