Modeling of biosurfactant synthesis using Bacillus ssp

dc.citation.epage182
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage177
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorЯнварьов, Є. Б.
dc.contributor.authorГавриляк, В. В.
dc.contributor.authorYanvarov, Y. B.
dc.contributor.authorHavryliak, V. V.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:54Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractБактерії роду Bacillus продукують біогенні поверхнево-активні сполуки, які є альтернативою синтетичним. Вихід цільових продуктів істотно залежить від умов культивування мікроорганізмів, особливо від компонентів живильного середовища. У цьому дослідженні ми використовували штам Bacillus spp., здатний рости в середовищі, що містить гліцерин. Для визначення кінетики росту бактерій залежно від концентрації поживних речовин у середовищі ми використовували модель Моно. Результати показали, що інтенсивний ріст бактерій Bacillus spp. спостерігається у разі їх культивування у середовищі з концентрацією гліцеролу 30–40 г/л. Поверхнево-активні речовини, отримані за допомогою Bacillus spp., характеризувалися достатнім рівнем піноутворення та піностабільності. Найвище значення піностійкості спостерігали на сьому добу культивування.
dc.description.abstractBacteria belonging to the genus Bacillus produce biogenic surface-active compounds which are a sustainable alternative to synthetic ones. The amount of the target products depends significantly on the conditions of microorganism cultivation, especially the components of the medium. In this study, we utilized Bacillus spp. strain that can grow in a glycerol-containing medium. We used the Monod model to determine the growth kinetics of the bacteria depending on the concentration of nutrients in the medium. Our findings indicated that intensive growth of Bacillus spp. bacteria is observed during cultivation in the medium with a glycerol concentration of 30–40 g/L. The surface active substances from Bacillus spp. was characterized by a sufficient level of foaming and foam stability. The highest value of foam stability was observed on the 7th day of cultivation.
dc.format.extent177-182
dc.format.pages6
dc.identifier.citationYanvarov Y. B. Modeling of biosurfactant synthesis using Bacillus ssp / Y. B. Yanvarov, V. V. Havryliak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 177–182.
dc.identifier.citationenYanvarov Y. B. Modeling of biosurfactant synthesis using Bacillus ssp / Y. B. Yanvarov, V. V. Havryliak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 177–182.
dc.identifier.doidoi.org/10.23939/ctas2024.01.177
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111743
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Yanvarov, Ye. B., & Havryliak, V. V. (2022). Biosurfactants: structure, functions and productions. Biotechnologia Acta, 15(6), 26-35. https://doi.org/10.15407/biotech15.06.026
dc.relation.references2. Ng, Y. J., Chan, S. S., Khoo, K. S., Munawaroh, H. S. H., Lim, H. R., Chew, K. W., Ling, T. C., Saravanan, A., Ma, Z., & Show, P. L. (2023). Recent advances and discoveries of microbial-based glycolipids: Prospective alternative for remediation activities. Biotechnology Advances, 68, 108198. https://doi.org/10.1016/j.biotechadv.2023.108198
dc.relation.references3. Badmus, S. O., Amusa, H. K., Oyehan, T. A., & Saleh, T. A. (2021). Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environmental Science and Pollution Research, 28(44), 62085-62104. https://doi.org/10.1007/s11356-021-16483-w
dc.relation.references4. Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183-198. https://doi.org/10.1016/j.envpol.2004.06.009
dc.relation.references5. Drakontis, C. E., & Amin, S. (2020). Biosurfactants: Formulations, properties, and applications. Current Opinion in Colloid & Interface Science, 48, 77-90. https://doi.org/10.1016/j.cocis.2020.03.013
dc.relation.references6. Carolin, F. C., Senthil Kumar, P., Chitra, B., Fetcia Jackulin, C, Racchana Ramamurthy. (2021). Stimulation of Bacillus sp. by lipopeptide biosurfactant for the degradation of aromatic amine 4-Chloroaniline. Journal of Hazardous Materials, 415, 125716. https://doi.org/10.1016/j.jhazmat.2021.125716
dc.relation.references7. Satapute, P, Jogaiah, S. (2022). A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. Chemosphere, 286(Pt 1),131694. doi: 10.1016/j.chemosphere.2021.131694
dc.relation.references8. De Giani, A., Zampolli, J. & Di Gennaro, P. (2021). Recent Trends on Biosurfactants With Antimicrobial Activity Produced by Bacteria Associated With Human Health: Different Perspectives on Their Properties, Challenges, and Potential Applications. Front. Microbiol, 12, 655150. doi: 10.3389/fmicb.2021.655150
dc.relation.references9. Sotirova, A., Avramova, T., Stoitsova, S., Lazarkevich, I., Lubenets, V., Karpenko, E., & Galabova, D. (2012). The Importance of Rhamnolipid-Biosurfactant-Induced Changes in Bacterial Membrane Lipids of Bacillus subtilis for the Antimicrobial Activity of Thiosulfonates. Current Microbiology, 65(5), 534-541. https://doi.org/10.1007/s00284-012-0191-7
dc.relation.references10. Seydlová, G., & Svobodová, J. (2008). Review of surfactin chemical properties and the potential biomedical applications. Open Medicine, 3(2). https://doi.org/10.2478/s11536-008-0002-5
dc.relation.references11. Berkat, S., Meliani, A., Mazari, H., E., Aliane, S. (2022). Microbial biosurfactants: prospects of sustainable molecules with promising application in bioremediation. Environmental and experimental Biology, 20, 155-164. http://doi.org/10.22364/eeb.20.14
dc.relation.references12. DSTU 3789-98 "General-purpose foaming agents for fire extinguishing. General technical requirements and test methods".
dc.relation.references13. Alvarado, K., Niño, L., & Gelves, G. (2022). Kinetic modeling of biosurfactant production from crude oil using Bacillus subtilis cells. South African Journal of Chemical Engineering, 41, 176-181. https://doi.org/10.1016/j.sajce.2022.06.009
dc.relation.references14. Som, A. M., & Yahya, A. (2021). Kinetics and performance study of ultrasonic-assisted membrane anaerobic system using Monod Model for Palm Oil Mill Effluent (POME) treatment. Cleaner Engineering and Technology, 2, 100075. https://doi.org/10.1016/j.clet.2021.100075
dc.relation.references15. Dawi, M. A., & Sanchez-Vila, X. (2022). Simulating degradation of organic compounds accounting for the growth of microorganisms (Monod kinetics) in a fully Lagrangian framework. Journal of Contaminant Hydrology, 251, 104074. https://doi.org/10.1016/j.jconhyd.2022.104074
dc.relation.referencesen1. Yanvarov, Ye. B., & Havryliak, V. V. (2022). Biosurfactants: structure, functions and productions. Biotechnologia Acta, 15(6), 26-35. https://doi.org/10.15407/biotech15.06.026
dc.relation.referencesen2. Ng, Y. J., Chan, S. S., Khoo, K. S., Munawaroh, H. S. H., Lim, H. R., Chew, K. W., Ling, T. C., Saravanan, A., Ma, Z., & Show, P. L. (2023). Recent advances and discoveries of microbial-based glycolipids: Prospective alternative for remediation activities. Biotechnology Advances, 68, 108198. https://doi.org/10.1016/j.biotechadv.2023.108198
dc.relation.referencesen3. Badmus, S. O., Amusa, H. K., Oyehan, T. A., & Saleh, T. A. (2021). Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environmental Science and Pollution Research, 28(44), 62085-62104. https://doi.org/10.1007/s11356-021-16483-w
dc.relation.referencesen4. Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183-198. https://doi.org/10.1016/j.envpol.2004.06.009
dc.relation.referencesen5. Drakontis, C. E., & Amin, S. (2020). Biosurfactants: Formulations, properties, and applications. Current Opinion in Colloid & Interface Science, 48, 77-90. https://doi.org/10.1016/j.cocis.2020.03.013
dc.relation.referencesen6. Carolin, F. C., Senthil Kumar, P., Chitra, B., Fetcia Jackulin, C, Racchana Ramamurthy. (2021). Stimulation of Bacillus sp. by lipopeptide biosurfactant for the degradation of aromatic amine 4-Chloroaniline. Journal of Hazardous Materials, 415, 125716. https://doi.org/10.1016/j.jhazmat.2021.125716
dc.relation.referencesen7. Satapute, P, Jogaiah, S. (2022). A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. Chemosphere, 286(Pt 1),131694. doi: 10.1016/j.chemosphere.2021.131694
dc.relation.referencesen8. De Giani, A., Zampolli, J. & Di Gennaro, P. (2021). Recent Trends on Biosurfactants With Antimicrobial Activity Produced by Bacteria Associated With Human Health: Different Perspectives on Their Properties, Challenges, and Potential Applications. Front. Microbiol, 12, 655150. doi: 10.3389/fmicb.2021.655150
dc.relation.referencesen9. Sotirova, A., Avramova, T., Stoitsova, S., Lazarkevich, I., Lubenets, V., Karpenko, E., & Galabova, D. (2012). The Importance of Rhamnolipid-Biosurfactant-Induced Changes in Bacterial Membrane Lipids of Bacillus subtilis for the Antimicrobial Activity of Thiosulfonates. Current Microbiology, 65(5), 534-541. https://doi.org/10.1007/s00284-012-0191-7
dc.relation.referencesen10. Seydlová, G., & Svobodová, J. (2008). Review of surfactin chemical properties and the potential biomedical applications. Open Medicine, 3(2). https://doi.org/10.2478/s11536-008-0002-5
dc.relation.referencesen11. Berkat, S., Meliani, A., Mazari, H., E., Aliane, S. (2022). Microbial biosurfactants: prospects of sustainable molecules with promising application in bioremediation. Environmental and experimental Biology, 20, 155-164. http://doi.org/10.22364/eeb.20.14
dc.relation.referencesen12. DSTU 3789-98 "General-purpose foaming agents for fire extinguishing. General technical requirements and test methods".
dc.relation.referencesen13. Alvarado, K., Niño, L., & Gelves, G. (2022). Kinetic modeling of biosurfactant production from crude oil using Bacillus subtilis cells. South African Journal of Chemical Engineering, 41, 176-181. https://doi.org/10.1016/j.sajce.2022.06.009
dc.relation.referencesen14. Som, A. M., & Yahya, A. (2021). Kinetics and performance study of ultrasonic-assisted membrane anaerobic system using Monod Model for Palm Oil Mill Effluent (POME) treatment. Cleaner Engineering and Technology, 2, 100075. https://doi.org/10.1016/j.clet.2021.100075
dc.relation.referencesen15. Dawi, M. A., & Sanchez-Vila, X. (2022). Simulating degradation of organic compounds accounting for the growth of microorganisms (Monod kinetics) in a fully Lagrangian framework. Journal of Contaminant Hydrology, 251, 104074. https://doi.org/10.1016/j.jconhyd.2022.104074
dc.relation.urihttps://doi.org/10.15407/biotech15.06.026
dc.relation.urihttps://doi.org/10.1016/j.biotechadv.2023.108198
dc.relation.urihttps://doi.org/10.1007/s11356-021-16483-w
dc.relation.urihttps://doi.org/10.1016/j.envpol.2004.06.009
dc.relation.urihttps://doi.org/10.1016/j.cocis.2020.03.013
dc.relation.urihttps://doi.org/10.1016/j.jhazmat.2021.125716
dc.relation.urihttps://doi.org/10.1007/s00284-012-0191-7
dc.relation.urihttps://doi.org/10.2478/s11536-008-0002-5
dc.relation.urihttp://doi.org/10.22364/eeb.20.14
dc.relation.urihttps://doi.org/10.1016/j.sajce.2022.06.009
dc.relation.urihttps://doi.org/10.1016/j.clet.2021.100075
dc.relation.urihttps://doi.org/10.1016/j.jconhyd.2022.104074
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectбіосурфактанти
dc.subjectмодель Моно
dc.subjectпіноутворення
dc.subjectстабільність піни
dc.subjectbiosurfactants
dc.subjectMonod model
dc.subjectfoaming
dc.subjectfoam stability
dc.titleModeling of biosurfactant synthesis using Bacillus ssp
dc.title.alternativeМоделювання синтезу біосурфактантів за допомогою Bacillus ssp
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Yanvarov_Y_B-Modeling_of_biosurfactant_177-182.pdf
Size:
378.83 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Yanvarov_Y_B-Modeling_of_biosurfactant_177-182__COVER.png
Size:
471.36 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: