Дослідження впливу умов одержання нанокомпозитів ПА6/ММТ на їх термічні властивості
dc.citation.epage | 165 | |
dc.citation.issue | 1 | |
dc.citation.spage | 160 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Технічний університет Кошице | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.affiliation | Technical University of Kosice | |
dc.contributor.author | Красінський, В. В. | |
dc.contributor.author | Кочубей, В. В. | |
dc.contributor.author | Земке, В. М. | |
dc.contributor.author | Дулебова, Л. | |
dc.contributor.author | Іванух, О. О. | |
dc.contributor.author | Krasinskyi, V. V. | |
dc.contributor.author | Kochubei, V. V. | |
dc.contributor.author | Zemke, V. M. | |
dc.contributor.author | Dulebova, L. | |
dc.contributor.author | Ivanukh, O. O. | |
dc.coverage.placename | Lviv | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-01-22T09:22:49Z | |
dc.date.available | 2024-01-22T09:22:49Z | |
dc.date.created | 2020-02-21 | |
dc.date.issued | 2020-02-21 | |
dc.description.abstract | Досліджено вплив додаткового термічного і термомеханічного оброблення нанокомпозитів ПА6/ММТ, одержаних із форміатного розчину, на їх термостійкість та технологічні властивості. Термічним аналізом встановлено, що нагрівання нанокомпозиту до температури 250 °С та оброблення його на капілярному пластометрі ИИРТ за температури 230 °С підвищують ступінь кристалічності та термостійкість зразків. Показано, що додатково оброблені нанокомпозити характеризуються також нижчою текучістю та значно вищими значеннями температури розм’якшення. | |
dc.description.abstract | The influence of additional thermal and thermomechanical treatment of PA6/MMT nanocomposites obtained from the formic acid solution on their heat resistance and technological properties was investigated. Thermal analysis established that heating the nanocomposite to a temperature of 250 ºС and treating it on a capillary plastometer IIRT at a temperature of 230 ºС increases the degree of crystallinity and heat resistance of the samples. It is shown that additionally treated nanocomposites also have lower fluidity and significantly higher values of softening temperature. | |
dc.format.extent | 160-165 | |
dc.format.pages | 6 | |
dc.identifier.citation | Дослідження впливу умов одержання нанокомпозитів ПА6/ММТ на їх термічні властивості / В. В. Красінський, В. В. Кочубей, В. М. Земке, Л. Дулебова, О. О. Іванух // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Том 5. — № 1. — С. 160–165. | |
dc.identifier.citationen | nvestigation of influence of conditions of obtaining PA6/MMT nanocomposites on their thermal properties / V. V. Krasinskyi, V. V. Kochubei, V. M. Zemke, L. Dulebova, O. O. Ivanukh // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2022. — Vol 5. — No 1. — P. 160–165. | |
dc.identifier.doi | doi.org/10.23939/ctas2022.01.160 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/60926 | |
dc.language.iso | uk | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Chemistry, Technology and Application of Substances, 1 (5), 2022 | |
dc.relation.references | 1. Krishna, S., & Patel, C. M. (2020). Computational and experimental study of mechanical properties of Nylon 6 nanocomposites reinforced with nanomilled cellulose. Mechanics of Materials, 143, 103318. https://doi.org/10.1016/j.mechmat.2020.103318. | |
dc.relation.references | 2. Ma, Y., Jin, S., Yokozeki, T., Ueda, M., Yang, Y., Elbadry, E. A., Hamada, H., & Sugahara, T. (2020). Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites. Composites Science and Technology, 200, 108426. https://doi.org/10.1016/j.compscitech.2020.108426. | |
dc.relation.references | 3. Hagihara, H., Watanabe, R., Shimada, T., Funabashi, M., Kunioka, M., & Sato, H. (2018). Degradation mechanism of carbon fiber-reinforced thermoplastics exposed to hot steam studied by chemical and structural analyses of nylon 6 matrix. Composites Part A: Applied Science and Manufacturing, 112, 126–133. https://doi.org/10.1016/j.compositesa.2018.05.034 . | |
dc.relation.references | 4. Yañez-Macias, R., Hernandez-Hernandez, E., Gallardo-Vega, C. A., Ledezma-Rodríguez, R., Ziolo, R. F., Mendoza-Tolentino, Y., Fernández-Tavizon, S., Avila-Orta, C. A., Garcia-Hernandez, Z., & GonzalezMorones, P. (2019). Covalent grafting of unfunctionalized pristine MWCNT with nylon-6 by microwave assist insitu polymerization. Polymer, 185, 121946. https://doi.org/10.1016/j.polymer.2019.121946. | |
dc.relation.references | 5. El Achaby, M., Ennajih, H., Arrakhiz, F. Z., El Kadib, A., Bouhfid, R., Essassi, E., & Qaiss, A. (2013). Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of Polymer Organoclay nanocomposites. Composites Part B: Engineering, 51, 310–317. https://doi.org/10.1016/j.compositesb.2013.03.009. | |
dc.relation.references | 6. Alves, J. L., Rosa, P. de, & Morales, A. R. (2017). Evaluation of organic modification of montmorillonite with Ionic and nonionic surfactants. Applied Clay Science, 150, 23–33. https://doi.org/10.1016/j.clay. 2017.09.001. | |
dc.relation.references | 7. Rajeesh, K. R., Gnanamoorthy, R., & Velmurugan, R. (2010). Effect of humidity on the indentation hardness and flexural fatigue behavior of polyamide 6 nanocomposite. Materials Science and Engineering: A, 527(12), 2826–2830. https://doi.org/10.1016/j.msea.2010.01.070. | |
dc.relation.references | 8. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of Nylon 6-Clay Hybrid. Journal of Materials Research, 8(5), 1185–1189. https://doi.org/10.1557/jmr.1993.1185. | |
dc.relation.references | 9. Chen, H.-B., & Schiraldi, D. A. (2018). Flammability of polymer/clay aerogel composites: An overview. Polymer Reviews, 59(1), 1–24. https://doi.org/10.1080/15583724.2018.1450756. | |
dc.relation.references | 10. Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H. R., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15–16), 2587–2595. https://doi.org/10.1016/j.compscitech.2009. 07.016. | |
dc.relation.references | 11. Fornes, T. D., Hunter, D. L., & Paul, D. R. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321–2331. https://doi.org/10.1016/j.polymer.2004.01.061. | |
dc.relation.references | 12. Dasari, A., Yu, Z., Mai, Y., Hu, G., & Varlet, J. (2005). Clay exfoliation and organic modification on wear of Nylon 6 nanocomposites processed by different routes. Composites Science and Technology, 65(15-16), 2314–2328. https://doi.org/10.1016/j.compscitech.2005.06.017. | |
dc.relation.references | 13. McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 108(4), 2242-2251. DOI: 10.1002/app.25599. | |
dc.relation.references | 14. Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering, 43(1), 83–89. DOI: 10.1016/j.compositesb.2011.04.035. | |
dc.relation.references | 15. Krasinskyi, V. V., Suberlyak, O. V., Zemke, V. M., Chekailo, M. V., & Pankiv, M. O. (2021). Obtaining of nanocomposites based on montmorillonite and Polyamide in solution. Chemistry, Technology and Application of Substances, 4(1), 172–178. https://doi.org/10.23939/ctas2021.01.172. | |
dc.relation.references | 16. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 44–50. DOI: 10.15587/1729-4061.2017.108465. | |
dc.relation.references | 17. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. DOI: 10.4028/www.scientific. net/kem.756.3. | |
dc.relation.referencesen | 1. Krishna, S., & Patel, C. M. (2020). Computational and experimental study of mechanical properties of Nylon 6 nanocomposites reinforced with nanomilled cellulose. Mechanics of Materials, 143, 103318. https://doi.org/10.1016/j.mechmat.2020.103318. | |
dc.relation.referencesen | 2. Ma, Y., Jin, S., Yokozeki, T., Ueda, M., Yang, Y., Elbadry, E. A., Hamada, H., & Sugahara, T. (2020). Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites. Composites Science and Technology, 200, 108426. https://doi.org/10.1016/j.compscitech.2020.108426. | |
dc.relation.referencesen | 3. Hagihara, H., Watanabe, R., Shimada, T., Funabashi, M., Kunioka, M., & Sato, H. (2018). Degradation mechanism of carbon fiber-reinforced thermoplastics exposed to hot steam studied by chemical and structural analyses of nylon 6 matrix. Composites Part A: Applied Science and Manufacturing, 112, 126–133. https://doi.org/10.1016/j.compositesa.2018.05.034 . | |
dc.relation.referencesen | 4. Yañez-Macias, R., Hernandez-Hernandez, E., Gallardo-Vega, C. A., Ledezma-Rodríguez, R., Ziolo, R. F., Mendoza-Tolentino, Y., Fernández-Tavizon, S., Avila-Orta, C. A., Garcia-Hernandez, Z., & GonzalezMorones, P. (2019). Covalent grafting of unfunctionalized pristine MWCNT with nylon-6 by microwave assist insitu polymerization. Polymer, 185, 121946. https://doi.org/10.1016/j.polymer.2019.121946. | |
dc.relation.referencesen | 5. El Achaby, M., Ennajih, H., Arrakhiz, F. Z., El Kadib, A., Bouhfid, R., Essassi, E., & Qaiss, A. (2013). Modification of montmorillonite by novel geminal benzimidazolium surfactant and its use for the preparation of Polymer Organoclay nanocomposites. Composites Part B: Engineering, 51, 310–317. https://doi.org/10.1016/j.compositesb.2013.03.009. | |
dc.relation.referencesen | 6. Alves, J. L., Rosa, P. de, & Morales, A. R. (2017). Evaluation of organic modification of montmorillonite with Ionic and nonionic surfactants. Applied Clay Science, 150, 23–33. https://doi.org/10.1016/j.clay. 2017.09.001. | |
dc.relation.referencesen | 7. Rajeesh, K. R., Gnanamoorthy, R., & Velmurugan, R. (2010). Effect of humidity on the indentation hardness and flexural fatigue behavior of polyamide 6 nanocomposite. Materials Science and Engineering: A, 527(12), 2826–2830. https://doi.org/10.1016/j.msea.2010.01.070. | |
dc.relation.referencesen | 8. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., & Kamigaito, O. (1993). Mechanical properties of Nylon 6-Clay Hybrid. Journal of Materials Research, 8(5), 1185–1189. https://doi.org/10.1557/jmr.1993.1185. | |
dc.relation.referencesen | 9. Chen, H.-B., & Schiraldi, D. A. (2018). Flammability of polymer/clay aerogel composites: An overview. Polymer Reviews, 59(1), 1–24. https://doi.org/10.1080/15583724.2018.1450756. | |
dc.relation.referencesen | 10. Bilotti, E., Zhang, R., Deng, H., Quero, F., Fischer, H. R., & Peijs, T. (2009). Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology, 69(15–16), 2587–2595. https://doi.org/10.1016/j.compscitech.2009. 07.016. | |
dc.relation.referencesen | 11. Fornes, T. D., Hunter, D. L., & Paul, D. R. (2004). Effect of sodium montmorillonite source on nylon 6/clay nanocomposites. Polymer, 45(7), 2321–2331. https://doi.org/10.1016/j.polymer.2004.01.061. | |
dc.relation.referencesen | 12. Dasari, A., Yu, Z., Mai, Y., Hu, G., & Varlet, J. (2005). Clay exfoliation and organic modification on wear of Nylon 6 nanocomposites processed by different routes. Composites Science and Technology, 65(15-16), 2314–2328. https://doi.org/10.1016/j.compscitech.2005.06.017. | |
dc.relation.referencesen | 13. McAdam, C., Hudson, N., Liggat, J., & Pethrick, R. (2008). Synthesis and characterization of nylon 6/clay nanocomposites prepared by ultrasonication and in situ polymerization. Journal of Applied Polymer Science, 108(4), 2242-2251. DOI: 10.1002/app.25599. | |
dc.relation.referencesen | 14. Seltzer, R., Mai, Y., & Frontini, P. (2012). Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending. Composites Part B: Engineering, 43(1), 83–89. DOI: 10.1016/j.compositesb.2011.04.035. | |
dc.relation.referencesen | 15. Krasinskyi, V. V., Suberlyak, O. V., Zemke, V. M., Chekailo, M. V., & Pankiv, M. O. (2021). Obtaining of nanocomposites based on montmorillonite and Polyamide in solution. Chemistry, Technology and Application of Substances, 4(1), 172–178. https://doi.org/10.23939/ctas2021.01.172. | |
dc.relation.referencesen | 16. Krasinskyi, V., Kochubei, V., Klym, Y., & Suberlyak, O. (2017). Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies, 4(12 (88), 44–50. DOI: 10.15587/1729-4061.2017.108465. | |
dc.relation.referencesen | 17. Krasinskyi, V., Suberlyak, O., Dulebová, Ľ., & Antoniuk, V. (2017). Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials, 756, 3–10. DOI: 10.4028/www.scientific. net/kem.756.3. | |
dc.relation.uri | https://doi.org/10.1016/j.mechmat.2020.103318 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2020.108426 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesa.2018.05.034 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2019.121946 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2013.03.009 | |
dc.relation.uri | https://doi.org/10.1016/j.clay | |
dc.relation.uri | https://doi.org/10.1016/j.msea.2010.01.070 | |
dc.relation.uri | https://doi.org/10.1557/jmr.1993.1185 | |
dc.relation.uri | https://doi.org/10.1080/15583724.2018.1450756 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2009 | |
dc.relation.uri | https://doi.org/10.1016/j.polymer.2004.01.061 | |
dc.relation.uri | https://doi.org/10.1016/j.compscitech.2005.06.017 | |
dc.relation.uri | https://doi.org/10.23939/ctas2021.01.172 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2022 | |
dc.subject | поліамід | |
dc.subject | монтморилоніт | |
dc.subject | нанокомпозит | |
dc.subject | термостійкість | |
dc.subject | ступінь кристалічності | |
dc.subject | показник текучості розплаву | |
dc.subject | температура розм’якшення | |
dc.subject | polyamide | |
dc.subject | montmorillonite | |
dc.subject | nanocomposite | |
dc.subject | heat resistance | |
dc.subject | degree of crystallinity | |
dc.subject | melt flow rate | |
dc.subject | softening temperature | |
dc.title | Дослідження впливу умов одержання нанокомпозитів ПА6/ММТ на їх термічні властивості | |
dc.title.alternative | nvestigation of influence of conditions of obtaining PA6/MMT nanocomposites on their thermal properties | |
dc.type | Article |
Files
License bundle
1 - 1 of 1