Дослідження розміру дисперсної фази самостабілізованої водної дисперсії фосфоровмісних поліестерів

dc.citation.epage212
dc.citation.issue2
dc.citation.journalTitleChemistry, Technology and Application of Substances
dc.citation.spage208
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorСтасюк, А. В.
dc.contributor.authorЛях, В. І.
dc.contributor.authorКапаціла, С. М.
dc.contributor.authorФігурка, Н. В.
dc.contributor.authorСамарик, В. Я.
dc.contributor.authorStasiuk, A. V.
dc.contributor.authorLyakh, V. I.
dc.contributor.authorKapatsila, S. M.
dc.contributor.authorFihurka, N. V.
dc.contributor.authorSamaryk, V. Y.
dc.coverage.placenameLviv
dc.coverage.placenameLviv
dc.date.accessioned2025-03-05T07:39:17Z
dc.date.created2005-03-01
dc.date.issued2005-03-01
dc.description.abstractСинтезовано нові фосфоровмісні поліестери на основі N-похідних дикарбонових αамінокислот та діолів поліоксиетиленового ряду, в які введено фосфатну групу, здатні формувати у водних середовищах самостабілізовані дисперсії з нанорозмірними частинками дисперсної фази. Введення фосфатної групи в гідрофільний фрагмент істотно підвищує стабілізаційну здатність. Властивості нових фосфоровмісних поліестерів дають змогу розглядати їх як потенційні системи для доставки лікарських препаратів.
dc.description.abstractNew phosphorus-containing polyesters based on N-derivatives of dicarboxylic α-amino acids and diols of the polyoxyethylene series in which the phosphate group has been introduced are synthesized, capable of forming self-stabilized dispersions with nanosized particles of the dispersed phase in aqueous media. The introduction of the phosphate group in the hydrophilic fragment significantly increases the stabilizing ability. The properties of new phosphorus-containing polyesters allow us to consider them as potential systems for drug delivery.
dc.format.extent208-212
dc.format.pages5
dc.identifier.citationДослідження розміру дисперсної фази самостабілізованої водної дисперсії фосфоровмісних поліестерів / А. В. Стасюк, В. І. Лях, С. М. Капаціла, Н. В. Фігурка, В. Я. Самарик // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 2. — С. 208–212.
dc.identifier.citationenStudy of the size of the dispersed phase of self-stabilized aqueous dispersion of phosphorus-containing polyesters / A. V. Stasiuk, V. I. Lyakh, S. M. Kapatsila, N. V. Fihurka, V. Y. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 2. — P. 208–212.
dc.identifier.doidoi.org/10.23939/ctas2022.01.208
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/63658
dc.language.isouk
dc.publisherLviv Politechnic Publishing House
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (5), 2022
dc.relation.references1. Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science (Oxford), 23(7), 1273-1335. DOI: https://doi.org/10.1016/S0079-6700(97)00039-7
dc.relation.references2. Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science (Oxford), 32(8-9), 762-798. DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017
dc.relation.references3. Albertsson, A., & Varma, I. K. (2002). Aliphatic polyesters: Synthesis, properties and applications. Advances in Polymer Science, 157, 1-40. DOI: https://doi.org/10.1007/3-540-45734-8_1
dc.relation.references4. Vert, M. (2005). Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules, 6(2), 538-546. DOI: https://doi.org/10.1021/bm0494702
dc.relation.references5. Lecomte, P., & Jérôme, C. (2013). Synthesis and fabrication of polyesters as biomaterials. Polymeric biomaterials: Structure and function (pp. 1-28). DOI: https://doi.org/10.1201/b13757
dc.relation.references6. Zia, K. M., Noreen, A., Zuber, M., Tabasum, S., & Mujahid, M. (2016). Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. International Journal of Biological Macromolecules, 82, 1028-1040. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.040
dc.relation.references7. Washington, K. E., Kularatne, R. N., Karmegam, V., Biewer, M. C., & Stefan, M. C. (2017). Recent advances in aliphatic polyesters for drug delivery applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4). DOI: https://doi.org/10.1002/wnan.1446
dc.relation.references8. Gordillo-Galeano, A., Ponce, A., & Mora- Huertas, C. E. (2021). Surface structural characteristics of some colloidal lipid systems used in pharmaceutics. Journal of Drug Delivery Science and Technology, 62. DOI: https://doi.org/10.1016/j.jddst.2021.102345
dc.relation.references9. Atanase, L. I. (2021). Micellar drug delivery systems based on natural biopolymers. Polymers, 13(3), 1- 33. DOI: https://doi.org/10.3390/polym13030477
dc.relation.references10. Idrees, H., Zaidi, S. Z. J., Sabir, A., Khan, R. U., Zhang, X., & Hassan, S. (2020). A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 10(10), 1-22. DOI: https://doi.org/10.3390/nano10101970
dc.relation.references11. Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 41(7), 2545-2561. DOI: https://doi.org/10.1039/c2cs15327k
dc.relation.references12. Stasiuk, A. V., Prychak, S. P., Fihurka, N. V., Varvarenko, S. M., & Samaryk, V. Y. (2021). Syntez fosforovmisnykh psevdopoliaminokyslot poliesternoho typu. Chemistry, Technology and Application of Substances. 4(1), 224-229. DOI: https://doi.org/10.23939/ctas
dc.relation.references13. Stasiuk, A., Fihurka, N., Vlizlo, V., Prychak, S., Ostapiv, D., Varvarenko, S., & Samaryk, V. (2022). Synthesis and properties of phosphorus-containing pseudo- poly(amino acid)s of polyester type based on n-derivatives of glutaminic acid. Chemistry and Chemical Technology, 16(1), 51-58. DOI: https://doi.org/10.23939/chcht16.01.051
dc.relation.references14. Stasiuk, A. V., Dron, I. A., Khomiak, S. V., Hevus, O. I., & Samaryk, V. Ya. (2019). Syntez deiakykh fosforovmisnykh pokhidnykh polietylenhlikoliv. Chemistry, Technology and Application of Substances, 2(2), 18-24. DOI: https://doi.org/10.23939/ctas2019.02.018
dc.relation.references15. Hordon, A., & Ford, R. (1976). Sputnik himika. Moskva: Mir.
dc.relation.references16. Varvarenko, S. M., Nosova, N. Н., Dron, I. A., Voronov, A. S., Fіhurka, N. V., Tarnavchyk, I. T., ... Voronov S. A. (2013). Novi amfifilni aminofunktsiini poliestery ta dyspersni systemy na yikh osnovi. Voprosy khymyy y khymycheskoi tekhnolohyy, 5, 27-32.
dc.relation.references17. Varvarenko, S. M., Nosova, N. Н., Taras, R. S., Vostres V. B., Samaryk, V. Ya., Voronov S. A. (2013). Poliestery n-stearyl hlutaminovoi kysloty ta dioliv dlia stvorennia samostabilizovanykh dyspersnykh system. Visnyk Natsionalnoho universytetu Lvivska politekhnika: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, No. 761, 392-397.
dc.relation.referencesen1. Chandra, R., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science (Oxford), 23(7), 1273-1335. DOI: https://doi.org/10.1016/S0079-6700(97)00039-7
dc.relation.referencesen2. Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science (Oxford), 32(8-9), 762-798. DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.017
dc.relation.referencesen3. Albertsson, A., & Varma, I. K. (2002). Aliphatic polyesters: Synthesis, properties and applications. Advances in Polymer Science, 157, 1-40. DOI: https://doi.org/10.1007/3-540-45734-8_1
dc.relation.referencesen4. Vert, M. (2005). Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules, 6(2), 538-546. DOI: https://doi.org/10.1021/bm0494702
dc.relation.referencesen5. Lecomte, P., & Jérôme, C. (2013). Synthesis and fabrication of polyesters as biomaterials. Polymeric biomaterials: Structure and function (pp. 1-28). DOI: https://doi.org/10.1201/b13757
dc.relation.referencesen6. Zia, K. M., Noreen, A., Zuber, M., Tabasum, S., & Mujahid, M. (2016). Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. International Journal of Biological Macromolecules, 82, 1028-1040. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.040
dc.relation.referencesen7. Washington, K. E., Kularatne, R. N., Karmegam, V., Biewer, M. C., & Stefan, M. C. (2017). Recent advances in aliphatic polyesters for drug delivery applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9(4). DOI: https://doi.org/10.1002/wnan.1446
dc.relation.referencesen8. Gordillo-Galeano, A., Ponce, A., & Mora- Huertas, C. E. (2021). Surface structural characteristics of some colloidal lipid systems used in pharmaceutics. Journal of Drug Delivery Science and Technology, 62. DOI: https://doi.org/10.1016/j.jddst.2021.102345
dc.relation.referencesen9. Atanase, L. I. (2021). Micellar drug delivery systems based on natural biopolymers. Polymers, 13(3), 1- 33. DOI: https://doi.org/10.3390/polym13030477
dc.relation.referencesen10. Idrees, H., Zaidi, S. Z. J., Sabir, A., Khan, R. U., Zhang, X., & Hassan, S. (2020). A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 10(10), 1-22. DOI: https://doi.org/10.3390/nano10101970
dc.relation.referencesen11. Elsabahy, M., & Wooley, K. L. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 41(7), 2545-2561. DOI: https://doi.org/10.1039/P.2cs15327k
dc.relation.referencesen12. Stasiuk, A. V., Prychak, S. P., Fihurka, N. V., Varvarenko, S. M., & Samaryk, V. Y. (2021). Syntez fosforovmisnykh psevdopoliaminokyslot poliesternoho typu. Chemistry, Technology and Application of Substances. 4(1), 224-229. DOI: https://doi.org/10.23939/ctas
dc.relation.referencesen13. Stasiuk, A., Fihurka, N., Vlizlo, V., Prychak, S., Ostapiv, D., Varvarenko, S., & Samaryk, V. (2022). Synthesis and properties of phosphorus-containing pseudo- poly(amino acid)s of polyester type based on n-derivatives of glutaminic acid. Chemistry and Chemical Technology, 16(1), 51-58. DOI: https://doi.org/10.23939/chcht16.01.051
dc.relation.referencesen14. Stasiuk, A. V., Dron, I. A., Khomiak, S. V., Hevus, O. I., & Samaryk, V. Ya. (2019). Syntez deiakykh fosforovmisnykh pokhidnykh polietylenhlikoliv. Chemistry, Technology and Application of Substances, 2(2), 18-24. DOI: https://doi.org/10.23939/ctas2019.02.018
dc.relation.referencesen15. Hordon, A., & Ford, R. (1976). Sputnik himika. Moskva: Mir.
dc.relation.referencesen16. Varvarenko, S. M., Nosova, N. N., Dron, I. A., Voronov, A. S., Fihurka, N. V., Tarnavchyk, I. T., ... Voronov S. A. (2013). Novi amfifilni aminofunktsiini poliestery ta dyspersni systemy na yikh osnovi. Voprosy khymyy y khymycheskoi tekhnolohyy, 5, 27-32.
dc.relation.referencesen17. Varvarenko, S. M., Nosova, N. N., Taras, R. S., Vostres V. B., Samaryk, V. Ya., Voronov S. A. (2013). Poliestery n-stearyl hlutaminovoi kysloty ta dioliv dlia stvorennia samostabilizovanykh dyspersnykh system. Visnyk Natsionalnoho universytetu Lvivska politekhnika: Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia, No. 761, 392-397.
dc.relation.urihttps://doi.org/10.1016/S0079-6700(97)00039-7
dc.relation.urihttps://doi.org/10.1016/j.progpolymsci.2007.05.017
dc.relation.urihttps://doi.org/10.1007/3-540-45734-8_1
dc.relation.urihttps://doi.org/10.1021/bm0494702
dc.relation.urihttps://doi.org/10.1201/b13757
dc.relation.urihttps://doi.org/10.1016/j.ijbiomac.2015.10.040
dc.relation.urihttps://doi.org/10.1002/wnan.1446
dc.relation.urihttps://doi.org/10.1016/j.jddst.2021.102345
dc.relation.urihttps://doi.org/10.3390/polym13030477
dc.relation.urihttps://doi.org/10.3390/nano10101970
dc.relation.urihttps://doi.org/10.1039/c2cs15327k
dc.relation.urihttps://doi.org/10.23939/ctas
dc.relation.urihttps://doi.org/10.23939/chcht16.01.051
dc.relation.urihttps://doi.org/10.23939/ctas2019.02.018
dc.rights.holder© Національний університет “Львівська політехніка”, 2022
dc.subjectфосфоровмісні поліестери
dc.subjectсамостабілізовані дисперсії
dc.subjectдоставка лікарських препаратів
dc.subjectбіосумісність
dc.subjectphosphorus-containing polyesters
dc.subjectself-stabilized dispersions
dc.subjectdrug delivery
dc.subjectbiocompatibility
dc.titleДослідження розміру дисперсної фази самостабілізованої водної дисперсії фосфоровмісних поліестерів
dc.title.alternativeStudy of the size of the dispersed phase of self-stabilized aqueous dispersion of phosphorus-containing polyesters
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2022v5n2_Stasiuk_A_V-Study_of_the_size_of_208-212.pdf
Size:
581.08 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2022v5n2_Stasiuk_A_V-Study_of_the_size_of_208-212__COVER.png
Size:
433.87 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: