Дослідження розміру дисперсної фази самостабілізованої водної дисперсії фосфоровмісних поліестерів
dc.citation.epage | 212 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Chemistry, Technology and Application of Substances | |
dc.citation.spage | 208 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Стасюк, А. В. | |
dc.contributor.author | Лях, В. І. | |
dc.contributor.author | Капаціла, С. М. | |
dc.contributor.author | Фігурка, Н. В. | |
dc.contributor.author | Самарик, В. Я. | |
dc.contributor.author | Stasiuk, A. V. | |
dc.contributor.author | Lyakh, V. I. | |
dc.contributor.author | Kapatsila, S. M. | |
dc.contributor.author | Fihurka, N. V. | |
dc.contributor.author | Samaryk, V. Y. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-03-05T07:39:17Z | |
dc.date.created | 2005-03-01 | |
dc.date.issued | 2005-03-01 | |
dc.description.abstract | Синтезовано нові фосфоровмісні поліестери на основі N-похідних дикарбонових αамінокислот та діолів поліоксиетиленового ряду, в які введено фосфатну групу, здатні формувати у водних середовищах самостабілізовані дисперсії з нанорозмірними частинками дисперсної фази. Введення фосфатної групи в гідрофільний фрагмент істотно підвищує стабілізаційну здатність. Властивості нових фосфоровмісних поліестерів дають змогу розглядати їх як потенційні системи для доставки лікарських препаратів. | |
dc.description.abstract | New phosphorus-containing polyesters based on N-derivatives of dicarboxylic α-amino acids and diols of the polyoxyethylene series in which the phosphate group has been introduced are synthesized, capable of forming self-stabilized dispersions with nanosized particles of the dispersed phase in aqueous media. The introduction of the phosphate group in the hydrophilic fragment significantly increases the stabilizing ability. The properties of new phosphorus-containing polyesters allow us to consider them as potential systems for drug delivery. | |
dc.format.extent | 208-212 | |
dc.format.pages | 5 | |
dc.identifier.citation | Дослідження розміру дисперсної фази самостабілізованої водної дисперсії фосфоровмісних поліестерів / А. В. Стасюк, В. І. Лях, С. М. Капаціла, Н. В. Фігурка, В. Я. Самарик // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 208–212. | |
dc.identifier.citationen | Study of the size of the dispersed phase of self-stabilized aqueous dispersion of phosphorus-containing polyesters / A. V. Stasiuk, V. I. Lyakh, S. M. Kapatsila, N. V. Fihurka, V. Y. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 208–212. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.208 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/63658 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (5), 2022 | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 2 (5), 2022 | |
dc.relation.references | 1. Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science (Oxford), 23(7), 1273-1335. DOI: https://doi.org/10.1016/S0079-6700(97)00039-7 | |
dc.relation.references | 2. Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science (Oxford), 32(8-9), 762-798. DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017 | |
dc.relation.references | 3. Albertsson, A., & Varma, I. K. (2002). Aliphatic polyesters: Synthesis, properties and applications. Advances in Polymer Science, 157, 1-40. DOI: https://doi.org/10.1007/3-540-45734-8_1 | |
dc.relation.references | 4. Vert, M. (2005). Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules, 6(2), 538-546. DOI: https://doi.org/10.1021/bm0494702 | |
dc.relation.references | 5. Lecomte, P., & Jérôme, C. (2013). Synthesis and fabrication of polyesters as biomaterials. Polymeric biomaterials: Structure and function (pp. 1-28). DOI: https://doi.org/10.1201/b13757 | |
dc.relation.references | 6. Zia, K. M., Noreen, A., Zuber, M., Tabasum, S., & Mujahid, M. (2016). Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. International Journal of Biological Macromolecules, 82, 1028-1040. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.040 | |
dc.relation.references | 7. Washington, K. E., Kularatne, R. N., Karmegam, V., Biewer, M. C., & Stefan, M. C. (2017). Recent advances in aliphatic polyesters for drug delivery applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4). DOI: https://doi.org/10.1002/wnan.1446 | |
dc.relation.references | 8. Gordillo-Galeano, A., Ponce, A., & Mora- Huertas, C. E. (2021). Surface structural characteristics of some colloidal lipid systems used in pharmaceutics. Journal of Drug Delivery Science and Technology, 62. DOI: https://doi.org/10.1016/j.jddst.2021.102345 | |
dc.relation.references | 9. Atanase, L. I. (2021). Micellar drug delivery systems based on natural biopolymers. Polymers, 13(3), 1- 33. DOI: https://doi.org/10.3390/polym13030477 | |
dc.relation.references | 10. Idrees, H., Zaidi, S. Z. J., Sabir, A., Khan, R. U., Zhang, X., & Hassan, S. (2020). A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 10(10), 1-22. DOI: https://doi.org/10.3390/nano10101970 | |
dc.relation.references | 11. Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 41(7), 2545-2561. DOI: https://doi.org/10.1039/c2cs15327k | |
dc.relation.references | 12. Stasiuk, A. V., Prychak, S. P., Fihurka, N. V., Varvarenko, S. M., & Samaryk, V. Y. (2021). Syntez fosforovmisnykh psevdopoliaminokyslot poliesternoho typu. Chemistry, Technology and Application of Substances. 4(1), 224-229. DOI: https://doi.org/10.23939/ctas | |
dc.relation.references | 13. Stasiuk, A., Fihurka, N., Vlizlo, V., Prychak, S., Ostapiv, D., Varvarenko, S., & Samaryk, V. (2022). Synthesis and properties of phosphorus-containing pseudo- poly(amino acid)s of polyester type based on n-derivatives of glutaminic acid. Chemistry and Chemical Technology, 16(1), 51-58. DOI: https://doi.org/10.23939/chcht16.01.051 | |
dc.relation.references | 14. Stasiuk, A. V., Dron, I. A., Khomiak, S. V., Hevus, O. I., & Samaryk, V. Ya. (2019). Syntez deiakykh fosforovmisnykh pokhidnykh polietylenhlikoliv. Chemistry, Technology and Application of Substances, 2(2), 18-24. DOI: https://doi.org/10.23939/ctas2019.02.018 | |
dc.relation.references | 15. Hordon, A., & Ford, R. (1976). Sputnik himika. Moskva: Mir. | |
dc.relation.references | 16. Varvarenko, S. M., Nosova, N. Н., Dron, I. A., Voronov, A. S., Fіhurka, N. V., Tarnavchyk, I. T., ... Voronov S. A. (2013). Novi amfifilni aminofunktsiini poliestery ta dyspersni systemy na yikh osnovi. Voprosy khymyy y khymycheskoi tekhnolohyy, 5, 27-32. | |
dc.relation.references | 17. Varvarenko, S. M., Nosova, N. Н., Taras, R. S., Vostres V. B., Samaryk, V. Ya., Voronov S. A. (2013). Poliestery n-stearyl hlutaminovoi kysloty ta dioliv dlia stvorennia samostabilizovanykh dyspersnykh system. Visnyk Natsionalnoho universytetu Lvivska politekhnika: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, No. 761, 392-397. | |
dc.relation.referencesen | 1. Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science (Oxford), 23(7), 1273-1335. DOI: https://doi.org/10.1016/S0079-6700(97)00039-7 | |
dc.relation.referencesen | 2. Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science (Oxford), 32(8-9), 762-798. DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017 | |
dc.relation.referencesen | 3. Albertsson, A., & Varma, I. K. (2002). Aliphatic polyesters: Synthesis, properties and applications. Advances in Polymer Science, 157, 1-40. DOI: https://doi.org/10.1007/3-540-45734-8_1 | |
dc.relation.referencesen | 4. Vert, M. (2005). Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules, 6(2), 538-546. DOI: https://doi.org/10.1021/bm0494702 | |
dc.relation.referencesen | 5. Lecomte, P., & Jérôme, C. (2013). Synthesis and fabrication of polyesters as biomaterials. Polymeric biomaterials: Structure and function (pp. 1-28). DOI: https://doi.org/10.1201/b13757 | |
dc.relation.referencesen | 6. Zia, K. M., Noreen, A., Zuber, M., Tabasum, S., & Mujahid, M. (2016). Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. International Journal of Biological Macromolecules, 82, 1028-1040. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.040 | |
dc.relation.referencesen | 7. Washington, K. E., Kularatne, R. N., Karmegam, V., Biewer, M. C., & Stefan, M. C. (2017). Recent advances in aliphatic polyesters for drug delivery applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4). DOI: https://doi.org/10.1002/wnan.1446 | |
dc.relation.referencesen | 8. Gordillo-Galeano, A., Ponce, A., & Mora- Huertas, C. E. (2021). Surface structural characteristics of some colloidal lipid systems used in pharmaceutics. Journal of Drug Delivery Science and Technology, 62. DOI: https://doi.org/10.1016/j.jddst.2021.102345 | |
dc.relation.referencesen | 9. Atanase, L. I. (2021). Micellar drug delivery systems based on natural biopolymers. Polymers, 13(3), 1- 33. DOI: https://doi.org/10.3390/polym13030477 | |
dc.relation.referencesen | 10. Idrees, H., Zaidi, S. Z. J., Sabir, A., Khan, R. U., Zhang, X., & Hassan, S. (2020). A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 10(10), 1-22. DOI: https://doi.org/10.3390/nano10101970 | |
dc.relation.referencesen | 11. Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 41(7), 2545-2561. DOI: https://doi.org/10.1039/P.2cs15327k | |
dc.relation.referencesen | 12. Stasiuk, A. V., Prychak, S. P., Fihurka, N. V., Varvarenko, S. M., & Samaryk, V. Y. (2021). Syntez fosforovmisnykh psevdopoliaminokyslot poliesternoho typu. Chemistry, Technology and Application of Substances. 4(1), 224-229. DOI: https://doi.org/10.23939/ctas | |
dc.relation.referencesen | 13. Stasiuk, A., Fihurka, N., Vlizlo, V., Prychak, S., Ostapiv, D., Varvarenko, S., & Samaryk, V. (2022). Synthesis and properties of phosphorus-containing pseudo- poly(amino acid)s of polyester type based on n-derivatives of glutaminic acid. Chemistry and Chemical Technology, 16(1), 51-58. DOI: https://doi.org/10.23939/chcht16.01.051 | |
dc.relation.referencesen | 14. Stasiuk, A. V., Dron, I. A., Khomiak, S. V., Hevus, O. I., & Samaryk, V. Ya. (2019). Syntez deiakykh fosforovmisnykh pokhidnykh polietylenhlikoliv. Chemistry, Technology and Application of Substances, 2(2), 18-24. DOI: https://doi.org/10.23939/ctas2019.02.018 | |
dc.relation.referencesen | 15. Hordon, A., & Ford, R. (1976). Sputnik himika. Moskva: Mir. | |
dc.relation.referencesen | 16. Varvarenko, S. M., Nosova, N. N., Dron, I. A., Voronov, A. S., Fihurka, N. V., Tarnavchyk, I. T., ... Voronov S. A. (2013). Novi amfifilni aminofunktsiini poliestery ta dyspersni systemy na yikh osnovi. Voprosy khymyy y khymycheskoi tekhnolohyy, 5, 27-32. | |
dc.relation.referencesen | 17. Varvarenko, S. M., Nosova, N. N., Taras, R. S., Vostres V. B., Samaryk, V. Ya., Voronov S. A. (2013). Poliestery n-stearyl hlutaminovoi kysloty ta dioliv dlia stvorennia samostabilizovanykh dyspersnykh system. Visnyk Natsionalnoho universytetu Lvivska politekhnika: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, No. 761, 392-397. | |
dc.relation.uri | https://doi.org/10.1016/S0079-6700(97)00039-7 | |
dc.relation.uri | https://doi.org/10.1016/j.progpolymsci.2007.05.017 | |
dc.relation.uri | https://doi.org/10.1007/3-540-45734-8_1 | |
dc.relation.uri | https://doi.org/10.1021/bm0494702 | |
dc.relation.uri | https://doi.org/10.1201/b13757 | |
dc.relation.uri | https://doi.org/10.1016/j.ijbiomac.2015.10.040 | |
dc.relation.uri | https://doi.org/10.1002/wnan.1446 | |
dc.relation.uri | https://doi.org/10.1016/j.jddst.2021.102345 | |
dc.relation.uri | https://doi.org/10.3390/polym13030477 | |
dc.relation.uri | https://doi.org/10.3390/nano10101970 | |
dc.relation.uri | https://doi.org/10.1039/c2cs15327k | |
dc.relation.uri | https://doi.org/10.23939/ctas | |
dc.relation.uri | https://doi.org/10.23939/chcht16.01.051 | |
dc.relation.uri | https://doi.org/10.23939/ctas2019.02.018 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | фосфоровмісні поліестери | |
dc.subject | самостабілізовані дисперсії | |
dc.subject | доставка лікарських препаратів | |
dc.subject | біосумісність | |
dc.subject | phosphorus-containing polyesters | |
dc.subject | self-stabilized dispersions | |
dc.subject | drug delivery | |
dc.subject | biocompatibility | |
dc.title | Дослідження розміру дисперсної фази самостабілізованої водної дисперсії фосфоровмісних поліестерів | |
dc.title.alternative | Study of the size of the dispersed phase of self-stabilized aqueous dispersion of phosphorus-containing polyesters | |
dc.type | Article |
Files
License bundle
1 - 1 of 1