Perspectives and specific features of the use of composite materials for strengthening of damaged reinforced concrete structures

dc.citation.epage34
dc.citation.issue2
dc.citation.spage27
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКопійка, Н. С.
dc.contributor.authorБліхарський, Я. З.
dc.contributor.authorKopiika, N.
dc.contributor.authorBlikharskyy, Ya.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-05-29T11:44:05Z
dc.date.available2024-05-29T11:44:05Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractЗалізобетонні конструкції поширені у будівлях і спорудах, що перебувають в експлуатації протягом тривалого часу, тому проблема їх ефективного підсилення набуває актуальності. Композиційні матеріали завдяки високим механічним і фізичним властивостям, можливості адаптації до проєктних вимог і полегшенню самого процесу підсилення широко використовують для реконструкції. У статті комплексно розглянуто методи підсилення із застосуванням фіброармованих полімерних матеріалів та особливостей їх поведінки за різних впливів. Дослідження охоплює аналіз публікацій у цій галузі, визначення недостатньо розглянутих напрямів та перспективи подальших досліджень. На основі аналізу літературних джерел виділено найактуальніші напрями, зокрема числове моделювання методами скінченних елементів для параметричного аналізу, поглиблення розуміння лінійно-пружної поведінки композитів, комплексні експериментально-теоретичні дослідження для крос-валідації та уточнення результатів. Важливо також відзначити значний інтерес до підходів, спрямованих на запобігання граничному стану через порушення сумісної роботи залізобетонної конструкції та композитних матеріалів завдяки застосуванню різних способів анкерування. В статті проаналізовано загальні тенденції в галузі підсилення залізобетонних конструкцій композитними матеріалами, визначено перспективні напрями для подальшого вивчення цього питання, зокрема розроблення та вдосконалення числових моделей, які автоматично виконуватимуть параметричний аналіз і враховуватимуть вимоги стійкості, стійкості та міцності. Подальші ретельні експериментальні й теоретичні дослідження систем підсилення із застосуванням фіброармованих полімерів надзвичайно важливі для поглиблення знань і максимізації ефективності використання композитних систем зміцнення.
dc.description.abstractThe need for strengthening of existing structures has recently become topical. Composite materials due to their remarkable properties, possibility to adaptation to the design requirements and facilitation of restoration measures are widely used for strengthening. This article is focused on review of restoration approaches with the use of composite materials and specific features of their behavior under various impacts. Study includes analysis of recent studies in the area, identifying gaps of knowledge and perspectives for further research. The most relevant areas of research were distinguished including numerical finite element modelling for parametric analysis, deepening of understanding of composites` linearly elastic behavior, approaches to prevent delamination failure. Further thorough research in this area is strongly recommended to deepen the knowledge and maximize the efficiency of use of composite strengthening systems.
dc.format.extent27-34
dc.format.pages8
dc.identifier.citationKopiika N. Perspectives and specific features of the use of composite materials for strengthening of damaged reinforced concrete structures / N. Kopiika, Ya. Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 27–34.
dc.identifier.citationenKopiika N. Perspectives and specific features of the use of composite materials for strengthening of damaged reinforced concrete structures / N. Kopiika, Ya. Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 27–34.
dc.identifier.doidoi.org/10.23939/jtbp2023.02.027
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/62182
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (5), 2023
dc.relation.referencesAbdalla J. A., Mhanna H. H., Hawileh R. A., Sharafi M., Al-Marzouqi A., Al-Teneiji S., Al-Ali K. (2022). Shear Strengthening of Reinforced Concrete T-Beams using Carbon Fiber Reinforced Polymer (CFRP) Anchored with CFRP Spikes. Procedia Structural Integrity, 42, 1223-1230. doi: 10.1016/j.prostr.2022.12.156 https://doi.org/10.1016/j.prostr.2022.12.156
dc.relation.referencesAbdul Halim N. H. F., Alih S., Vafaei M. (2020). Efficiency of CFRP strips as a substitute for carbon steel stirrups in RC columns. Materials and Structures, 53(5), 1-12, doi: 10.1617/s11527-020-01566-w. https://doi.org/10.1617/s11527-020-01566-w
dc.relation.referencesAbed F., Al-Mimar M., Ahmed S. (2021) Performance of BFRP RC beams using high strength concrete. Composites Part C: Open Access, 4, 100107. doi:10.1016/j.jcomc.2021.100107 https://doi.org/10.1016/j.jcomc.2021.100107
dc.relation.referencesAdhikary S. D., Li B., Fujikake K. (2015). Residual resistance of impact-damaged reinforced concrete beams. Magazine of Concrete Research, 67(7), 364-378. doi: 10.1680/macr.14.00312 https://doi.org/10.1680/macr.14.00312
dc.relation.referencesAl-Bodour W., Murad Y., Imam R., Smadi Y. (2022) Shear strength investigation of the carbon fiber reinforced polymer-wrapped concrete beams using gene expression programming and finite element analysis. Journal of Structural Integrity and Maintenance, 7:1, 15-24, doi: 10.1080/24705314.2021.1971891 https://doi.org/10.1080/24705314.2021.1971891
dc.relation.referencesAlyaseen A., Poddar A., Alissa J., Alahmad H. Almohammed F. (2022) Behavior of CFRP-strengthened RC beams with web openings in shear zones: Numerical simulation. Materials Today: Proceedings, 65, 3229-3239. doi: 10.1016/j.matpr.2022.05.378 https://doi.org/10.1016/j.matpr.2022.05.378
dc.relation.referencesBlikharskyy Y., Selejdak J., Kopiika N. (2021). Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646. doi:10.1016/j.cscm.2021.e00646. (a) https://doi.org/10.1016/j.cscm.2021.e00646
dc.relation.referencesBlikharskyy Y., Selejdak J., Vashkevych R., Kopiika N., Blikharskyy Z. (2023). Strengthening RC eccentrically loaded columns by CFRP at different levels of initial load. Engineering Structures, 280, 115694. doi: 10.1016/j.engstruct.2023.115694. https://doi.org/10.1016/j.engstruct.2023.115694
dc.relation.referencesBlikharskyy Y., Vashkevych R., Kopiika N., Bobalo T., Blikharskyy Z. (2021). Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineering, 1021, 1, 012012. doi: 10.1088/1757-899X/1021/1/012012 (b). https://doi.org/10.1088/1757-899X/1021/1/012012
dc.relation.referencesBorysiuk O., Karavan V., Sobczak-Piąstka J. (2019). Calculation of the normal section strength, rigidity and crack resistance of beams, strengthened by carbon-fiber materials. In AIP Conference Proceedings, AIP Publishing LLC. 2077(1), 020008, doi: 10.1063/1.5091869. https://doi.org/10.1063/1.5091869
dc.relation.referencesCastillo Del Rey E., Griffith M., Ingham J. (2016). Force-based model for straight FRP anchors exhibiting fibre rupture failure mode. In Proceedings of The 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, Hong Kong, 419-427.
dc.relation.referencesCastillo del Rey E., Kanitkar R., Smith S. T., Griffith M. C., Ingham J. M. (2019). Design approach for FRP spike anchors in FRP-strengthened RC structures. Composite Structures, 214, 23-33. doi: 10.1016/j.compstruct.2019.01.100 https://doi.org/10.1016/j.compstruct.2019.01.100
dc.relation.referencesChen W., Pham T. M., Sichembe H., Chen L., Hao H. (2018) Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet. Composites Part B, 134, 114e126. doi: 10.1016/j.compositesb.2017.09.053 https://doi.org/10.1016/j.compositesb.2017.09.053
dc.relation.referencesColajanni P., Pagnotta S. (2021) Influence of the effectiveness factors in assessing the shear capacity of RC beams strengthened with FRP. COMPDYN 2021. 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis (eds.) Streamed from Athens, Greece, 27-30 June 2021. Eccomas Proceedia COMPDYN (2021), 1345-1367. doi:10.7712/120121.8565.19417 https://doi.org/10.7712/120121.8565.19417
dc.relation.referencesD'Antino T., Focacci F., Sneed L. H., Pellegrino C. (2020) Shear Strength Model for RC Beams with U-Wrapped FRCM Composites. J. Compos. Constr., 24(1): 04019057. doi: 10.1061/(ASCE)CC.1943-5614.0000986. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000986
dc.relation.referencesDžidić S., Mahmutović A. (2019) Analysis of the possibility for retrofit of rc beams by traditional and modern methods. The 18th International Symposium of MASE. Ohrid, Republic of North Macedonia. October 2019, 270-279.
dc.relation.referencesGideon D. A., Alagusundaramoorthy P. (2018). Flexural retrofit of RC beams using CFRP laminates. In IOP Conference Series: Materials Science and Engineering, 431, 7, 072006. doi: 10.1088/1757-899X/431/7/072006 https://doi.org/10.1088/1757-899X/431/7/072006
dc.relation.referencesHaya H. M., Hawileh R. A., Al Rashed A., Abdalla J.A. (2022) Performance of RC beams externally strengthened with hybrid CFRP and PETFRP laminates. Procedia Structural Integrity, 42, 1190-1197. doi: 10.1016/j.prostr.2022.12.152 https://doi.org/10.1016/j.prostr.2022.12.152
dc.relation.referencesHuang Z., Deng W., Li R., Chen J., Sui L., Zhou Y., Zhao D., Yang L., Ye J. (2022). Multi-impact performance of prestressed CFRP-strengthened RC beams using H-typed end anchors. Marine Structures, 85, 103264. doi: 10.1016/j.marstruc.2022.103264 https://doi.org/10.1016/j.marstruc.2022.103264
dc.relation.referencesIslam S. M. Z., Ahmed B., Deb J., Shamim S. S., Himel O. F., Nisat M. N. H., Rahman M. M. (2021) Investigation on Flexural Behavior of Pre-cracked RC Beams Strengthened using CFRP. Proceedings of International Conference on Planning, Architecture & Civil Engineering, 114-119, 09 - 11 September 2021, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
dc.relation.referencesJahami A., Temsah Y., Khatib J., Baalbaki O., Kenai S. (2021) The behavior of CFRP strengthened RC beams subjected to blast loading. Magazine of Civil Engineering, 103(3), 10309. doi: 10.34910/MCE.103.9
dc.relation.referencesKantarci M., Maras M.M., Ayaz Y. (2023) Experimental Performance of RC Beams Strengthened with Aluminum Honeycomb Sandwich Composites and CFRP U‑Jackets. Experimental Techniques, 47, 767-786 doi: 10.1007/s40799-022-00589-y https://doi.org/10.1007/s40799-022-00589-y
dc.relation.referencesKarpiuk V., Tselikova A., Khudobych A., Kostyuk A., Karpiuk I. (2020). Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European Journal of Enterprise Technologies, 4(7-106), 42-53. doi: 10.15587/1729-4061.2020.209378 https://doi.org/10.15587/1729-4061.2020.209378
dc.relation.referencesKopiika N., Blikharskyy Y. (2022). Effectiveness of strengthening of reinforced concrete beams with the use of composite materials. Scientific Journal "Theory and Building Practice", JTBP, 4, 2, 7-16. doi:10.23939/jtbp2022.02.007. https://doi.org/10.23939/jtbp2022.02.007
dc.relation.referencesKopiika N., Vegera P., Vashkevych R., Blikharskyy Z. (2021). Stress-strain state of damaged reinforced concrete bended elements at operational load level. Production Engineering Archives, 27(4), 242-247. doi:10.30657/pea.2021.27.32. https://doi.org/10.30657/pea.2021.27.32
dc.relation.referencesKramarchuk A., Ilnytskyy B., Bobalo T., Lytvyniak O. (2021). A study of bearing capacity of reinforced masonry beams with GFRP reinforcement. In IOP Conference Series: Materials Science and Engineering, 1021(1), 012018. doi:10.1088/1757-899X/1021/1/012018 https://doi.org/10.1088/1757-899X/1021/1/012018
dc.relation.referencesMaazoun A., Matthys S., Vantomme J. (2017). Literature review on blast protection by externally bonded FRP reinforcement. In Proceedings COST TU1207 End-of-Action Conference. Presented at the COST TU1207 End-of-Action Conference, Budapest, Hungary.
dc.relation.referencesManibalan P., Abirami G., Baskar R., Pannirselvam N. (2023) Ductile behavior of reinforced concrete beam incorporated with basalt fiber. Innovative Infrastructure Solutions, 8:65, 1-14. doi:10.1007/s41062-023-01033-9 https://doi.org/10.1007/s41062-023-01033-9
dc.relation.referencesMhanna H. H., Hawileh R. A., Abdalla J. A., Salama A. S. D., Alkhrdaji T. (2021). Shear Strengthening of Reinforced Concrete T-Beams with Anchored CFRP Laminates. Journal of Composites for Construction, 25(4), 04021030. doi: 10.1061/(ASCE)CC.1943-5614.0001141. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001141
dc.relation.referencesMhanna H., Hawileh R A., Abdalla J. A. (2022). Effect of FRP Anchor Inclination Angle on Shear Strengthening of Reinforced Concrete T-beams. In 10th International Conference on FRP Composites in Civil Engineering: Proceedings of CICE 2020/2021, 10, 2169-2179. Springer International Publishing. doi:10.1007/978-3-030-88166-5_187 https://doi.org/10.1007/978-3-030-88166-5_187
dc.relation.referencesMurad Y. (2018) An experimental study on flexural strengthening of RC beams using CFRP sheets. International Journal of Engineering & Technology, 7(4), 2075-2080. doi: 10.14419/ijet.v7i4.16546 (a) https://doi.org/10.14419/ijet.v7i4.16546
dc.relation.referencesMurad Y. (2018) The Influence of CFRP Orientation Angle on the Shear Strength of RC Beams, The Open Construction and Building Technology Journal, 12, 269-281, doi: 10.2174/1874836801812010269 (b) https://doi.org/10.2174/1874836801812010269
dc.relation.referencesNabi P., Petkova D., Donchev T. (2020) Behaviour of Columns Constructed with Internal FRP Reinforcement Under Axial Loading. 10th International Conference on FRP Composites in Civil Engineering (CICE 2020), Istanbul 1-3 July 2020. Proceedings of CICE 2020/2021, 10, 878-887. Springer International Publishing. doi: 10.1007/978-3-030-88166-5_76. https://doi.org/10.1007/978-3-030-88166-5_76
dc.relation.referencesNaser M.Z., Hawileh R.A., Abdalla J.A. (2018). State-of-the-Art Review on the use of Fiber-Reinforced Polymer Composites in Civil Constructions. Engineering Structures. 198, 109542. doi: 10.1016/j.engstruct.2019.109542. https://doi.org/10.1016/j.engstruct.2019.109542
dc.relation.referencesNaser M.Z.; Hawileh R.A.; Abdalla J.A. (2021) Modeling Strategies of Finite Element Simulation of Reinforced Concrete Beams Strengthened with FRP: A Review. J. Compos. Sci., 5, 19. doi:10.3390/jcs5010019 https://doi.org/10.3390/jcs5010019
dc.relation.referencesPang M., Shi S., Hu H., Lou T. (2021) Flexural Behavior of Two-Span Continuous CFRP RC Beams. Materials, 14, 6746. doi: 10.3390/ma14226746 https://doi.org/10.3390/ma14226746
dc.relation.referencesPohoryles D.A., Melo J., Rossetto T. (2021) Combined Flexural and Shear Strengthening of RC T-Beams with FRP and TRM: Experimental Study and Parametric Finite Element Analyses. Buildings, 11, 520. doi:10.3390/buildings11110520 https://doi.org/10.3390/buildings11110520
dc.relation.referencesSaljoughian A, Mostofinejad D. (2020) Behavior of RC columns confined with CFRP using CSB method under cyclic axial compression. Constr Build Mater, 235:117786. doi: 10.1016/j.conbuildmat.2019.117786. https://doi.org/10.1016/j.conbuildmat.2019.117786
dc.relation.referencesTask Group 9.3 (2001) FRP (Fibre Reinforced Polymer) reinforcement for concrete structures. Technical report on the Design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. Sprint-Digital-Druck Stuttgart, Lausanne, Switzerland, 138 p. Retrieved from: https://afzir.com/wp-content/uploads/2017/11/Externally-bonded-FRP-Reinf...
dc.relation.referencesXu Y., Huang J. (2020) Cyclic performance of corroded reinforced concrete short columns strengthened using carbon fiber-reinforced polymer. Constr Build Mater, 247, 118548. doi: 10.1016/j.conbuildmat.2020.118548 https://doi.org/10.1016/j.conbuildmat.2020.118548
dc.relation.referencesYang J. Q., Smith S. T., Wang Z., Lim Y. Y. (2018). Numerical simulation of FRP-strengthened RC slabs anchored with FRP anchors. Construction and Building Materials, 172, 735-750. doi: 10.1016/j.conbuildmat.2018.03.133 https://doi.org/10.1016/j.conbuildmat.2018.03.133
dc.relation.referencesYang J., Johansson M., Al-Emrani M., Haghani R. (2021) Innovative flexural strengthening of RC beams using self-anchored prestressed CFRP plates: Experimental and numerical investigations. Engineering Structures, 243, 112687. doi: 10.1016/j.engstruct.2021.112687 https://doi.org/10.1016/j.engstruct.2021.112687
dc.relation.referencesZhang Y., Li N., Wang Q., Li Z., Qin X. (2022) Shear Behavior of T-Shaped Concrete Beams Reinforced with FRP. Buildings, 12, 2062. doi:10.3390/buildings12122062 https://doi.org/10.3390/buildings12122062
dc.relation.referencesZhu M., Ueda T., Zhu, J. H. (2020). Generalized evaluation of bond behavior of the externally bonded FRP reinforcement to concrete. Journal of Composites for Construction, 24(6), 04020066. doi: 10.1061/(ASCE https://doi.org/10.1061/(ASCE)CC.1943-5614.0001081
dc.relation.referencesŽmindák M., Novák P., Dekýš V. (2017). Analysis of bond behaviour in strengthened reinforced concrete beam with carbon fiber reinforced polymer lamella. In MATEC Web of Conferences, 107, 00045. doi: 10.1051/matecconf/201710700045 https://doi.org/10.1051/matecconf/201710700045
dc.relation.referencesenAbdalla J. A., Mhanna H. H., Hawileh R. A., Sharafi M., Al-Marzouqi A., Al-Teneiji S., Al-Ali K. (2022). Shear Strengthening of Reinforced Concrete T-Beams using Carbon Fiber Reinforced Polymer (CFRP) Anchored with CFRP Spikes. Procedia Structural Integrity, 42, 1223-1230. doi: 10.1016/j.prostr.2022.12.156 https://doi.org/10.1016/j.prostr.2022.12.156
dc.relation.referencesenAbdul Halim N. H. F., Alih S., Vafaei M. (2020). Efficiency of CFRP strips as a substitute for carbon steel stirrups in RC columns. Materials and Structures, 53(5), 1-12, doi: 10.1617/s11527-020-01566-w. https://doi.org/10.1617/s11527-020-01566-w
dc.relation.referencesenAbed F., Al-Mimar M., Ahmed S. (2021) Performance of BFRP RC beams using high strength concrete. Composites Part C: Open Access, 4, 100107. doi:10.1016/j.jcomc.2021.100107 https://doi.org/10.1016/j.jcomc.2021.100107
dc.relation.referencesenAdhikary S. D., Li B., Fujikake K. (2015). Residual resistance of impact-damaged reinforced concrete beams. Magazine of Concrete Research, 67(7), 364-378. doi: 10.1680/macr.14.00312 https://doi.org/10.1680/macr.14.00312
dc.relation.referencesenAl-Bodour W., Murad Y., Imam R., Smadi Y. (2022) Shear strength investigation of the carbon fiber reinforced polymer-wrapped concrete beams using gene expression programming and finite element analysis. Journal of Structural Integrity and Maintenance, 7:1, 15-24, doi: 10.1080/24705314.2021.1971891 https://doi.org/10.1080/24705314.2021.1971891
dc.relation.referencesenAlyaseen A., Poddar A., Alissa J., Alahmad H. Almohammed F. (2022) Behavior of CFRP-strengthened RC beams with web openings in shear zones: Numerical simulation. Materials Today: Proceedings, 65, 3229-3239. doi: 10.1016/j.matpr.2022.05.378 https://doi.org/10.1016/j.matpr.2022.05.378
dc.relation.referencesenBlikharskyy Y., Selejdak J., Kopiika N. (2021). Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646. doi:10.1016/j.cscm.2021.e00646. (a) https://doi.org/10.1016/j.cscm.2021.e00646
dc.relation.referencesenBlikharskyy Y., Selejdak J., Vashkevych R., Kopiika N., Blikharskyy Z. (2023). Strengthening RC eccentrically loaded columns by CFRP at different levels of initial load. Engineering Structures, 280, 115694. doi: 10.1016/j.engstruct.2023.115694. https://doi.org/10.1016/j.engstruct.2023.115694
dc.relation.referencesenBlikharskyy Y., Vashkevych R., Kopiika N., Bobalo T., Blikharskyy Z. (2021). Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineering, 1021, 1, 012012. doi: 10.1088/1757-899X/1021/1/012012 (b). https://doi.org/10.1088/1757-899X/1021/1/012012
dc.relation.referencesenBorysiuk O., Karavan V., Sobczak-Piąstka J. (2019). Calculation of the normal section strength, rigidity and crack resistance of beams, strengthened by carbon-fiber materials. In AIP Conference Proceedings, AIP Publishing LLC. 2077(1), 020008, doi: 10.1063/1.5091869. https://doi.org/10.1063/1.5091869
dc.relation.referencesenCastillo Del Rey E., Griffith M., Ingham J. (2016). Force-based model for straight FRP anchors exhibiting fibre rupture failure mode. In Proceedings of The 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, Hong Kong, 419-427.
dc.relation.referencesenCastillo del Rey E., Kanitkar R., Smith S. T., Griffith M. C., Ingham J. M. (2019). Design approach for FRP spike anchors in FRP-strengthened RC structures. Composite Structures, 214, 23-33. doi: 10.1016/j.compstruct.2019.01.100 https://doi.org/10.1016/j.compstruct.2019.01.100
dc.relation.referencesenChen W., Pham T. M., Sichembe H., Chen L., Hao H. (2018) Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet. Composites Part B, 134, 114e126. doi: 10.1016/j.compositesb.2017.09.053 https://doi.org/10.1016/j.compositesb.2017.09.053
dc.relation.referencesenColajanni P., Pagnotta S. (2021) Influence of the effectiveness factors in assessing the shear capacity of RC beams strengthened with FRP. COMPDYN 2021. 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis (eds.) Streamed from Athens, Greece, 27-30 June 2021. Eccomas Proceedia COMPDYN (2021), 1345-1367. doi:10.7712/120121.8565.19417 https://doi.org/10.7712/120121.8565.19417
dc.relation.referencesenD'Antino T., Focacci F., Sneed L. H., Pellegrino C. (2020) Shear Strength Model for RC Beams with U-Wrapped FRCM Composites. J. Compos. Constr., 24(1): 04019057. doi: 10.1061/(ASCE)CC.1943-5614.0000986. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000986
dc.relation.referencesenDžidić S., Mahmutović A. (2019) Analysis of the possibility for retrofit of rc beams by traditional and modern methods. The 18th International Symposium of MASE. Ohrid, Republic of North Macedonia. October 2019, 270-279.
dc.relation.referencesenGideon D. A., Alagusundaramoorthy P. (2018). Flexural retrofit of RC beams using CFRP laminates. In IOP Conference Series: Materials Science and Engineering, 431, 7, 072006. doi: 10.1088/1757-899X/431/7/072006 https://doi.org/10.1088/1757-899X/431/7/072006
dc.relation.referencesenHaya H. M., Hawileh R. A., Al Rashed A., Abdalla J.A. (2022) Performance of RC beams externally strengthened with hybrid CFRP and PETFRP laminates. Procedia Structural Integrity, 42, 1190-1197. doi: 10.1016/j.prostr.2022.12.152 https://doi.org/10.1016/j.prostr.2022.12.152
dc.relation.referencesenHuang Z., Deng W., Li R., Chen J., Sui L., Zhou Y., Zhao D., Yang L., Ye J. (2022). Multi-impact performance of prestressed CFRP-strengthened RC beams using H-typed end anchors. Marine Structures, 85, 103264. doi: 10.1016/j.marstruc.2022.103264 https://doi.org/10.1016/j.marstruc.2022.103264
dc.relation.referencesenIslam S. M. Z., Ahmed B., Deb J., Shamim S. S., Himel O. F., Nisat M. N. H., Rahman M. M. (2021) Investigation on Flexural Behavior of Pre-cracked RC Beams Strengthened using CFRP. Proceedings of International Conference on Planning, Architecture & Civil Engineering, 114-119, 09 - 11 September 2021, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh
dc.relation.referencesenJahami A., Temsah Y., Khatib J., Baalbaki O., Kenai S. (2021) The behavior of CFRP strengthened RC beams subjected to blast loading. Magazine of Civil Engineering, 103(3), 10309. doi: 10.34910/MCE.103.9
dc.relation.referencesenKantarci M., Maras M.M., Ayaz Y. (2023) Experimental Performance of RC Beams Strengthened with Aluminum Honeycomb Sandwich Composites and CFRP U‑Jackets. Experimental Techniques, 47, 767-786 doi: 10.1007/s40799-022-00589-y https://doi.org/10.1007/s40799-022-00589-y
dc.relation.referencesenKarpiuk V., Tselikova A., Khudobych A., Kostyuk A., Karpiuk I. (2020). Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European Journal of Enterprise Technologies, 4(7-106), 42-53. doi: 10.15587/1729-4061.2020.209378 https://doi.org/10.15587/1729-4061.2020.209378
dc.relation.referencesenKopiika N., Blikharskyy Y. (2022). Effectiveness of strengthening of reinforced concrete beams with the use of composite materials. Scientific Journal "Theory and Building Practice", JTBP, 4, 2, 7-16. doi:10.23939/jtbp2022.02.007. https://doi.org/10.23939/jtbp2022.02.007
dc.relation.referencesenKopiika N., Vegera P., Vashkevych R., Blikharskyy Z. (2021). Stress-strain state of damaged reinforced concrete bended elements at operational load level. Production Engineering Archives, 27(4), 242-247. doi:10.30657/pea.2021.27.32. https://doi.org/10.30657/pea.2021.27.32
dc.relation.referencesenKramarchuk A., Ilnytskyy B., Bobalo T., Lytvyniak O. (2021). A study of bearing capacity of reinforced masonry beams with GFRP reinforcement. In IOP Conference Series: Materials Science and Engineering, 1021(1), 012018. doi:10.1088/1757-899X/1021/1/012018 https://doi.org/10.1088/1757-899X/1021/1/012018
dc.relation.referencesenMaazoun A., Matthys S., Vantomme J. (2017). Literature review on blast protection by externally bonded FRP reinforcement. In Proceedings COST TU1207 End-of-Action Conference. Presented at the COST TU1207 End-of-Action Conference, Budapest, Hungary.
dc.relation.referencesenManibalan P., Abirami G., Baskar R., Pannirselvam N. (2023) Ductile behavior of reinforced concrete beam incorporated with basalt fiber. Innovative Infrastructure Solutions, 8:65, 1-14. doi:10.1007/s41062-023-01033-9 https://doi.org/10.1007/s41062-023-01033-9
dc.relation.referencesenMhanna H. H., Hawileh R. A., Abdalla J. A., Salama A. S. D., Alkhrdaji T. (2021). Shear Strengthening of Reinforced Concrete T-Beams with Anchored CFRP Laminates. Journal of Composites for Construction, 25(4), 04021030. doi: 10.1061/(ASCE)CC.1943-5614.0001141. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001141
dc.relation.referencesenMhanna H., Hawileh R A., Abdalla J. A. (2022). Effect of FRP Anchor Inclination Angle on Shear Strengthening of Reinforced Concrete T-beams. In 10th International Conference on FRP Composites in Civil Engineering: Proceedings of CICE 2020/2021, 10, 2169-2179. Springer International Publishing. doi:10.1007/978-3-030-88166-5_187 https://doi.org/10.1007/978-3-030-88166-5_187
dc.relation.referencesenMurad Y. (2018) An experimental study on flexural strengthening of RC beams using CFRP sheets. International Journal of Engineering & Technology, 7(4), 2075-2080. doi: 10.14419/ijet.v7i4.16546 (a) https://doi.org/10.14419/ijet.v7i4.16546
dc.relation.referencesenMurad Y. (2018) The Influence of CFRP Orientation Angle on the Shear Strength of RC Beams, The Open Construction and Building Technology Journal, 12, 269-281, doi: 10.2174/1874836801812010269 (b) https://doi.org/10.2174/1874836801812010269
dc.relation.referencesenNabi P., Petkova D., Donchev T. (2020) Behaviour of Columns Constructed with Internal FRP Reinforcement Under Axial Loading. 10th International Conference on FRP Composites in Civil Engineering (CICE 2020), Istanbul 1-3 July 2020. Proceedings of CICE 2020/2021, 10, 878-887. Springer International Publishing. doi: 10.1007/978-3-030-88166-5_76. https://doi.org/10.1007/978-3-030-88166-5_76
dc.relation.referencesenNaser M.Z., Hawileh R.A., Abdalla J.A. (2018). State-of-the-Art Review on the use of Fiber-Reinforced Polymer Composites in Civil Constructions. Engineering Structures. 198, 109542. doi: 10.1016/j.engstruct.2019.109542. https://doi.org/10.1016/j.engstruct.2019.109542
dc.relation.referencesenNaser M.Z.; Hawileh R.A.; Abdalla J.A. (2021) Modeling Strategies of Finite Element Simulation of Reinforced Concrete Beams Strengthened with FRP: A Review. J. Compos. Sci., 5, 19. doi:10.3390/jcs5010019 https://doi.org/10.3390/jcs5010019
dc.relation.referencesenPang M., Shi S., Hu H., Lou T. (2021) Flexural Behavior of Two-Span Continuous CFRP RC Beams. Materials, 14, 6746. doi: 10.3390/ma14226746 https://doi.org/10.3390/ma14226746
dc.relation.referencesenPohoryles D.A., Melo J., Rossetto T. (2021) Combined Flexural and Shear Strengthening of RC T-Beams with FRP and TRM: Experimental Study and Parametric Finite Element Analyses. Buildings, 11, 520. doi:10.3390/buildings11110520 https://doi.org/10.3390/buildings11110520
dc.relation.referencesenSaljoughian A, Mostofinejad D. (2020) Behavior of RC columns confined with CFRP using CSB method under cyclic axial compression. Constr Build Mater, 235:117786. doi: 10.1016/j.conbuildmat.2019.117786. https://doi.org/10.1016/j.conbuildmat.2019.117786
dc.relation.referencesenTask Group 9.3 (2001) FRP (Fibre Reinforced Polymer) reinforcement for concrete structures. Technical report on the Design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. Sprint-Digital-Druck Stuttgart, Lausanne, Switzerland, 138 p. Retrieved from: https://afzir.com/wp-content/uploads/2017/11/Externally-bonded-FRP-Reinf...
dc.relation.referencesenXu Y., Huang J. (2020) Cyclic performance of corroded reinforced concrete short columns strengthened using carbon fiber-reinforced polymer. Constr Build Mater, 247, 118548. doi: 10.1016/j.conbuildmat.2020.118548 https://doi.org/10.1016/j.conbuildmat.2020.118548
dc.relation.referencesenYang J. Q., Smith S. T., Wang Z., Lim Y. Y. (2018). Numerical simulation of FRP-strengthened RC slabs anchored with FRP anchors. Construction and Building Materials, 172, 735-750. doi: 10.1016/j.conbuildmat.2018.03.133 https://doi.org/10.1016/j.conbuildmat.2018.03.133
dc.relation.referencesenYang J., Johansson M., Al-Emrani M., Haghani R. (2021) Innovative flexural strengthening of RC beams using self-anchored prestressed CFRP plates: Experimental and numerical investigations. Engineering Structures, 243, 112687. doi: 10.1016/j.engstruct.2021.112687 https://doi.org/10.1016/j.engstruct.2021.112687
dc.relation.referencesenZhang Y., Li N., Wang Q., Li Z., Qin X. (2022) Shear Behavior of T-Shaped Concrete Beams Reinforced with FRP. Buildings, 12, 2062. doi:10.3390/buildings12122062 https://doi.org/10.3390/buildings12122062
dc.relation.referencesenZhu M., Ueda T., Zhu, J. H. (2020). Generalized evaluation of bond behavior of the externally bonded FRP reinforcement to concrete. Journal of Composites for Construction, 24(6), 04020066. doi: 10.1061/(ASCE https://doi.org/10.1061/(ASCE)CC.1943-5614.0001081
dc.relation.referencesenŽmindák M., Novák P., Dekýš V. (2017). Analysis of bond behaviour in strengthened reinforced concrete beam with carbon fiber reinforced polymer lamella. In MATEC Web of Conferences, 107, 00045. doi: 10.1051/matecconf/201710700045 https://doi.org/10.1051/matecconf/201710700045
dc.relation.urihttps://doi.org/10.1016/j.prostr.2022.12.156
dc.relation.urihttps://doi.org/10.1617/s11527-020-01566-w
dc.relation.urihttps://doi.org/10.1016/j.jcomc.2021.100107
dc.relation.urihttps://doi.org/10.1680/macr.14.00312
dc.relation.urihttps://doi.org/10.1080/24705314.2021.1971891
dc.relation.urihttps://doi.org/10.1016/j.matpr.2022.05.378
dc.relation.urihttps://doi.org/10.1016/j.cscm.2021.e00646
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2023.115694
dc.relation.urihttps://doi.org/10.1088/1757-899X/1021/1/012012
dc.relation.urihttps://doi.org/10.1063/1.5091869
dc.relation.urihttps://doi.org/10.1016/j.compstruct.2019.01.100
dc.relation.urihttps://doi.org/10.1016/j.compositesb.2017.09.053
dc.relation.urihttps://doi.org/10.7712/120121.8565.19417
dc.relation.urihttps://doi.org/10.1061/(ASCE)CC.1943-5614.0000986
dc.relation.urihttps://doi.org/10.1088/1757-899X/431/7/072006
dc.relation.urihttps://doi.org/10.1016/j.prostr.2022.12.152
dc.relation.urihttps://doi.org/10.1016/j.marstruc.2022.103264
dc.relation.urihttps://doi.org/10.1007/s40799-022-00589-y
dc.relation.urihttps://doi.org/10.15587/1729-4061.2020.209378
dc.relation.urihttps://doi.org/10.23939/jtbp2022.02.007
dc.relation.urihttps://doi.org/10.30657/pea.2021.27.32
dc.relation.urihttps://doi.org/10.1088/1757-899X/1021/1/012018
dc.relation.urihttps://doi.org/10.1007/s41062-023-01033-9
dc.relation.urihttps://doi.org/10.1061/(ASCE)CC.1943-5614.0001141
dc.relation.urihttps://doi.org/10.1007/978-3-030-88166-5_187
dc.relation.urihttps://doi.org/10.14419/ijet.v7i4.16546
dc.relation.urihttps://doi.org/10.2174/1874836801812010269
dc.relation.urihttps://doi.org/10.1007/978-3-030-88166-5_76
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2019.109542
dc.relation.urihttps://doi.org/10.3390/jcs5010019
dc.relation.urihttps://doi.org/10.3390/ma14226746
dc.relation.urihttps://doi.org/10.3390/buildings11110520
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2019.117786
dc.relation.urihttps://afzir.com/wp-content/uploads/2017/11/Externally-bonded-FRP-Reinf..
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2020.118548
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2018.03.133
dc.relation.urihttps://doi.org/10.1016/j.engstruct.2021.112687
dc.relation.urihttps://doi.org/10.3390/buildings12122062
dc.relation.urihttps://doi.org/10.1061/(ASCE)CC.1943-5614.0001081
dc.relation.urihttps://doi.org/10.1051/matecconf/201710700045
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.rights.holder© Kopiika N., Blikharskyy Y., 2023
dc.subjectзалізобетонні конструкції
dc.subjectкомпозитні матеріали
dc.subjectпідсилення
dc.subjectпошкодження
dc.subjectефективність
dc.subjectнесуча здатність
dc.subjectRC structures
dc.subjectcomposite materials
dc.subjectstrengthening
dc.subjectdamages
dc.subjectefficiency
dc.subjectloadbearing capacity
dc.titlePerspectives and specific features of the use of composite materials for strengthening of damaged reinforced concrete structures
dc.title.alternativeПерспективи та особливості використання композитних матеріалів для підсилення пошкоджених залізобетонних конструкцій
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2023v5n2_Kopiika_N-Perspectives_and_specific_27-34.pdf
Size:
401.89 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2023v5n2_Kopiika_N-Perspectives_and_specific_27-34__COVER.png
Size:
459.29 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Plain Text
Description: