Spatio-temporal analysis of surface water extraction methods reliability using COPERNICUS satellite data
dc.citation.epage | 18 | |
dc.citation.issue | 1 (34) | |
dc.citation.journalTitle | Геодинаміка | |
dc.citation.spage | 5 | |
dc.contributor.affiliation | Кошицький технічний університет | |
dc.contributor.affiliation | Technical University of Košice | |
dc.contributor.author | Ксенак, Любомир | |
dc.contributor.author | Бартош, Кароль | |
dc.contributor.author | Пуканська, Катаріна | |
dc.contributor.author | Кішеля, Каміль | |
dc.contributor.author | Kseňak, Ľubomir | |
dc.contributor.author | Bartoš, Karol | |
dc.contributor.author | Pukanská, Katarina | |
dc.contributor.author | Kyšeľa, Kamil | |
dc.coverage.placename | Львів | |
dc.date.accessioned | 2024-02-13T09:29:35Z | |
dc.date.available | 2024-02-13T09:29:35Z | |
dc.date.created | 2023-06-26 | |
dc.date.issued | 2023-06-26 | |
dc.description.abstract | Метою цього дослідження є порівняння та подальша оцінка придатності використання SAR (радара із синтетичною апертурою) та мультиспектральних (MSI) супутникових даних програми Copernicus для картографування та точної ідентифікації поверхневих водних тіл, враховуючи раптові зміни, спричинені значними кліматичними впливами. Методологія виділення наземних навігацій для видалення радіолокаційних шумів, то для цієї мети найкраще підходять фільтри Lee і Lee Sigma. Використовуваний розмір вікна залежить від конкретного типу об’єкта, а також від його просторового розміру. Екстракція водних поверхонь із зображення MSI обробляється за допомогою нормалізованого індексу різниці води (NDWI), модифікованого нормалізованого індексу різниці води (MNDWI), пари індексів автоматичного індексу вилучення води (AWEI) та індексу співвідношення води (WRI). Оцінка отриманих значень вилучення – графічна та числення – для уточнення результатів (з використанням кількісних показників точності). Автоматичне виділення водних поверхонь із зображень MSI у середовищі платформи GEE є порівняно точним, швидким і ефективним інструментом для визначення справжнього рівня ґрунтових вод. Підсумовуючи, можна сказати, що результати цих досліджень дають змогу достовірніше оцінювати раптові гідрологічні зміни, спричинені міжрічними коливаннями водойм країни. У поєднанні з різночасовим моніторингом цих змін вони можуть бути ефективним інструментом постійного моніторингу повеней і посух. передбачає стандартну попередню обробку зображень SAR і завершення визначення порогових значень у генерації бінарної маски. Опрацювання зображень MSI охоплює автоматичну алгоритмічну обробку та подальшу генерацію водяних масок через хмарну платформу Google Earth Engine. Результати опрацювання зображення SAR показують, що тип конфігурації поляризації VV (вертикальна–-вертикальна) є відповідним типом поляризації. Якщо брати інструменти фільтрації | |
dc.description.abstract | The aim of this research is the comparison and subsequent evaluation of the suitability of using SAR (Synthetic Aperture Radar) and multispectral (MSI) satellite data of the Copernicus program for mapping and accurate identification of surface water bodies. The paper considers sudden changes caused by significant climatological-meteorological influences in the country. The surface guidance extraction methodology includes the standard preprocessing of SAR images and concluding the determination of threshold values in binary mask generation. For MSI images, water masks are generated through automatic algorithmic processing on the Google Earth Engine cloud platform. During SAR image processing, it has been found that the VV polarization configuration type (vertical-vertical) is the most suitable. The Lee and Lee Sigma filters are recommended for eliminating radar noise. The chosen window size for filtering depends on the specific object and its spatial extent. The extraction of water surfaces from the MSI image is conducted using the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), a pair of Automated Water Extraction Index (AWEI) indices, and Water Ratio Index (WRI). Results are evaluated both graphically and numerically, using quantitative accuracy indicators to refine them. Automatic extraction of water surfaces from MSI images in the GEE platform environment is a fast, efficient, and relatively accurate tool for determining the true extent of groundwater. In conclusion, this research can provide more reliable estimates of hydrological changes and interannual variations in water bodies in the country. When combined with multitemporal monitoring, these results can be an effective tool for permanent monitoring of floods and droughts. | |
dc.format.extent | 5-18 | |
dc.format.pages | 14 | |
dc.identifier.citation | Spatio-temporal analysis of surface water extraction methods reliability using COPERNICUS satellite data / Ľubomir Kseňak, Karol Bartoš, Katarina Pukanská, Kamil Kyšeľa // Geodynamics. — Lviv Politechnic Publishing House, 2023. — No 1 (34). — P. 5–18. | |
dc.identifier.citationen | Spatio-temporal analysis of surface water extraction methods reliability using COPERNICUS satellite data / Ľubomir Kseňak, Karol Bartoš, Katarina Pukanská, Kamil Kyšeľa // Geodynamics. — Lviv Politechnic Publishing House, 2023. — No 1 (34). — P. 5–18. | |
dc.identifier.doi | doi.org/10.23939/jgd2023.01.005 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/61311 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Геодинаміка, 1 (34), 2023 | |
dc.relation.ispartof | Geodynamics, 1 (34), 2023 | |
dc.relation.references | Bayanudin, A. A., & Jatmiko, R. H. (Eds.). (2016). Orthorectification of Sentinel-1 SAR (synthetic aperture radar) data in Some parts of south-eastern Sulawesi using Sentinel-1 toolbox. In IOP Conference Series: Earth and Environmental Science (Vol. 47, No. 1, p. 012007). IOP Publishing. | |
dc.relation.references | Burshtynska, Kh. V., Babushka, A. V., Bubniak, I. M., Babiy, L. V., & Tretyak, S. K. (2019). Influence of geological structures on the nature of riverbed displacements for the rivers of the Dnister basin upper part. Geodynamics, 2(27), 24–38. https://doi.org/10.23939/jgd2019.02.024 | |
dc.relation.references | Burshtynska, Kh. V., Tretyak, S., & Halockin, M. (2017). Study of horizontal displacements of the channel of Dniester river using remote sensing data and GIS-technologies. Geodynamics, 2(23), 14–24. https://doi.org/10.23939/jgd2017.02.014 (in Ukrainian) | |
dc.relation.references | Cao, H., Zhang, H., Wang, C., & Zhang, B. (2019). Operational flood detection using sentinel-1 SAR data over large areas. Water, 11(4), 786. https://doi.org/10.3390/w11040786 | |
dc.relation.references | Chen, F., Chen, X., Van de Voorde, T., Roberts, D., Jiang, H., & Xu, W. (2020). Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 242, 111706. https://doi.org/10.1016/j.rse.2020.111706 | |
dc.relation.references | Clement, M. A., Kilsby, C. G., & Moore, P. (2017). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152–168. https://doi.org/10.1111/jfr3.12303 | |
dc.relation.references | Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the Swir Band. Remote Sensing, 8(4), 354. https://doi.org/10.3390/rs8040354 | |
dc.relation.references | Fang-fang, Z., Bing, Z., Jun-sheng, L., Qian, S., Yuanfeng, W., & Yang, S. (2011). Comparative analysis of automatic water identification method based on multispectral remote sensing. Procedia Environmental Sciences, 11, 1482–1487. https://doi.org/10.1016/j.proenv.2011.12.223 | |
dc.relation.references | Ferro-Famil, L., & Pottier, E. (2016). 1 - Synthetic Aperture Radar Imaging. Microwave Remote | |
dc.relation.references | Sensing of Land Surface. Elsevier. pp. 1-65. ISBN 9781785481598 https://doi.org/10.1016/B978-1-78548-159-8.50001-3 | |
dc.relation.references | Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029 | |
dc.relation.references | Gergelova, M. B., Kovanič, L., Abd-Elhamid, H. F., Cornak, A., Garaj, M., & Hilbert, R. (2023). Evaluation of spatial landscape changes for the period from 1998 to 2021 caused by extreme flood events in the Hornád Basin in eastern Slovakia. Land, 12(2), 405. https://doi.org/10.3390/land12020405 | |
dc.relation.references | Hlotov, V., & Biala, M. (2022). Spatial-temporal geodynamics monitoring of land use and land cover changes in Stebnyk, Ukraine based on Earth remote sensing data. Geodynamics, 1(32), 5–15. https://doi.org/10.23939/jgd2022.02.005 | |
dc.relation.references | Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), 222–226. https://doi.org/10.1038/ngeo2654 | |
dc.relation.references | Jiang, W., He, G., Pang, Z., Guo, H., Long, T., & Ni, Y. (2019). Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery. Remote Sensing Letters, 11(3), 265–273. https://doi.org/10.1080/2150704x.2019.1708501 | |
dc.relation.references | Lee, J.S., & Pottier, E. (2017). Polarimetric Radar Imaging (1st ed.). CRC Press, Taylor & Francis Group: Boca Raton, FL, USA. https://doi.org/10.1201/9781420054989 | |
dc.relation.references | Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., & Zhang, X. (2013). A comparison of land surface water mapping using the Normalized Difference Water Index from Tm, ETM+ and Ali. Remote Sensing, 5(11), 5530–5549. https://doi.org/10.3390/rs5115530 | |
dc.relation.references | Liu, S., Gao, L., Lei, Y., Wang, M., Hu, Q., Ma, X., & Zhang, Y.D. (2021). SAR speckle removal using hybrid frequency modulations. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 3956–3966. https://doi.org/10.1109/tgrs.2020.3014130 | |
dc.relation.references | Manjusree, P., Prasanna Kumar, L., Bhatt, C. M., Rao, G. S., & Bhanumurthy, V. (2012). Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. International Journal of Disaster Risk Science, 3(2), 113–122. https://doi.org/10.1007/s13753-012-0011-5 | |
dc.relation.references | McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714 | |
dc.relation.references | Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308(5720), 405-408. https://doi.org/10.1126/science.1107887 | |
dc.relation.references | Notti, D., Giordan, D., Caló, F., Pepe, A., Zucca, F., & Galve, J. (2018). Potential and limitations of open satellite data for flood mapping. Remote Sensing, 10(11), 1673. https://doi.org/10.3390/rs10111673 | |
dc.relation.references | Pakshyn, M., Liaska, I., Kablak, N., & Yaremko, H. (2021). Investigation of the mining departments influence of Solotvynsky salt mine SE on the Earth surface, buildings and constructions using satelite radar monitoring. Geodynamics, 2(31), 41–52. https://doi.org/10.23939/jgd2021.02.041 | |
dc.relation.references | Paluba, D., Laštovička, J., Mouratidis, A., & Štych, P. (2021). Land cover-specific local incidence angle correction: A method for time-series analysis of forest ecosystems. Remote Sensing, 13(9), 1743. https://doi.org/10.3390/rs13091743 | |
dc.relation.references | Potin, P., Colin, O., Pinheiro, M., Rosich, B., O'Connell, A., Ormston, T., ... & Torres, R. (Eds.). (2022). Status and Evolution of the Sentinel-1 mission. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4707-4710). IEEE. | |
dc.relation.references | Pukanská, K., Bartoš, K., Bakoň, M., Papčo, J., Kubica, L., Barlák, J., Rovňák, M., Kseňak, Ľ., Zelenakova, M., Savchyn, I., & Perissin, D. (2023). Multi-sensor and multi-temporal approach in monitoring of deformation zone with permanent monitoring solution and management of environmental changes: A case study of solotvyno salt mine, Ukraine. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1167672 | |
dc.relation.references | Pulvirenti, L., Pierdicca, N., Chini, M., & Guerriero, L. (2013). Monitoring flood evolution in vegetated areas using COSMO-SkyMed data: The Tuscany 2009 case study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(4), 1807-1816. doi: 10.1109/JSTARS.2012.2219509. | |
dc.relation.references | Sekertekin, A. (2020). A survey on global thresholding methods for mapping open water body using sentinel-2 satellite imagery and Normalized Difference Water Index. Archives of Computational Methods in Engineering, 28(3), 1335–1347. https://doi.org/10.1007/s11831-020-09416-2 | |
dc.relation.references | Shen, L., & Li, C. (Eds.). (2010). Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. Proceedings of 18th International Conference on Geoinformatics. Beijing, China: IEEE. | |
dc.relation.references | Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 33(21), 6854–6875. https://doi.org/10.1080/01431161.2012.692829 | |
dc.relation.references | Tsyganskaya, V., Martinis, S., Marzahn, P., & Ludwig, R. (2018). Detection of temporary flooded vegetation using sentinel-1 time series data. Remote Sensing, 10(8), 1286. https://doi.org/10.3390/rs10081286 | |
dc.relation.references | Tsyganskaya, V., Martinis, S., & Marzahn, P. (2019). Flood monitoring in vegetated areas using multitemporal sentinel-1 data: Impact of time series features. Water, 11(9), 1938. https://doi.org/10.3390/w11091938 | |
dc.relation.references | Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179 | |
dc.relation.references | Zeleňáková, M., Fijko, R., Labant, S., Weiss, E., Markovič, G., & Weiss, R. (2019). Flood risk modelling of the SLATVINEC stream in Kružlov Village, Slovakia. Journal of Cleaner Production, 212, 109–118. https://doi.org/10.1016/j.jclepro.2018.12.008 | |
dc.relation.references | Zhang, M., Chen, F., Liang, D., Tian, B., & Yang, A. (2020). Use of sentinel-1 GRD SAR images to delineate flood extent in Pakistan. Sustainability, 12(14), 5784. https://doi.org/10.3390/su12145784 | |
dc.relation.references | Zhu, Q., & Abdelkareem, M. (2021). Mapping groundwater potential zones using a knowledge-driven approach and GIS analysis. Water, 13(5), 579. https://doi.org/10.3390/w13050579 | |
dc.relation.referencesen | Bayanudin, A. A., & Jatmiko, R. H. (Eds.). (2016). Orthorectification of Sentinel-1 SAR (synthetic aperture radar) data in Some parts of south-eastern Sulawesi using Sentinel-1 toolbox. In IOP Conference Series: Earth and Environmental Science (Vol. 47, No. 1, p. 012007). IOP Publishing. | |
dc.relation.referencesen | Burshtynska, Kh. V., Babushka, A. V., Bubniak, I. M., Babiy, L. V., & Tretyak, S. K. (2019). Influence of geological structures on the nature of riverbed displacements for the rivers of the Dnister basin upper part. Geodynamics, 2(27), 24–38. https://doi.org/10.23939/jgd2019.02.024 | |
dc.relation.referencesen | Burshtynska, Kh. V., Tretyak, S., & Halockin, M. (2017). Study of horizontal displacements of the channel of Dniester river using remote sensing data and GIS-technologies. Geodynamics, 2(23), 14–24. https://doi.org/10.23939/jgd2017.02.014 (in Ukrainian) | |
dc.relation.referencesen | Cao, H., Zhang, H., Wang, C., & Zhang, B. (2019). Operational flood detection using sentinel-1 SAR data over large areas. Water, 11(4), 786. https://doi.org/10.3390/w11040786 | |
dc.relation.referencesen | Chen, F., Chen, X., Van de Voorde, T., Roberts, D., Jiang, H., & Xu, W. (2020). Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sensing of Environment, 242, 111706. https://doi.org/10.1016/j.rse.2020.111706 | |
dc.relation.referencesen | Clement, M. A., Kilsby, C. G., & Moore, P. (2017). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152–168. https://doi.org/10.1111/jfr3.12303 | |
dc.relation.referencesen | Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the Swir Band. Remote Sensing, 8(4), 354. https://doi.org/10.3390/rs8040354 | |
dc.relation.referencesen | Fang-fang, Z., Bing, Z., Jun-sheng, L., Qian, S., Yuanfeng, W., & Yang, S. (2011). Comparative analysis of automatic water identification method based on multispectral remote sensing. Procedia Environmental Sciences, 11, 1482–1487. https://doi.org/10.1016/j.proenv.2011.12.223 | |
dc.relation.referencesen | Ferro-Famil, L., & Pottier, E. (2016). 1 - Synthetic Aperture Radar Imaging. Microwave Remote | |
dc.relation.referencesen | Sensing of Land Surface. Elsevier. pp. 1-65. ISBN 9781785481598 https://doi.org/10.1016/B978-1-78548-159-8.50001-3 | |
dc.relation.referencesen | Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029 | |
dc.relation.referencesen | Gergelova, M. B., Kovanič, L., Abd-Elhamid, H. F., Cornak, A., Garaj, M., & Hilbert, R. (2023). Evaluation of spatial landscape changes for the period from 1998 to 2021 caused by extreme flood events in the Hornád Basin in eastern Slovakia. Land, 12(2), 405. https://doi.org/10.3390/land12020405 | |
dc.relation.referencesen | Hlotov, V., & Biala, M. (2022). Spatial-temporal geodynamics monitoring of land use and land cover changes in Stebnyk, Ukraine based on Earth remote sensing data. Geodynamics, 1(32), 5–15. https://doi.org/10.23939/jgd2022.02.005 | |
dc.relation.referencesen | Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), 222–226. https://doi.org/10.1038/ngeo2654 | |
dc.relation.referencesen | Jiang, W., He, G., Pang, Z., Guo, H., Long, T., & Ni, Y. (2019). Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery. Remote Sensing Letters, 11(3), 265–273. https://doi.org/10.1080/2150704x.2019.1708501 | |
dc.relation.referencesen | Lee, J.S., & Pottier, E. (2017). Polarimetric Radar Imaging (1st ed.). CRC Press, Taylor & Francis Group: Boca Raton, FL, USA. https://doi.org/10.1201/9781420054989 | |
dc.relation.referencesen | Li, W., Du, Z., Ling, F., Zhou, D., Wang, H., Gui, Y., Sun, B., & Zhang, X. (2013). A comparison of land surface water mapping using the Normalized Difference Water Index from Tm, ETM+ and Ali. Remote Sensing, 5(11), 5530–5549. https://doi.org/10.3390/rs5115530 | |
dc.relation.referencesen | Liu, S., Gao, L., Lei, Y., Wang, M., Hu, Q., Ma, X., & Zhang, Y.D. (2021). SAR speckle removal using hybrid frequency modulations. IEEE Transactions on Geoscience and Remote Sensing, 59(5), 3956–3966. https://doi.org/10.1109/tgrs.2020.3014130 | |
dc.relation.referencesen | Manjusree, P., Prasanna Kumar, L., Bhatt, C. M., Rao, G. S., & Bhanumurthy, V. (2012). Optimization of threshold ranges for rapid flood inundation mapping by evaluating backscatter profiles of high incidence angle SAR images. International Journal of Disaster Risk Science, 3(2), 113–122. https://doi.org/10.1007/s13753-012-0011-5 | |
dc.relation.referencesen | McFeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714 | |
dc.relation.referencesen | Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world's large river systems. Science, 308(5720), 405-408. https://doi.org/10.1126/science.1107887 | |
dc.relation.referencesen | Notti, D., Giordan, D., Caló, F., Pepe, A., Zucca, F., & Galve, J. (2018). Potential and limitations of open satellite data for flood mapping. Remote Sensing, 10(11), 1673. https://doi.org/10.3390/rs10111673 | |
dc.relation.referencesen | Pakshyn, M., Liaska, I., Kablak, N., & Yaremko, H. (2021). Investigation of the mining departments influence of Solotvynsky salt mine SE on the Earth surface, buildings and constructions using satelite radar monitoring. Geodynamics, 2(31), 41–52. https://doi.org/10.23939/jgd2021.02.041 | |
dc.relation.referencesen | Paluba, D., Laštovička, J., Mouratidis, A., & Štych, P. (2021). Land cover-specific local incidence angle correction: A method for time-series analysis of forest ecosystems. Remote Sensing, 13(9), 1743. https://doi.org/10.3390/rs13091743 | |
dc.relation.referencesen | Potin, P., Colin, O., Pinheiro, M., Rosich, B., O'Connell, A., Ormston, T., ... & Torres, R. (Eds.). (2022). Status and Evolution of the Sentinel-1 mission. In IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium (pp. 4707-4710). IEEE. | |
dc.relation.referencesen | Pukanská, K., Bartoš, K., Bakoň, M., Papčo, J., Kubica, L., Barlák, J., Rovňák, M., Kseňak, Ľ., Zelenakova, M., Savchyn, I., & Perissin, D. (2023). Multi-sensor and multi-temporal approach in monitoring of deformation zone with permanent monitoring solution and management of environmental changes: A case study of solotvyno salt mine, Ukraine. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1167672 | |
dc.relation.referencesen | Pulvirenti, L., Pierdicca, N., Chini, M., & Guerriero, L. (2013). Monitoring flood evolution in vegetated areas using COSMO-SkyMed data: The Tuscany 2009 case study. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(4), 1807-1816. doi: 10.1109/JSTARS.2012.2219509. | |
dc.relation.referencesen | Sekertekin, A. (2020). A survey on global thresholding methods for mapping open water body using sentinel-2 satellite imagery and Normalized Difference Water Index. Archives of Computational Methods in Engineering, 28(3), 1335–1347. https://doi.org/10.1007/s11831-020-09416-2 | |
dc.relation.referencesen | Shen, L., & Li, C. (Eds.). (2010). Water Body Extraction from Landsat ETM+ Imagery Using Adaboost Algorithm. Proceedings of 18th International Conference on Geoinformatics. Beijing, China: IEEE. | |
dc.relation.referencesen | Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 33(21), 6854–6875. https://doi.org/10.1080/01431161.2012.692829 | |
dc.relation.referencesen | Tsyganskaya, V., Martinis, S., Marzahn, P., & Ludwig, R. (2018). Detection of temporary flooded vegetation using sentinel-1 time series data. Remote Sensing, 10(8), 1286. https://doi.org/10.3390/rs10081286 | |
dc.relation.referencesen | Tsyganskaya, V., Martinis, S., & Marzahn, P. (2019). Flood monitoring in vegetated areas using multitemporal sentinel-1 data: Impact of time series features. Water, 11(9), 1938. https://doi.org/10.3390/w11091938 | |
dc.relation.referencesen | Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179 | |
dc.relation.referencesen | Zeleňáková, M., Fijko, R., Labant, S., Weiss, E., Markovič, G., & Weiss, R. (2019). Flood risk modelling of the SLATVINEC stream in Kružlov Village, Slovakia. Journal of Cleaner Production, 212, 109–118. https://doi.org/10.1016/j.jclepro.2018.12.008 | |
dc.relation.referencesen | Zhang, M., Chen, F., Liang, D., Tian, B., & Yang, A. (2020). Use of sentinel-1 GRD SAR images to delineate flood extent in Pakistan. Sustainability, 12(14), 5784. https://doi.org/10.3390/su12145784 | |
dc.relation.referencesen | Zhu, Q., & Abdelkareem, M. (2021). Mapping groundwater potential zones using a knowledge-driven approach and GIS analysis. Water, 13(5), 579. https://doi.org/10.3390/w13050579 | |
dc.relation.uri | https://doi.org/10.23939/jgd2019.02.024 | |
dc.relation.uri | https://doi.org/10.23939/jgd2017.02.014 | |
dc.relation.uri | https://doi.org/10.3390/w11040786 | |
dc.relation.uri | https://doi.org/10.1016/j.rse.2020.111706 | |
dc.relation.uri | https://doi.org/10.1111/jfr3.12303 | |
dc.relation.uri | https://doi.org/10.3390/rs8040354 | |
dc.relation.uri | https://doi.org/10.1016/j.proenv.2011.12.223 | |
dc.relation.uri | https://doi.org/10.1016/B978-1-78548-159-8.50001-3 | |
dc.relation.uri | https://doi.org/10.1016/j.rse.2013.08.029 | |
dc.relation.uri | https://doi.org/10.3390/land12020405 | |
dc.relation.uri | https://doi.org/10.23939/jgd2022.02.005 | |
dc.relation.uri | https://doi.org/10.1038/ngeo2654 | |
dc.relation.uri | https://doi.org/10.1080/2150704x.2019.1708501 | |
dc.relation.uri | https://doi.org/10.1201/9781420054989 | |
dc.relation.uri | https://doi.org/10.3390/rs5115530 | |
dc.relation.uri | https://doi.org/10.1109/tgrs.2020.3014130 | |
dc.relation.uri | https://doi.org/10.1007/s13753-012-0011-5 | |
dc.relation.uri | https://doi.org/10.1080/01431169608948714 | |
dc.relation.uri | https://doi.org/10.1126/science.1107887 | |
dc.relation.uri | https://doi.org/10.3390/rs10111673 | |
dc.relation.uri | https://doi.org/10.23939/jgd2021.02.041 | |
dc.relation.uri | https://doi.org/10.3390/rs13091743 | |
dc.relation.uri | https://doi.org/10.3389/feart.2023.1167672 | |
dc.relation.uri | https://doi.org/10.1007/s11831-020-09416-2 | |
dc.relation.uri | https://doi.org/10.1080/01431161.2012.692829 | |
dc.relation.uri | https://doi.org/10.3390/rs10081286 | |
dc.relation.uri | https://doi.org/10.3390/w11091938 | |
dc.relation.uri | https://doi.org/10.1080/01431160600589179 | |
dc.relation.uri | https://doi.org/10.1016/j.jclepro.2018.12.008 | |
dc.relation.uri | https://doi.org/10.3390/su12145784 | |
dc.relation.uri | https://doi.org/10.3390/w13050579 | |
dc.rights.holder | © Інститут геології і геохімії горючих копалин Національної академії наук України, 2023 | |
dc.rights.holder | © Інститут геофізики ім. С. І. Субботіна Національної академії наук України, 2023 | |
dc.rights.holder | © Національний університет «Львівська політехніка», 2023 | |
dc.rights.holder | © Ľ. Kseňak, K. Bartoš, K. Pukanská, K. Kyšeľa | |
dc.subject | ДЗЗ | |
dc.subject | поверхневі води | |
dc.subject | радар із синтетичною апертурою | |
dc.subject | Sentinel-1 | |
dc.subject | зображення MSI | |
dc.subject | Sentinel-2 | |
dc.subject | Google Earth Engine | |
dc.subject | Remote Sensing | |
dc.subject | Surface Water | |
dc.subject | Synthetic Aperture Radar | |
dc.subject | Sentinel-1 | |
dc.subject | MSI Images | |
dc.subject | Sentinel-2 | |
dc.subject | Google Earth Engine | |
dc.subject.udc | 550.837 | |
dc.subject.udc | 551.24(477) | |
dc.title | Spatio-temporal analysis of surface water extraction methods reliability using COPERNICUS satellite data | |
dc.title.alternative | Просторово-часовий аналіз надійності методів виокремлення поверхневої води за даними супутника COPERNICUS | |
dc.type | Article |
Files
License bundle
1 - 1 of 1