Kinetics of high-temperature interaction of titanium alloys with a carbon-containing gaseous medium

Abstract

Due to their excellent complex of physical, chemical, and mechanical properties, titanium alloys are unique materials for many branches of industry. An important feature of titanium is its high reactivity concerning the interstitial chemical elements (oxygen, nitrogen, and carbon). The absorption of interstitial elements by titanium alloys causes change in physical and mechanical properties of alloys and articles which are made of them. It should be noted that the titanium alloys are classified, in particular, by the compositions of their structures. Investigations of titanium alloys of different structural compositions will enable us to take into account the influence of their features on the kinetics of their interaction with interstitial elements. Results of experimental investigations of the influence of a carbon-containing gaseous medium on the kinetics of interaction of titanium alloys of different structural classes (α-, pseudo-α, and (α+β)) are presented in this paper. It is established that the interaction at high temperatures (T = 750–850 °C) of titanium alloys with rarefied carbon-containing gaseous medium (Ar+16.7 % C3H8) under a pressure of P = 0.116 Pa leads to the increase in mass of the specimens according to a law which is close to linear dependence on time.

Description

Keywords

titanium alloy, reactivity, absorption, structural composition, kinetics, interstitial element, gaseous medium, specimen

Citation

Trush V. Kinetics of high-temperature interaction of titanium alloys with a carbon-containing gaseous medium / Vasyl Trush, Alexander Luk’yanenko // Ukrainian Journal of Mechanical Engineering and Materials Science. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 29–39.