Study of the optimization process of the exoskeleton design using generative design methods
| dc.citation.epage | 64 | |
| dc.citation.issue | 3 | |
| dc.citation.journalTitle | Комп’ютерні системи проектування. Теорія і практика | |
| dc.citation.spage | 56 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Полевий, Тарас | |
| dc.contributor.author | Здобицький, Андрій | |
| dc.contributor.author | Зінько, Роман | |
| dc.contributor.author | Polevyi, Taras | |
| dc.contributor.author | Zdobytskyi, Andriy | |
| dc.contributor.author | Zinko, Roman | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-12-16T08:41:09Z | |
| dc.description.abstract | У статті досліджено проєктування та оптимізацію екзоскелета нижніх кінцівок за допомогою методів генеративного дизайну. Через унікальні характеристики та особливості людського тіла кожен екзоскелет потрібно налаштовувати під умови роботи кожного користувача, але розроблення індивідуального дизайну продукту коштує дуже дорого та займає багато часу інженерів. Мета дослідження – оптимізація базової моделі екзоскелета до умов роботи за допомогою технології генеративного проєктування. Оптимізація ґрунтується на рухах людини та біомеханіці, особливо на суглобовому моменті, що дає змогу проєктувати конструкцію із прийнятними коефіцієнтами безпеки. Результати демонструють високооптимізовану конструкцію для різних матеріалів і значне зменшення маси й об’єму порівняно із базовою моделлю. Використання таких технологій економить час розроб- лення, даючи інженерам змогу зосередитися на складніших аспектах проєктування. | |
| dc.description.abstract | This study explores the process of design and optimization of exoskeleton for lower extremities using methods of generative design. Due to the unique characteristics and features of the human body, every exoskeleton needs to be adjusted to the working condition of each user, but the development of individual product designs by engineers is highly expensive and takes a lot of time. The study objective is the optimization of the base model of the exoskeleton to working conditions using generative design technology. Optimization is based on human movements and biomechanics, especially on joint torque, which allows to design of construction with acceptable safety factors. Results show highly optimized designs for different materials and a significant reduction in mass and volume relative to the base model. Usage of such technologies saves development time, allowing engineers to focus on more complex aspects of design. | |
| dc.format.extent | 56-64 | |
| dc.format.pages | 9 | |
| dc.identifier.citation | Polevyi T. Study of the optimization process of the exoskeleton design using generative design methods / Taras Polevyi, Andriy Zdobytskyi, Roman Zinko // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 3. — P. 56–64. | |
| dc.identifier.citation2015 | Polevyi T., Zinko R. Study of the optimization process of the exoskeleton design using generative design methods // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 3. P. 56–64. | |
| dc.identifier.citationenAPA | Polevyi, T., Zdobytskyi, A., & Zinko, R. (2024). Study of the optimization process of the exoskeleton design using generative design methods. Computer Systems of Design. Theory and Practice, 6(3), 56-64. Lviv Politechnic Publishing House.. | |
| dc.identifier.citationenCHICAGO | Polevyi T., Zdobytskyi A., Zinko R. (2024) Study of the optimization process of the exoskeleton design using generative design methods. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 3, pp. 56-64. | |
| dc.identifier.doi | https://doi.org/10.23939/cds2024.03.056 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/124102 | |
| dc.language.iso | en | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Комп’ютерні системи проектування. Теорія і практика, 3 (6), 2024 | |
| dc.relation.ispartof | Computer Systems of Design. Theory and Practice, 3 (6), 2024 | |
| dc.relation.references | [1] Luís Quinto, Pedro Pinheiro, Sérgio B. Goncalves, Ivo Roupa, Paula Simões, Miguel Tavares da Silva, Analysis of a passive ankle exoskeleton for reduction of metabolic costs during walking, Defence Technology,Vol. 37, 2024, pp. 62–68. ISSN 2214-9147, https://doi.org/10.1016/j.dt.2023.11.015. | |
| dc.relation.references | [2] Dang Khanh Linh Le, Wei-Chih Lin, Human-exoskeleton cooperation for reducing the musculoskeletal load of manual handling tasks in orchid farms, Computers and Electronics in Agriculture, Vol. 219, 2024, 108820. ISSN0168-1699, https://doi.org/10.1016/j.compag.2024.108820. | |
| dc.relation.references | [3] S.K. Hasan, Anoop K. Dhingra, Biomechanical design and control of an eight DOF human lower extremity rehabilitation exoskeleton robot, Results in Control and Optimization, Vol. 7, 2022, 100107. ISSN 2666-7207,https://doi.org/10.1016/j.rico.2022.100107. | |
| dc.relation.references | [4] Rushikesh Gholap, Sandeep Thorat, Abhijeet Chavan, Review of current developments in lower extremity exoskeleton systems, Materials Today: Proceedings, Vol. 72, Part 3, 2023, pp. 817–823. ISSN 2214-7853,https://doi.org/10.1016/j.matpr.2022.09.056. | |
| dc.relation.references | [5] Christian Di Natali, Giorgio Buratti, Luca Dellera, Darwin Caldwell, Equivalent weight: Application of the assessment method on real task conducted by railway workers wearing a back support exoskeleton, Applied Ergonomics, Vol. 118, 2024, 104278. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104278. | |
| dc.relation.references | [6] Woun Yoong Gan, Raja Ariffin Raja Ghazilla, Hwa Jen Yap, Suman Selvarajoo, Industrial practitioner's perception on the application of exoskeleton system in automotive assembly industries: A Malaysian case study, Heliyon, Vol. 10, Iss. 4, 2024, e26183, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e26183. | |
| dc.relation.references | [7] Rachel M. van Sluijs, Michael Wehrli, Annina Brunner, Olivier Lambercy, Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures, Journal of Biomechanics, Vol. 149, 2023, 111489, ISSN 0021-9290, https://doi.org/10.1016/j.jbiomech.2023.111489. | |
| dc.relation.references | [8] Slade, P., Kochenderfer, M.J., Delp, S.L. et al. Personalizing exoskeleton assistance while walking in the real world. Nature, 610, 277–282 (2022). https://doi.org/10.1038/s41586-022-05191-1. | |
| dc.relation.references | [9] Rifky Ismail, Mochammad Ariyanto, Joga D. Setiawan, Taufik Hidayat, Paryanto, Limbang K. Nuswantara, Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity, HardwareX, Vol. 18, 2024, e00537. ISSN 2468-0672, https://doi.org/10.1016/j.ohx.2024.e00537. | |
| dc.relation.references | [10]Riccardo Karim Khamaisi, Margherita Peruzzini, Agnese Brunzini, Zoi Arkouli, Vincent Weistroffer, Anoop Vargheese, Pietro Alberto Cultrona, A multi-facet approach to functional and ergonomic assessment of passive exoskeletons, Procedia Computer Science, Vol. 232, 2024, pp. 584–594. ISSN 1877-0509, https://doi.org/10.1016/j.procs.2024.01.058. | |
| dc.relation.references | [11]Rachel van Sluijs, Tamina Scholtysik, Annina Brunner, Laura Kuoni, Dario Bee, Melanie Kos, Volker Bartenbach, Olivier Lambercy, Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support, Applied Ergonomics, Vol. 120, 2024, 104332. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104332. | |
| dc.relation.references | [12]Haotian Ju, Hongwu Li, Songhao Guo, Yanbo Fu, Qinghua Zhang, Tianjiao Zheng, Jie Zhao, Yanhe Zhu, J-Exo: An exoskeleton with telescoping linear actuators to help older people climb stairs and squat, Sensors and Actuators A: Physical, Vol. 366, 2024, 115034. ISSN 0924-4247, https://doi.org/10.1016/j.sna.2024.115034. | |
| dc.relation.references | [13]Marc Dufraisse, Julien Cegarra, Jean-Jacques Atain Kouadio, Isabelle Clerc-Urmès, Liên Wioland, From unknown to familiar: An exploratory longitudinal field study on occupational exoskeletons adoption, Applied Ergonomics, Vol. 122, 2025, 104393. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104393. | |
| dc.relation.references | [14] Selim Hartomacıoğlu, Ersin Kaya, Beril Eker, Salih Dağlı, Murat Sarıkaya, Characterization, generative design, and fabrication of a carbon fiber-reinforced industrial robot gripper via additive manufacturing, Journal of Materials Research and Technology, Vol. 33, 2024, pp. 3714–3727. ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2024.10.064. | |
| dc.relation.references | [15] Adriano Nicola Pilagatti, Giuseppe Vecchi, Eleonora Atzeni, Luca Iuliano, Alessandro Salmi, Generative Design and new designers’ role in the manufacturing industry, Procedia CIRP, Vol. 112, 2022, pp. 364–369. ISSN2212-8271, https://doi.org/10.1016/j.procir.2022.09.010. | |
| dc.relation.references | [16] Stefan Junk, Nils Rothe, Lightweight design of automotive components using generative design with fiberreinforced additive manufacturing, Procedia CIRP, Vol. 109, 2022, pp. 119–124. ISSN 2212-8271, https://doi.org/10.1016/j.procir.2022.05.224. | |
| dc.relation.references | [17] Chen Zheng, Yushu An, Zhanxi Wang, Xiansheng Qin, Fei Yu, Yicha Zhang, Heterogeneous requirement gathering for generative design of robotic manufacturing systems, Procedia CIRP, Vol. 104, 2021,pp. 1861–1866. ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.11.314. | |
| dc.relation.references | [18]van der Zee, T.J., Mundinger, E.M. & Kuo, A.D. A biomechanics dataset of healthy human walking at various speeds, step lengths, and step widths. Sci Data, 9, 704 (2022). https://doi.org/10.1038/s41597-022-01817-1 | |
| dc.relation.references | [19]Becker, R., Kopf, S. & Karlsson, J. Loading conditions of the knee: what does it mean? Knee Surg Sports Traumatol Arthrosc, 21, 2659–2660 (2013). https://doi.org/10.1007/s00167-013-2741-3 | |
| dc.relation.references | [20] Kim, Chung & Jung, Yong & Park, Jin Seo. (2021). The Visible Korean: movable surface models of the hip joint. Surgical and Radiologic Anatomy, 43, pp. 1–8. 10.1007/s00276-021-02697-7. | |
| dc.relation.references | [21] Brockett, C. L., & Chapman, G. J. (2016). Biomechanics of the ankle. Orthopedics and trauma, 30(3),232–238. https://doi.org/10.1016/j.mporth.2016.04.015 | |
| dc.relation.references | [22] https://www.physio-pedia.com/Biomechanics_of_the_Hip Biomechanics of the hip. Physiopedia. (n.d.-b). | |
| dc.relation.references | [23] Ahmad Nisam Amirudin, S. Parasuraman, Amudha Kadirvel, M. K. A. Ahmed Khan, I. Elamvazuthi, Biomechanics of Hip, Knee and Ankle Joint Loading during Ascent and Descent Walking, Procedia Computer Science, Vol. 42, 2014, pp. 336–344., ISSN 1877-0509, https://doi.org/10.1016/j.procs.2014.11.071. | |
| dc.relation.references | [24] Chan CW, Rudins A. Foot biomechanics during walking and running. Mayo Clin Proc. 1994 May;69(5):448–61. DOI: 10.1016/s0025-6196(12)61642-5. PMID: 8170197. | |
| dc.relation.references | [25] I. Kutzner, B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, G. Bergmann, Loading of the knee joint during activities of daily living measured in vivo in five subjects, Journal of Biomechanics, Vol. 43, Iss. 11, 2010, pp. 2164–2173, ISSN 0021-9290, https://doi.org/10.1016/j.jbiomech.2010.03.046. | |
| dc.relation.references | [26] H.-C. Lin, T.-W. Lu, H.-C. Hsu, Comparisons of Joint Kinetics in the Lower Extremity Between Stair Ascent and Descent, Journal of Mechanics, Vol. 21, Issue 1, March 2005, pp. 41–50, https://doi.org/10.1017/S1727719100000538 | |
| dc.relation.referencesen | [1] Luís Quinto, Pedro Pinheiro, Sérgio B. Goncalves, Ivo Roupa, Paula Simões, Miguel Tavares da Silva, Analysis of a passive ankle exoskeleton for reduction of metabolic costs during walking, Defence Technology,Vol. 37, 2024, pp. 62–68. ISSN 2214-9147, https://doi.org/10.1016/j.dt.2023.11.015. | |
| dc.relation.referencesen | [2] Dang Khanh Linh Le, Wei-Chih Lin, Human-exoskeleton cooperation for reducing the musculoskeletal load of manual handling tasks in orchid farms, Computers and Electronics in Agriculture, Vol. 219, 2024, 108820. ISSN0168-1699, https://doi.org/10.1016/j.compag.2024.108820. | |
| dc.relation.referencesen | [3] S.K. Hasan, Anoop K. Dhingra, Biomechanical design and control of an eight DOF human lower extremity rehabilitation exoskeleton robot, Results in Control and Optimization, Vol. 7, 2022, 100107. ISSN 2666-7207,https://doi.org/10.1016/j.rico.2022.100107. | |
| dc.relation.referencesen | [4] Rushikesh Gholap, Sandeep Thorat, Abhijeet Chavan, Review of current developments in lower extremity exoskeleton systems, Materials Today: Proceedings, Vol. 72, Part 3, 2023, pp. 817–823. ISSN 2214-7853,https://doi.org/10.1016/j.matpr.2022.09.056. | |
| dc.relation.referencesen | [5] Christian Di Natali, Giorgio Buratti, Luca Dellera, Darwin Caldwell, Equivalent weight: Application of the assessment method on real task conducted by railway workers wearing a back support exoskeleton, Applied Ergonomics, Vol. 118, 2024, 104278. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104278. | |
| dc.relation.referencesen | [6] Woun Yoong Gan, Raja Ariffin Raja Ghazilla, Hwa Jen Yap, Suman Selvarajoo, Industrial practitioner's perception on the application of exoskeleton system in automotive assembly industries: A Malaysian case study, Heliyon, Vol. 10, Iss. 4, 2024, e26183, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e26183. | |
| dc.relation.referencesen | [7] Rachel M. van Sluijs, Michael Wehrli, Annina Brunner, Olivier Lambercy, Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures, Journal of Biomechanics, Vol. 149, 2023, 111489, ISSN 0021-9290, https://doi.org/10.1016/j.jbiomech.2023.111489. | |
| dc.relation.referencesen | [8] Slade, P., Kochenderfer, M.J., Delp, S.L. et al. Personalizing exoskeleton assistance while walking in the real world. Nature, 610, 277–282 (2022). https://doi.org/10.1038/s41586-022-05191-1. | |
| dc.relation.referencesen | [9] Rifky Ismail, Mochammad Ariyanto, Joga D. Setiawan, Taufik Hidayat, Paryanto, Limbang K. Nuswantara, Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity, HardwareX, Vol. 18, 2024, e00537. ISSN 2468-0672, https://doi.org/10.1016/j.ohx.2024.e00537. | |
| dc.relation.referencesen | [10]Riccardo Karim Khamaisi, Margherita Peruzzini, Agnese Brunzini, Zoi Arkouli, Vincent Weistroffer, Anoop Vargheese, Pietro Alberto Cultrona, A multi-facet approach to functional and ergonomic assessment of passive exoskeletons, Procedia Computer Science, Vol. 232, 2024, pp. 584–594. ISSN 1877-0509, https://doi.org/10.1016/j.procs.2024.01.058. | |
| dc.relation.referencesen | [11]Rachel van Sluijs, Tamina Scholtysik, Annina Brunner, Laura Kuoni, Dario Bee, Melanie Kos, Volker Bartenbach, Olivier Lambercy, Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support, Applied Ergonomics, Vol. 120, 2024, 104332. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104332. | |
| dc.relation.referencesen | [12]Haotian Ju, Hongwu Li, Songhao Guo, Yanbo Fu, Qinghua Zhang, Tianjiao Zheng, Jie Zhao, Yanhe Zhu, J-Exo: An exoskeleton with telescoping linear actuators to help older people climb stairs and squat, Sensors and Actuators A: Physical, Vol. 366, 2024, 115034. ISSN 0924-4247, https://doi.org/10.1016/j.sna.2024.115034. | |
| dc.relation.referencesen | [13]Marc Dufraisse, Julien Cegarra, Jean-Jacques Atain Kouadio, Isabelle Clerc-Urmès, Liên Wioland, From unknown to familiar: An exploratory longitudinal field study on occupational exoskeletons adoption, Applied Ergonomics, Vol. 122, 2025, 104393. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104393. | |
| dc.relation.referencesen | [14] Selim Hartomacıoğlu, Ersin Kaya, Beril Eker, Salih Dağlı, Murat Sarıkaya, Characterization, generative design, and fabrication of a carbon fiber-reinforced industrial robot gripper via additive manufacturing, Journal of Materials Research and Technology, Vol. 33, 2024, pp. 3714–3727. ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2024.10.064. | |
| dc.relation.referencesen | [15] Adriano Nicola Pilagatti, Giuseppe Vecchi, Eleonora Atzeni, Luca Iuliano, Alessandro Salmi, Generative Design and new designers’ role in the manufacturing industry, Procedia CIRP, Vol. 112, 2022, pp. 364–369. ISSN2212-8271, https://doi.org/10.1016/j.procir.2022.09.010. | |
| dc.relation.referencesen | [16] Stefan Junk, Nils Rothe, Lightweight design of automotive components using generative design with fiberreinforced additive manufacturing, Procedia CIRP, Vol. 109, 2022, pp. 119–124. ISSN 2212-8271, https://doi.org/10.1016/j.procir.2022.05.224. | |
| dc.relation.referencesen | [17] Chen Zheng, Yushu An, Zhanxi Wang, Xiansheng Qin, Fei Yu, Yicha Zhang, Heterogeneous requirement gathering for generative design of robotic manufacturing systems, Procedia CIRP, Vol. 104, 2021,pp. 1861–1866. ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.11.314. | |
| dc.relation.referencesen | [18]van der Zee, T.J., Mundinger, E.M. & Kuo, A.D. A biomechanics dataset of healthy human walking at various speeds, step lengths, and step widths. Sci Data, 9, 704 (2022). https://doi.org/10.1038/s41597-022-01817-1 | |
| dc.relation.referencesen | [19]Becker, R., Kopf, S. & Karlsson, J. Loading conditions of the knee: what does it mean? Knee Surg Sports Traumatol Arthrosc, 21, 2659–2660 (2013). https://doi.org/10.1007/s00167-013-2741-3 | |
| dc.relation.referencesen | [20] Kim, Chung & Jung, Yong & Park, Jin Seo. (2021). The Visible Korean: movable surface models of the hip joint. Surgical and Radiologic Anatomy, 43, pp. 1–8. 10.1007/s00276-021-02697-7. | |
| dc.relation.referencesen | [21] Brockett, C. L., & Chapman, G. J. (2016). Biomechanics of the ankle. Orthopedics and trauma, 30(3),232–238. https://doi.org/10.1016/j.mporth.2016.04.015 | |
| dc.relation.referencesen | [22] https://www.physio-pedia.com/Biomechanics_of_the_Hip Biomechanics of the hip. Physiopedia. (n.d.-b). | |
| dc.relation.referencesen | [23] Ahmad Nisam Amirudin, S. Parasuraman, Amudha Kadirvel, M. K. A. Ahmed Khan, I. Elamvazuthi, Biomechanics of Hip, Knee and Ankle Joint Loading during Ascent and Descent Walking, Procedia Computer Science, Vol. 42, 2014, pp. 336–344., ISSN 1877-0509, https://doi.org/10.1016/j.procs.2014.11.071. | |
| dc.relation.referencesen | [24] Chan CW, Rudins A. Foot biomechanics during walking and running. Mayo Clin Proc. 1994 May;69(5):448–61. DOI: 10.1016/s0025-6196(12)61642-5. PMID: 8170197. | |
| dc.relation.referencesen | [25] I. Kutzner, B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, G. Bergmann, Loading of the knee joint during activities of daily living measured in vivo in five subjects, Journal of Biomechanics, Vol. 43, Iss. 11, 2010, pp. 2164–2173, ISSN 0021-9290, https://doi.org/10.1016/j.jbiomech.2010.03.046. | |
| dc.relation.referencesen | [26] H.-C. Lin, T.-W. Lu, H.-C. Hsu, Comparisons of Joint Kinetics in the Lower Extremity Between Stair Ascent and Descent, Journal of Mechanics, Vol. 21, Issue 1, March 2005, pp. 41–50, https://doi.org/10.1017/S1727719100000538 | |
| dc.relation.uri | https://doi.org/10.1016/j.dt.2023.11.015 | |
| dc.relation.uri | https://doi.org/10.1016/j.compag.2024.108820 | |
| dc.relation.uri | https://doi.org/10.1016/j.rico.2022.100107 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2022.09.056 | |
| dc.relation.uri | https://doi.org/10.1016/j.apergo.2024.104278 | |
| dc.relation.uri | https://doi.org/10.1016/j.heliyon.2024.e26183 | |
| dc.relation.uri | https://doi.org/10.1016/j.jbiomech.2023.111489 | |
| dc.relation.uri | https://doi.org/10.1038/s41586-022-05191-1 | |
| dc.relation.uri | https://doi.org/10.1016/j.ohx.2024.e00537 | |
| dc.relation.uri | https://doi.org/10.1016/j.procs.2024.01.058 | |
| dc.relation.uri | https://doi.org/10.1016/j.apergo.2024.104332 | |
| dc.relation.uri | https://doi.org/10.1016/j.sna.2024.115034 | |
| dc.relation.uri | https://doi.org/10.1016/j.apergo.2024.104393 | |
| dc.relation.uri | https://doi.org/10.1016/j.jmrt.2024.10.064 | |
| dc.relation.uri | https://doi.org/10.1016/j.procir.2022.09.010 | |
| dc.relation.uri | https://doi.org/10.1016/j.procir.2022.05.224 | |
| dc.relation.uri | https://doi.org/10.1016/j.procir.2021.11.314 | |
| dc.relation.uri | https://doi.org/10.1038/s41597-022-01817-1 | |
| dc.relation.uri | https://doi.org/10.1007/s00167-013-2741-3 | |
| dc.relation.uri | https://doi.org/10.1016/j.mporth.2016.04.015 | |
| dc.relation.uri | https://www.physio-pedia.com/Biomechanics_of_the_Hip | |
| dc.relation.uri | https://doi.org/10.1016/j.procs.2014.11.071 | |
| dc.relation.uri | https://doi.org/10.1016/j.jbiomech.2010.03.046 | |
| dc.relation.uri | https://doi.org/10.1017/S1727719100000538 | |
| dc.rights.holder | © Національний університет „Львівська політехніка“, 2024 | |
| dc.rights.holder | © Polevyi T., Zdobytskyi A., Zinko R., 2024 | |
| dc.subject | екзоскелет | |
| dc.subject | генеративний дизайн | |
| dc.subject | біомеханіка | |
| dc.subject | проєктування | |
| dc.subject | крутний момент | |
| dc.subject | топологічна оптимізація | |
| dc.subject | exoskeleton | |
| dc.subject | generative design | |
| dc.subject | biomechanics | |
| dc.subject | design | |
| dc.subject | torque | |
| dc.subject | topological optimization | |
| dc.title | Study of the optimization process of the exoskeleton design using generative design methods | |
| dc.title.alternative | Дослідження процесу оптимізації дизайну екзоскелета за допомогою методів генеративного дизайну | |
| dc.type | Article |