Perspectives and specific features of the use of composite materials for strengthening of damaged reinforced concrete structures
dc.citation.epage | 34 | |
dc.citation.issue | 2 | |
dc.citation.spage | 27 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Копійка, Н. С. | |
dc.contributor.author | Бліхарський, Я. З. | |
dc.contributor.author | Kopiika, N. | |
dc.contributor.author | Blikharskyy, Ya. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2024-05-29T11:44:05Z | |
dc.date.available | 2024-05-29T11:44:05Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | Залізобетонні конструкції поширені у будівлях і спорудах, що перебувають в експлуатації протягом тривалого часу, тому проблема їх ефективного підсилення набуває актуальності. Композиційні матеріали завдяки високим механічним і фізичним властивостям, можливості адаптації до проєктних вимог і полегшенню самого процесу підсилення широко використовують для реконструкції. У статті комплексно розглянуто методи підсилення із застосуванням фіброармованих полімерних матеріалів та особливостей їх поведінки за різних впливів. Дослідження охоплює аналіз публікацій у цій галузі, визначення недостатньо розглянутих напрямів та перспективи подальших досліджень. На основі аналізу літературних джерел виділено найактуальніші напрями, зокрема числове моделювання методами скінченних елементів для параметричного аналізу, поглиблення розуміння лінійно-пружної поведінки композитів, комплексні експериментально-теоретичні дослідження для крос-валідації та уточнення результатів. Важливо також відзначити значний інтерес до підходів, спрямованих на запобігання граничному стану через порушення сумісної роботи залізобетонної конструкції та композитних матеріалів завдяки застосуванню різних способів анкерування. В статті проаналізовано загальні тенденції в галузі підсилення залізобетонних конструкцій композитними матеріалами, визначено перспективні напрями для подальшого вивчення цього питання, зокрема розроблення та вдосконалення числових моделей, які автоматично виконуватимуть параметричний аналіз і враховуватимуть вимоги стійкості, стійкості та міцності. Подальші ретельні експериментальні й теоретичні дослідження систем підсилення із застосуванням фіброармованих полімерів надзвичайно важливі для поглиблення знань і максимізації ефективності використання композитних систем зміцнення. | |
dc.description.abstract | The need for strengthening of existing structures has recently become topical. Composite materials due to their remarkable properties, possibility to adaptation to the design requirements and facilitation of restoration measures are widely used for strengthening. This article is focused on review of restoration approaches with the use of composite materials and specific features of their behavior under various impacts. Study includes analysis of recent studies in the area, identifying gaps of knowledge and perspectives for further research. The most relevant areas of research were distinguished including numerical finite element modelling for parametric analysis, deepening of understanding of composites` linearly elastic behavior, approaches to prevent delamination failure. Further thorough research in this area is strongly recommended to deepen the knowledge and maximize the efficiency of use of composite strengthening systems. | |
dc.format.extent | 27-34 | |
dc.format.pages | 8 | |
dc.identifier.citation | Kopiika N. Perspectives and specific features of the use of composite materials for strengthening of damaged reinforced concrete structures / N. Kopiika, Ya. Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 27–34. | |
dc.identifier.citationen | Kopiika N. Perspectives and specific features of the use of composite materials for strengthening of damaged reinforced concrete structures / N. Kopiika, Ya. Blikharskyy // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 5. — No 2. — P. 27–34. | |
dc.identifier.doi | doi.org/10.23939/jtbp2023.02.027 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/62182 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Theory and Building Practice, 2 (5), 2023 | |
dc.relation.references | Abdalla J. A., Mhanna H. H., Hawileh R. A., Sharafi M., Al-Marzouqi A., Al-Teneiji S., Al-Ali K. (2022). Shear Strengthening of Reinforced Concrete T-Beams using Carbon Fiber Reinforced Polymer (CFRP) Anchored with CFRP Spikes. Procedia Structural Integrity, 42, 1223-1230. doi: 10.1016/j.prostr.2022.12.156 https://doi.org/10.1016/j.prostr.2022.12.156 | |
dc.relation.references | Abdul Halim N. H. F., Alih S., Vafaei M. (2020). Efficiency of CFRP strips as a substitute for carbon steel stirrups in RC columns. Materials and Structures, 53(5), 1-12, doi: 10.1617/s11527-020-01566-w. https://doi.org/10.1617/s11527-020-01566-w | |
dc.relation.references | Abed F., Al-Mimar M., Ahmed S. (2021) Performance of BFRP RC beams using high strength concrete. Composites Part C: Open Access, 4, 100107. doi:10.1016/j.jcomc.2021.100107 https://doi.org/10.1016/j.jcomc.2021.100107 | |
dc.relation.references | Adhikary S. D., Li B., Fujikake K. (2015). Residual resistance of impact-damaged reinforced concrete beams. Magazine of Concrete Research, 67(7), 364-378. doi: 10.1680/macr.14.00312 https://doi.org/10.1680/macr.14.00312 | |
dc.relation.references | Al-Bodour W., Murad Y., Imam R., Smadi Y. (2022) Shear strength investigation of the carbon fiber reinforced polymer-wrapped concrete beams using gene expression programming and finite element analysis. Journal of Structural Integrity and Maintenance, 7:1, 15-24, doi: 10.1080/24705314.2021.1971891 https://doi.org/10.1080/24705314.2021.1971891 | |
dc.relation.references | Alyaseen A., Poddar A., Alissa J., Alahmad H. Almohammed F. (2022) Behavior of CFRP-strengthened RC beams with web openings in shear zones: Numerical simulation. Materials Today: Proceedings, 65, 3229-3239. doi: 10.1016/j.matpr.2022.05.378 https://doi.org/10.1016/j.matpr.2022.05.378 | |
dc.relation.references | Blikharskyy Y., Selejdak J., Kopiika N. (2021). Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646. doi:10.1016/j.cscm.2021.e00646. (a) https://doi.org/10.1016/j.cscm.2021.e00646 | |
dc.relation.references | Blikharskyy Y., Selejdak J., Vashkevych R., Kopiika N., Blikharskyy Z. (2023). Strengthening RC eccentrically loaded columns by CFRP at different levels of initial load. Engineering Structures, 280, 115694. doi: 10.1016/j.engstruct.2023.115694. https://doi.org/10.1016/j.engstruct.2023.115694 | |
dc.relation.references | Blikharskyy Y., Vashkevych R., Kopiika N., Bobalo T., Blikharskyy Z. (2021). Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineering, 1021, 1, 012012. doi: 10.1088/1757-899X/1021/1/012012 (b). https://doi.org/10.1088/1757-899X/1021/1/012012 | |
dc.relation.references | Borysiuk O., Karavan V., Sobczak-Piąstka J. (2019). Calculation of the normal section strength, rigidity and crack resistance of beams, strengthened by carbon-fiber materials. In AIP Conference Proceedings, AIP Publishing LLC. 2077(1), 020008, doi: 10.1063/1.5091869. https://doi.org/10.1063/1.5091869 | |
dc.relation.references | Castillo Del Rey E., Griffith M., Ingham J. (2016). Force-based model for straight FRP anchors exhibiting fibre rupture failure mode. In Proceedings of The 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, Hong Kong, 419-427. | |
dc.relation.references | Castillo del Rey E., Kanitkar R., Smith S. T., Griffith M. C., Ingham J. M. (2019). Design approach for FRP spike anchors in FRP-strengthened RC structures. Composite Structures, 214, 23-33. doi: 10.1016/j.compstruct.2019.01.100 https://doi.org/10.1016/j.compstruct.2019.01.100 | |
dc.relation.references | Chen W., Pham T. M., Sichembe H., Chen L., Hao H. (2018) Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet. Composites Part B, 134, 114e126. doi: 10.1016/j.compositesb.2017.09.053 https://doi.org/10.1016/j.compositesb.2017.09.053 | |
dc.relation.references | Colajanni P., Pagnotta S. (2021) Influence of the effectiveness factors in assessing the shear capacity of RC beams strengthened with FRP. COMPDYN 2021. 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis (eds.) Streamed from Athens, Greece, 27-30 June 2021. Eccomas Proceedia COMPDYN (2021), 1345-1367. doi:10.7712/120121.8565.19417 https://doi.org/10.7712/120121.8565.19417 | |
dc.relation.references | D'Antino T., Focacci F., Sneed L. H., Pellegrino C. (2020) Shear Strength Model for RC Beams with U-Wrapped FRCM Composites. J. Compos. Constr., 24(1): 04019057. doi: 10.1061/(ASCE)CC.1943-5614.0000986. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000986 | |
dc.relation.references | Džidić S., Mahmutović A. (2019) Analysis of the possibility for retrofit of rc beams by traditional and modern methods. The 18th International Symposium of MASE. Ohrid, Republic of North Macedonia. October 2019, 270-279. | |
dc.relation.references | Gideon D. A., Alagusundaramoorthy P. (2018). Flexural retrofit of RC beams using CFRP laminates. In IOP Conference Series: Materials Science and Engineering, 431, 7, 072006. doi: 10.1088/1757-899X/431/7/072006 https://doi.org/10.1088/1757-899X/431/7/072006 | |
dc.relation.references | Haya H. M., Hawileh R. A., Al Rashed A., Abdalla J.A. (2022) Performance of RC beams externally strengthened with hybrid CFRP and PETFRP laminates. Procedia Structural Integrity, 42, 1190-1197. doi: 10.1016/j.prostr.2022.12.152 https://doi.org/10.1016/j.prostr.2022.12.152 | |
dc.relation.references | Huang Z., Deng W., Li R., Chen J., Sui L., Zhou Y., Zhao D., Yang L., Ye J. (2022). Multi-impact performance of prestressed CFRP-strengthened RC beams using H-typed end anchors. Marine Structures, 85, 103264. doi: 10.1016/j.marstruc.2022.103264 https://doi.org/10.1016/j.marstruc.2022.103264 | |
dc.relation.references | Islam S. M. Z., Ahmed B., Deb J., Shamim S. S., Himel O. F., Nisat M. N. H., Rahman M. M. (2021) Investigation on Flexural Behavior of Pre-cracked RC Beams Strengthened using CFRP. Proceedings of International Conference on Planning, Architecture & Civil Engineering, 114-119, 09 - 11 September 2021, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh | |
dc.relation.references | Jahami A., Temsah Y., Khatib J., Baalbaki O., Kenai S. (2021) The behavior of CFRP strengthened RC beams subjected to blast loading. Magazine of Civil Engineering, 103(3), 10309. doi: 10.34910/MCE.103.9 | |
dc.relation.references | Kantarci M., Maras M.M., Ayaz Y. (2023) Experimental Performance of RC Beams Strengthened with Aluminum Honeycomb Sandwich Composites and CFRP U‑Jackets. Experimental Techniques, 47, 767-786 doi: 10.1007/s40799-022-00589-y https://doi.org/10.1007/s40799-022-00589-y | |
dc.relation.references | Karpiuk V., Tselikova A., Khudobych A., Kostyuk A., Karpiuk I. (2020). Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European Journal of Enterprise Technologies, 4(7-106), 42-53. doi: 10.15587/1729-4061.2020.209378 https://doi.org/10.15587/1729-4061.2020.209378 | |
dc.relation.references | Kopiika N., Blikharskyy Y. (2022). Effectiveness of strengthening of reinforced concrete beams with the use of composite materials. Scientific Journal "Theory and Building Practice", JTBP, 4, 2, 7-16. doi:10.23939/jtbp2022.02.007. https://doi.org/10.23939/jtbp2022.02.007 | |
dc.relation.references | Kopiika N., Vegera P., Vashkevych R., Blikharskyy Z. (2021). Stress-strain state of damaged reinforced concrete bended elements at operational load level. Production Engineering Archives, 27(4), 242-247. doi:10.30657/pea.2021.27.32. https://doi.org/10.30657/pea.2021.27.32 | |
dc.relation.references | Kramarchuk A., Ilnytskyy B., Bobalo T., Lytvyniak O. (2021). A study of bearing capacity of reinforced masonry beams with GFRP reinforcement. In IOP Conference Series: Materials Science and Engineering, 1021(1), 012018. doi:10.1088/1757-899X/1021/1/012018 https://doi.org/10.1088/1757-899X/1021/1/012018 | |
dc.relation.references | Maazoun A., Matthys S., Vantomme J. (2017). Literature review on blast protection by externally bonded FRP reinforcement. In Proceedings COST TU1207 End-of-Action Conference. Presented at the COST TU1207 End-of-Action Conference, Budapest, Hungary. | |
dc.relation.references | Manibalan P., Abirami G., Baskar R., Pannirselvam N. (2023) Ductile behavior of reinforced concrete beam incorporated with basalt fiber. Innovative Infrastructure Solutions, 8:65, 1-14. doi:10.1007/s41062-023-01033-9 https://doi.org/10.1007/s41062-023-01033-9 | |
dc.relation.references | Mhanna H. H., Hawileh R. A., Abdalla J. A., Salama A. S. D., Alkhrdaji T. (2021). Shear Strengthening of Reinforced Concrete T-Beams with Anchored CFRP Laminates. Journal of Composites for Construction, 25(4), 04021030. doi: 10.1061/(ASCE)CC.1943-5614.0001141. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001141 | |
dc.relation.references | Mhanna H., Hawileh R A., Abdalla J. A. (2022). Effect of FRP Anchor Inclination Angle on Shear Strengthening of Reinforced Concrete T-beams. In 10th International Conference on FRP Composites in Civil Engineering: Proceedings of CICE 2020/2021, 10, 2169-2179. Springer International Publishing. doi:10.1007/978-3-030-88166-5_187 https://doi.org/10.1007/978-3-030-88166-5_187 | |
dc.relation.references | Murad Y. (2018) An experimental study on flexural strengthening of RC beams using CFRP sheets. International Journal of Engineering & Technology, 7(4), 2075-2080. doi: 10.14419/ijet.v7i4.16546 (a) https://doi.org/10.14419/ijet.v7i4.16546 | |
dc.relation.references | Murad Y. (2018) The Influence of CFRP Orientation Angle on the Shear Strength of RC Beams, The Open Construction and Building Technology Journal, 12, 269-281, doi: 10.2174/1874836801812010269 (b) https://doi.org/10.2174/1874836801812010269 | |
dc.relation.references | Nabi P., Petkova D., Donchev T. (2020) Behaviour of Columns Constructed with Internal FRP Reinforcement Under Axial Loading. 10th International Conference on FRP Composites in Civil Engineering (CICE 2020), Istanbul 1-3 July 2020. Proceedings of CICE 2020/2021, 10, 878-887. Springer International Publishing. doi: 10.1007/978-3-030-88166-5_76. https://doi.org/10.1007/978-3-030-88166-5_76 | |
dc.relation.references | Naser M.Z., Hawileh R.A., Abdalla J.A. (2018). State-of-the-Art Review on the use of Fiber-Reinforced Polymer Composites in Civil Constructions. Engineering Structures. 198, 109542. doi: 10.1016/j.engstruct.2019.109542. https://doi.org/10.1016/j.engstruct.2019.109542 | |
dc.relation.references | Naser M.Z.; Hawileh R.A.; Abdalla J.A. (2021) Modeling Strategies of Finite Element Simulation of Reinforced Concrete Beams Strengthened with FRP: A Review. J. Compos. Sci., 5, 19. doi:10.3390/jcs5010019 https://doi.org/10.3390/jcs5010019 | |
dc.relation.references | Pang M., Shi S., Hu H., Lou T. (2021) Flexural Behavior of Two-Span Continuous CFRP RC Beams. Materials, 14, 6746. doi: 10.3390/ma14226746 https://doi.org/10.3390/ma14226746 | |
dc.relation.references | Pohoryles D.A., Melo J., Rossetto T. (2021) Combined Flexural and Shear Strengthening of RC T-Beams with FRP and TRM: Experimental Study and Parametric Finite Element Analyses. Buildings, 11, 520. doi:10.3390/buildings11110520 https://doi.org/10.3390/buildings11110520 | |
dc.relation.references | Saljoughian A, Mostofinejad D. (2020) Behavior of RC columns confined with CFRP using CSB method under cyclic axial compression. Constr Build Mater, 235:117786. doi: 10.1016/j.conbuildmat.2019.117786. https://doi.org/10.1016/j.conbuildmat.2019.117786 | |
dc.relation.references | Task Group 9.3 (2001) FRP (Fibre Reinforced Polymer) reinforcement for concrete structures. Technical report on the Design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. Sprint-Digital-Druck Stuttgart, Lausanne, Switzerland, 138 p. Retrieved from: https://afzir.com/wp-content/uploads/2017/11/Externally-bonded-FRP-Reinf... | |
dc.relation.references | Xu Y., Huang J. (2020) Cyclic performance of corroded reinforced concrete short columns strengthened using carbon fiber-reinforced polymer. Constr Build Mater, 247, 118548. doi: 10.1016/j.conbuildmat.2020.118548 https://doi.org/10.1016/j.conbuildmat.2020.118548 | |
dc.relation.references | Yang J. Q., Smith S. T., Wang Z., Lim Y. Y. (2018). Numerical simulation of FRP-strengthened RC slabs anchored with FRP anchors. Construction and Building Materials, 172, 735-750. doi: 10.1016/j.conbuildmat.2018.03.133 https://doi.org/10.1016/j.conbuildmat.2018.03.133 | |
dc.relation.references | Yang J., Johansson M., Al-Emrani M., Haghani R. (2021) Innovative flexural strengthening of RC beams using self-anchored prestressed CFRP plates: Experimental and numerical investigations. Engineering Structures, 243, 112687. doi: 10.1016/j.engstruct.2021.112687 https://doi.org/10.1016/j.engstruct.2021.112687 | |
dc.relation.references | Zhang Y., Li N., Wang Q., Li Z., Qin X. (2022) Shear Behavior of T-Shaped Concrete Beams Reinforced with FRP. Buildings, 12, 2062. doi:10.3390/buildings12122062 https://doi.org/10.3390/buildings12122062 | |
dc.relation.references | Zhu M., Ueda T., Zhu, J. H. (2020). Generalized evaluation of bond behavior of the externally bonded FRP reinforcement to concrete. Journal of Composites for Construction, 24(6), 04020066. doi: 10.1061/(ASCE https://doi.org/10.1061/(ASCE)CC.1943-5614.0001081 | |
dc.relation.references | Žmindák M., Novák P., Dekýš V. (2017). Analysis of bond behaviour in strengthened reinforced concrete beam with carbon fiber reinforced polymer lamella. In MATEC Web of Conferences, 107, 00045. doi: 10.1051/matecconf/201710700045 https://doi.org/10.1051/matecconf/201710700045 | |
dc.relation.referencesen | Abdalla J. A., Mhanna H. H., Hawileh R. A., Sharafi M., Al-Marzouqi A., Al-Teneiji S., Al-Ali K. (2022). Shear Strengthening of Reinforced Concrete T-Beams using Carbon Fiber Reinforced Polymer (CFRP) Anchored with CFRP Spikes. Procedia Structural Integrity, 42, 1223-1230. doi: 10.1016/j.prostr.2022.12.156 https://doi.org/10.1016/j.prostr.2022.12.156 | |
dc.relation.referencesen | Abdul Halim N. H. F., Alih S., Vafaei M. (2020). Efficiency of CFRP strips as a substitute for carbon steel stirrups in RC columns. Materials and Structures, 53(5), 1-12, doi: 10.1617/s11527-020-01566-w. https://doi.org/10.1617/s11527-020-01566-w | |
dc.relation.referencesen | Abed F., Al-Mimar M., Ahmed S. (2021) Performance of BFRP RC beams using high strength concrete. Composites Part C: Open Access, 4, 100107. doi:10.1016/j.jcomc.2021.100107 https://doi.org/10.1016/j.jcomc.2021.100107 | |
dc.relation.referencesen | Adhikary S. D., Li B., Fujikake K. (2015). Residual resistance of impact-damaged reinforced concrete beams. Magazine of Concrete Research, 67(7), 364-378. doi: 10.1680/macr.14.00312 https://doi.org/10.1680/macr.14.00312 | |
dc.relation.referencesen | Al-Bodour W., Murad Y., Imam R., Smadi Y. (2022) Shear strength investigation of the carbon fiber reinforced polymer-wrapped concrete beams using gene expression programming and finite element analysis. Journal of Structural Integrity and Maintenance, 7:1, 15-24, doi: 10.1080/24705314.2021.1971891 https://doi.org/10.1080/24705314.2021.1971891 | |
dc.relation.referencesen | Alyaseen A., Poddar A., Alissa J., Alahmad H. Almohammed F. (2022) Behavior of CFRP-strengthened RC beams with web openings in shear zones: Numerical simulation. Materials Today: Proceedings, 65, 3229-3239. doi: 10.1016/j.matpr.2022.05.378 https://doi.org/10.1016/j.matpr.2022.05.378 | |
dc.relation.referencesen | Blikharskyy Y., Selejdak J., Kopiika N. (2021). Specifics of corrosion processes in thermally strengthened rebar. Case Studies in Construction Materials, 15, e00646. doi:10.1016/j.cscm.2021.e00646. (a) https://doi.org/10.1016/j.cscm.2021.e00646 | |
dc.relation.referencesen | Blikharskyy Y., Selejdak J., Vashkevych R., Kopiika N., Blikharskyy Z. (2023). Strengthening RC eccentrically loaded columns by CFRP at different levels of initial load. Engineering Structures, 280, 115694. doi: 10.1016/j.engstruct.2023.115694. https://doi.org/10.1016/j.engstruct.2023.115694 | |
dc.relation.referencesen | Blikharskyy Y., Vashkevych R., Kopiika N., Bobalo T., Blikharskyy Z. (2021). Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. In IOP Conference Series: Materials Science and Engineering, 1021, 1, 012012. doi: 10.1088/1757-899X/1021/1/012012 (b). https://doi.org/10.1088/1757-899X/1021/1/012012 | |
dc.relation.referencesen | Borysiuk O., Karavan V., Sobczak-Piąstka J. (2019). Calculation of the normal section strength, rigidity and crack resistance of beams, strengthened by carbon-fiber materials. In AIP Conference Proceedings, AIP Publishing LLC. 2077(1), 020008, doi: 10.1063/1.5091869. https://doi.org/10.1063/1.5091869 | |
dc.relation.referencesen | Castillo Del Rey E., Griffith M., Ingham J. (2016). Force-based model for straight FRP anchors exhibiting fibre rupture failure mode. In Proceedings of The 8th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, Hong Kong, 419-427. | |
dc.relation.referencesen | Castillo del Rey E., Kanitkar R., Smith S. T., Griffith M. C., Ingham J. M. (2019). Design approach for FRP spike anchors in FRP-strengthened RC structures. Composite Structures, 214, 23-33. doi: 10.1016/j.compstruct.2019.01.100 https://doi.org/10.1016/j.compstruct.2019.01.100 | |
dc.relation.referencesen | Chen W., Pham T. M., Sichembe H., Chen L., Hao H. (2018) Experimental study of flexural behaviour of RC beams strengthened by longitudinal and U-shaped basalt FRP sheet. Composites Part B, 134, 114e126. doi: 10.1016/j.compositesb.2017.09.053 https://doi.org/10.1016/j.compositesb.2017.09.053 | |
dc.relation.referencesen | Colajanni P., Pagnotta S. (2021) Influence of the effectiveness factors in assessing the shear capacity of RC beams strengthened with FRP. COMPDYN 2021. 8th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis (eds.) Streamed from Athens, Greece, 27-30 June 2021. Eccomas Proceedia COMPDYN (2021), 1345-1367. doi:10.7712/120121.8565.19417 https://doi.org/10.7712/120121.8565.19417 | |
dc.relation.referencesen | D'Antino T., Focacci F., Sneed L. H., Pellegrino C. (2020) Shear Strength Model for RC Beams with U-Wrapped FRCM Composites. J. Compos. Constr., 24(1): 04019057. doi: 10.1061/(ASCE)CC.1943-5614.0000986. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000986 | |
dc.relation.referencesen | Džidić S., Mahmutović A. (2019) Analysis of the possibility for retrofit of rc beams by traditional and modern methods. The 18th International Symposium of MASE. Ohrid, Republic of North Macedonia. October 2019, 270-279. | |
dc.relation.referencesen | Gideon D. A., Alagusundaramoorthy P. (2018). Flexural retrofit of RC beams using CFRP laminates. In IOP Conference Series: Materials Science and Engineering, 431, 7, 072006. doi: 10.1088/1757-899X/431/7/072006 https://doi.org/10.1088/1757-899X/431/7/072006 | |
dc.relation.referencesen | Haya H. M., Hawileh R. A., Al Rashed A., Abdalla J.A. (2022) Performance of RC beams externally strengthened with hybrid CFRP and PETFRP laminates. Procedia Structural Integrity, 42, 1190-1197. doi: 10.1016/j.prostr.2022.12.152 https://doi.org/10.1016/j.prostr.2022.12.152 | |
dc.relation.referencesen | Huang Z., Deng W., Li R., Chen J., Sui L., Zhou Y., Zhao D., Yang L., Ye J. (2022). Multi-impact performance of prestressed CFRP-strengthened RC beams using H-typed end anchors. Marine Structures, 85, 103264. doi: 10.1016/j.marstruc.2022.103264 https://doi.org/10.1016/j.marstruc.2022.103264 | |
dc.relation.referencesen | Islam S. M. Z., Ahmed B., Deb J., Shamim S. S., Himel O. F., Nisat M. N. H., Rahman M. M. (2021) Investigation on Flexural Behavior of Pre-cracked RC Beams Strengthened using CFRP. Proceedings of International Conference on Planning, Architecture & Civil Engineering, 114-119, 09 - 11 September 2021, Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh | |
dc.relation.referencesen | Jahami A., Temsah Y., Khatib J., Baalbaki O., Kenai S. (2021) The behavior of CFRP strengthened RC beams subjected to blast loading. Magazine of Civil Engineering, 103(3), 10309. doi: 10.34910/MCE.103.9 | |
dc.relation.referencesen | Kantarci M., Maras M.M., Ayaz Y. (2023) Experimental Performance of RC Beams Strengthened with Aluminum Honeycomb Sandwich Composites and CFRP U‑Jackets. Experimental Techniques, 47, 767-786 doi: 10.1007/s40799-022-00589-y https://doi.org/10.1007/s40799-022-00589-y | |
dc.relation.referencesen | Karpiuk V., Tselikova A., Khudobych A., Kostyuk A., Karpiuk I. (2020). Study of strength, deformability property and crack resistance of beams with BFRP. Eastern-European Journal of Enterprise Technologies, 4(7-106), 42-53. doi: 10.15587/1729-4061.2020.209378 https://doi.org/10.15587/1729-4061.2020.209378 | |
dc.relation.referencesen | Kopiika N., Blikharskyy Y. (2022). Effectiveness of strengthening of reinforced concrete beams with the use of composite materials. Scientific Journal "Theory and Building Practice", JTBP, 4, 2, 7-16. doi:10.23939/jtbp2022.02.007. https://doi.org/10.23939/jtbp2022.02.007 | |
dc.relation.referencesen | Kopiika N., Vegera P., Vashkevych R., Blikharskyy Z. (2021). Stress-strain state of damaged reinforced concrete bended elements at operational load level. Production Engineering Archives, 27(4), 242-247. doi:10.30657/pea.2021.27.32. https://doi.org/10.30657/pea.2021.27.32 | |
dc.relation.referencesen | Kramarchuk A., Ilnytskyy B., Bobalo T., Lytvyniak O. (2021). A study of bearing capacity of reinforced masonry beams with GFRP reinforcement. In IOP Conference Series: Materials Science and Engineering, 1021(1), 012018. doi:10.1088/1757-899X/1021/1/012018 https://doi.org/10.1088/1757-899X/1021/1/012018 | |
dc.relation.referencesen | Maazoun A., Matthys S., Vantomme J. (2017). Literature review on blast protection by externally bonded FRP reinforcement. In Proceedings COST TU1207 End-of-Action Conference. Presented at the COST TU1207 End-of-Action Conference, Budapest, Hungary. | |
dc.relation.referencesen | Manibalan P., Abirami G., Baskar R., Pannirselvam N. (2023) Ductile behavior of reinforced concrete beam incorporated with basalt fiber. Innovative Infrastructure Solutions, 8:65, 1-14. doi:10.1007/s41062-023-01033-9 https://doi.org/10.1007/s41062-023-01033-9 | |
dc.relation.referencesen | Mhanna H. H., Hawileh R. A., Abdalla J. A., Salama A. S. D., Alkhrdaji T. (2021). Shear Strengthening of Reinforced Concrete T-Beams with Anchored CFRP Laminates. Journal of Composites for Construction, 25(4), 04021030. doi: 10.1061/(ASCE)CC.1943-5614.0001141. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001141 | |
dc.relation.referencesen | Mhanna H., Hawileh R A., Abdalla J. A. (2022). Effect of FRP Anchor Inclination Angle on Shear Strengthening of Reinforced Concrete T-beams. In 10th International Conference on FRP Composites in Civil Engineering: Proceedings of CICE 2020/2021, 10, 2169-2179. Springer International Publishing. doi:10.1007/978-3-030-88166-5_187 https://doi.org/10.1007/978-3-030-88166-5_187 | |
dc.relation.referencesen | Murad Y. (2018) An experimental study on flexural strengthening of RC beams using CFRP sheets. International Journal of Engineering & Technology, 7(4), 2075-2080. doi: 10.14419/ijet.v7i4.16546 (a) https://doi.org/10.14419/ijet.v7i4.16546 | |
dc.relation.referencesen | Murad Y. (2018) The Influence of CFRP Orientation Angle on the Shear Strength of RC Beams, The Open Construction and Building Technology Journal, 12, 269-281, doi: 10.2174/1874836801812010269 (b) https://doi.org/10.2174/1874836801812010269 | |
dc.relation.referencesen | Nabi P., Petkova D., Donchev T. (2020) Behaviour of Columns Constructed with Internal FRP Reinforcement Under Axial Loading. 10th International Conference on FRP Composites in Civil Engineering (CICE 2020), Istanbul 1-3 July 2020. Proceedings of CICE 2020/2021, 10, 878-887. Springer International Publishing. doi: 10.1007/978-3-030-88166-5_76. https://doi.org/10.1007/978-3-030-88166-5_76 | |
dc.relation.referencesen | Naser M.Z., Hawileh R.A., Abdalla J.A. (2018). State-of-the-Art Review on the use of Fiber-Reinforced Polymer Composites in Civil Constructions. Engineering Structures. 198, 109542. doi: 10.1016/j.engstruct.2019.109542. https://doi.org/10.1016/j.engstruct.2019.109542 | |
dc.relation.referencesen | Naser M.Z.; Hawileh R.A.; Abdalla J.A. (2021) Modeling Strategies of Finite Element Simulation of Reinforced Concrete Beams Strengthened with FRP: A Review. J. Compos. Sci., 5, 19. doi:10.3390/jcs5010019 https://doi.org/10.3390/jcs5010019 | |
dc.relation.referencesen | Pang M., Shi S., Hu H., Lou T. (2021) Flexural Behavior of Two-Span Continuous CFRP RC Beams. Materials, 14, 6746. doi: 10.3390/ma14226746 https://doi.org/10.3390/ma14226746 | |
dc.relation.referencesen | Pohoryles D.A., Melo J., Rossetto T. (2021) Combined Flexural and Shear Strengthening of RC T-Beams with FRP and TRM: Experimental Study and Parametric Finite Element Analyses. Buildings, 11, 520. doi:10.3390/buildings11110520 https://doi.org/10.3390/buildings11110520 | |
dc.relation.referencesen | Saljoughian A, Mostofinejad D. (2020) Behavior of RC columns confined with CFRP using CSB method under cyclic axial compression. Constr Build Mater, 235:117786. doi: 10.1016/j.conbuildmat.2019.117786. https://doi.org/10.1016/j.conbuildmat.2019.117786 | |
dc.relation.referencesen | Task Group 9.3 (2001) FRP (Fibre Reinforced Polymer) reinforcement for concrete structures. Technical report on the Design and use of externally bonded fibre reinforced polymer reinforcement (FRP EBR) for reinforced concrete structures. Sprint-Digital-Druck Stuttgart, Lausanne, Switzerland, 138 p. Retrieved from: https://afzir.com/wp-content/uploads/2017/11/Externally-bonded-FRP-Reinf... | |
dc.relation.referencesen | Xu Y., Huang J. (2020) Cyclic performance of corroded reinforced concrete short columns strengthened using carbon fiber-reinforced polymer. Constr Build Mater, 247, 118548. doi: 10.1016/j.conbuildmat.2020.118548 https://doi.org/10.1016/j.conbuildmat.2020.118548 | |
dc.relation.referencesen | Yang J. Q., Smith S. T., Wang Z., Lim Y. Y. (2018). Numerical simulation of FRP-strengthened RC slabs anchored with FRP anchors. Construction and Building Materials, 172, 735-750. doi: 10.1016/j.conbuildmat.2018.03.133 https://doi.org/10.1016/j.conbuildmat.2018.03.133 | |
dc.relation.referencesen | Yang J., Johansson M., Al-Emrani M., Haghani R. (2021) Innovative flexural strengthening of RC beams using self-anchored prestressed CFRP plates: Experimental and numerical investigations. Engineering Structures, 243, 112687. doi: 10.1016/j.engstruct.2021.112687 https://doi.org/10.1016/j.engstruct.2021.112687 | |
dc.relation.referencesen | Zhang Y., Li N., Wang Q., Li Z., Qin X. (2022) Shear Behavior of T-Shaped Concrete Beams Reinforced with FRP. Buildings, 12, 2062. doi:10.3390/buildings12122062 https://doi.org/10.3390/buildings12122062 | |
dc.relation.referencesen | Zhu M., Ueda T., Zhu, J. H. (2020). Generalized evaluation of bond behavior of the externally bonded FRP reinforcement to concrete. Journal of Composites for Construction, 24(6), 04020066. doi: 10.1061/(ASCE https://doi.org/10.1061/(ASCE)CC.1943-5614.0001081 | |
dc.relation.referencesen | Žmindák M., Novák P., Dekýš V. (2017). Analysis of bond behaviour in strengthened reinforced concrete beam with carbon fiber reinforced polymer lamella. In MATEC Web of Conferences, 107, 00045. doi: 10.1051/matecconf/201710700045 https://doi.org/10.1051/matecconf/201710700045 | |
dc.relation.uri | https://doi.org/10.1016/j.prostr.2022.12.156 | |
dc.relation.uri | https://doi.org/10.1617/s11527-020-01566-w | |
dc.relation.uri | https://doi.org/10.1016/j.jcomc.2021.100107 | |
dc.relation.uri | https://doi.org/10.1680/macr.14.00312 | |
dc.relation.uri | https://doi.org/10.1080/24705314.2021.1971891 | |
dc.relation.uri | https://doi.org/10.1016/j.matpr.2022.05.378 | |
dc.relation.uri | https://doi.org/10.1016/j.cscm.2021.e00646 | |
dc.relation.uri | https://doi.org/10.1016/j.engstruct.2023.115694 | |
dc.relation.uri | https://doi.org/10.1088/1757-899X/1021/1/012012 | |
dc.relation.uri | https://doi.org/10.1063/1.5091869 | |
dc.relation.uri | https://doi.org/10.1016/j.compstruct.2019.01.100 | |
dc.relation.uri | https://doi.org/10.1016/j.compositesb.2017.09.053 | |
dc.relation.uri | https://doi.org/10.7712/120121.8565.19417 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)CC.1943-5614.0000986 | |
dc.relation.uri | https://doi.org/10.1088/1757-899X/431/7/072006 | |
dc.relation.uri | https://doi.org/10.1016/j.prostr.2022.12.152 | |
dc.relation.uri | https://doi.org/10.1016/j.marstruc.2022.103264 | |
dc.relation.uri | https://doi.org/10.1007/s40799-022-00589-y | |
dc.relation.uri | https://doi.org/10.15587/1729-4061.2020.209378 | |
dc.relation.uri | https://doi.org/10.23939/jtbp2022.02.007 | |
dc.relation.uri | https://doi.org/10.30657/pea.2021.27.32 | |
dc.relation.uri | https://doi.org/10.1088/1757-899X/1021/1/012018 | |
dc.relation.uri | https://doi.org/10.1007/s41062-023-01033-9 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)CC.1943-5614.0001141 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-88166-5_187 | |
dc.relation.uri | https://doi.org/10.14419/ijet.v7i4.16546 | |
dc.relation.uri | https://doi.org/10.2174/1874836801812010269 | |
dc.relation.uri | https://doi.org/10.1007/978-3-030-88166-5_76 | |
dc.relation.uri | https://doi.org/10.1016/j.engstruct.2019.109542 | |
dc.relation.uri | https://doi.org/10.3390/jcs5010019 | |
dc.relation.uri | https://doi.org/10.3390/ma14226746 | |
dc.relation.uri | https://doi.org/10.3390/buildings11110520 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2019.117786 | |
dc.relation.uri | https://afzir.com/wp-content/uploads/2017/11/Externally-bonded-FRP-Reinf.. | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2020.118548 | |
dc.relation.uri | https://doi.org/10.1016/j.conbuildmat.2018.03.133 | |
dc.relation.uri | https://doi.org/10.1016/j.engstruct.2021.112687 | |
dc.relation.uri | https://doi.org/10.3390/buildings12122062 | |
dc.relation.uri | https://doi.org/10.1061/(ASCE)CC.1943-5614.0001081 | |
dc.relation.uri | https://doi.org/10.1051/matecconf/201710700045 | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.rights.holder | © Kopiika N., Blikharskyy Y., 2023 | |
dc.subject | залізобетонні конструкції | |
dc.subject | композитні матеріали | |
dc.subject | підсилення | |
dc.subject | пошкодження | |
dc.subject | ефективність | |
dc.subject | несуча здатність | |
dc.subject | RC structures | |
dc.subject | composite materials | |
dc.subject | strengthening | |
dc.subject | damages | |
dc.subject | efficiency | |
dc.subject | loadbearing capacity | |
dc.title | Perspectives and specific features of the use of composite materials for strengthening of damaged reinforced concrete structures | |
dc.title.alternative | Перспективи та особливості використання композитних матеріалів для підсилення пошкоджених залізобетонних конструкцій | |
dc.type | Article |
Files
License bundle
1 - 1 of 1