Study of the optimization process of the exoskeleton design using generative design methods

dc.citation.epage64
dc.citation.issue3
dc.citation.journalTitleКомп’ютерні системи проектування. Теорія і практика
dc.citation.spage56
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorПолевий, Тарас
dc.contributor.authorЗдобицький, Андрій
dc.contributor.authorЗінько, Роман
dc.contributor.authorPolevyi, Taras
dc.contributor.authorZdobytskyi, Andriy
dc.contributor.authorZinko, Roman
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-12-16T08:41:09Z
dc.description.abstractУ статті досліджено проєктування та оптимізацію екзоскелета нижніх кінцівок за допомогою методів генеративного дизайну. Через унікальні характеристики та особливості людського тіла кожен екзоскелет потрібно налаштовувати під умови роботи кожного користувача, але розроблення індивідуального дизайну продукту коштує дуже дорого та займає багато часу інженерів. Мета дослідження – оптимізація базової моделі екзоскелета до умов роботи за допомогою технології генеративного проєктування. Оптимізація ґрунтується на рухах людини та біомеханіці, особливо на суглобовому моменті, що дає змогу проєктувати конструкцію із прийнятними коефіцієнтами безпеки. Результати демонструють високооптимізовану конструкцію для різних матеріалів і значне зменшення маси й об’єму порівняно із базовою моделлю. Використання таких технологій економить час розроб- лення, даючи інженерам змогу зосередитися на складніших аспектах проєктування.
dc.description.abstractThis study explores the process of design and optimization of exoskeleton for lower extremities using methods of generative design. Due to the unique characteristics and features of the human body, every exoskeleton needs to be adjusted to the working condition of each user, but the development of individual product designs by engineers is highly expensive and takes a lot of time. The study objective is the optimization of the base model of the exoskeleton to working conditions using generative design technology. Optimization is based on human movements and biomechanics, especially on joint torque, which allows to design of construction with acceptable safety factors. Results show highly optimized designs for different materials and a significant reduction in mass and volume relative to the base model. Usage of such technologies saves development time, allowing engineers to focus on more complex aspects of design.
dc.format.extent56-64
dc.format.pages9
dc.identifier.citationPolevyi T. Study of the optimization process of the exoskeleton design using generative design methods / Taras Polevyi, Andriy Zdobytskyi, Roman Zinko // Computer Systems of Design. Theory and Practice. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 6. — No 3. — P. 56–64.
dc.identifier.citation2015Polevyi T., Zinko R. Study of the optimization process of the exoskeleton design using generative design methods // Computer Systems of Design. Theory and Practice, Lviv. 2024. Vol 6. No 3. P. 56–64.
dc.identifier.citationenAPAPolevyi, T., Zdobytskyi, A., & Zinko, R. (2024). Study of the optimization process of the exoskeleton design using generative design methods. Computer Systems of Design. Theory and Practice, 6(3), 56-64. Lviv Politechnic Publishing House..
dc.identifier.citationenCHICAGOPolevyi T., Zdobytskyi A., Zinko R. (2024) Study of the optimization process of the exoskeleton design using generative design methods. Computer Systems of Design. Theory and Practice (Lviv), vol. 6, no 3, pp. 56-64.
dc.identifier.doihttps://doi.org/10.23939/cds2024.03.056
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/124102
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofКомп’ютерні системи проектування. Теорія і практика, 3 (6), 2024
dc.relation.ispartofComputer Systems of Design. Theory and Practice, 3 (6), 2024
dc.relation.references[1] Luís Quinto, Pedro Pinheiro, Sérgio B. Goncalves, Ivo Roupa, Paula Simões, Miguel Tavares da Silva, Analysis of a passive ankle exoskeleton for reduction of metabolic costs during walking, Defence Technology,Vol. 37, 2024, pp. 62–68. ISSN 2214-9147, https://doi.org/10.1016/j.dt.2023.11.015.
dc.relation.references[2] Dang Khanh Linh Le, Wei-Chih Lin, Human-exoskeleton cooperation for reducing the musculoskeletal load of manual handling tasks in orchid farms, Computers and Electronics in Agriculture, Vol. 219, 2024, 108820. ISSN0168-1699, https://doi.org/10.1016/j.compag.2024.108820.
dc.relation.references[3] S.K. Hasan, Anoop K. Dhingra, Biomechanical design and control of an eight DOF human lower extremity rehabilitation exoskeleton robot, Results in Control and Optimization, Vol. 7, 2022, 100107. ISSN 2666-7207,https://doi.org/10.1016/j.rico.2022.100107.
dc.relation.references[4] Rushikesh Gholap, Sandeep Thorat, Abhijeet Chavan, Review of current developments in lower extremity exoskeleton systems, Materials Today: Proceedings, Vol. 72, Part 3, 2023, pp. 817–823. ISSN 2214-7853,https://doi.org/10.1016/j.matpr.2022.09.056.
dc.relation.references[5] Christian Di Natali, Giorgio Buratti, Luca Dellera, Darwin Caldwell, Equivalent weight: Application of the assessment method on real task conducted by railway workers wearing a back support exoskeleton, Applied Ergonomics, Vol. 118, 2024, 104278. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104278.
dc.relation.references[6] Woun Yoong Gan, Raja Ariffin Raja Ghazilla, Hwa Jen Yap, Suman Selvarajoo, Industrial practitioner's perception on the application of exoskeleton system in automotive assembly industries: A Malaysian case study, Heliyon, Vol. 10, Iss. 4, 2024, e26183, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e26183.
dc.relation.references[7] Rachel M. van Sluijs, Michael Wehrli, Annina Brunner, Olivier Lambercy, Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures, Journal of Biomechanics, Vol. 149, 2023, 111489, ISSN 0021-9290, https://doi.org/10.1016/j.jbiomech.2023.111489.
dc.relation.references[8] Slade, P., Kochenderfer, M.J., Delp, S.L. et al. Personalizing exoskeleton assistance while walking in the real world. Nature, 610, 277–282 (2022). https://doi.org/10.1038/s41586-022-05191-1.
dc.relation.references[9] Rifky Ismail, Mochammad Ariyanto, Joga D. Setiawan, Taufik Hidayat, Paryanto, Limbang K. Nuswantara, Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity, HardwareX, Vol. 18, 2024, e00537. ISSN 2468-0672, https://doi.org/10.1016/j.ohx.2024.e00537.
dc.relation.references[10]Riccardo Karim Khamaisi, Margherita Peruzzini, Agnese Brunzini, Zoi Arkouli, Vincent Weistroffer, Anoop Vargheese, Pietro Alberto Cultrona, A multi-facet approach to functional and ergonomic assessment of passive exoskeletons, Procedia Computer Science, Vol. 232, 2024, pp. 584–594. ISSN 1877-0509, https://doi.org/10.1016/j.procs.2024.01.058.
dc.relation.references[11]Rachel van Sluijs, Tamina Scholtysik, Annina Brunner, Laura Kuoni, Dario Bee, Melanie Kos, Volker Bartenbach, Olivier Lambercy, Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support, Applied Ergonomics, Vol. 120, 2024, 104332. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104332.
dc.relation.references[12]Haotian Ju, Hongwu Li, Songhao Guo, Yanbo Fu, Qinghua Zhang, Tianjiao Zheng, Jie Zhao, Yanhe Zhu, J-Exo: An exoskeleton with telescoping linear actuators to help older people climb stairs and squat, Sensors and Actuators A: Physical, Vol. 366, 2024, 115034. ISSN 0924-4247, https://doi.org/10.1016/j.sna.2024.115034.
dc.relation.references[13]Marc Dufraisse, Julien Cegarra, Jean-Jacques Atain Kouadio, Isabelle Clerc-Urmès, Liên Wioland, From unknown to familiar: An exploratory longitudinal field study on occupational exoskeletons adoption, Applied Ergonomics, Vol. 122, 2025, 104393. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104393.
dc.relation.references[14] Selim Hartomacıoğlu, Ersin Kaya, Beril Eker, Salih Dağlı, Murat Sarıkaya, Characterization, generative design, and fabrication of a carbon fiber-reinforced industrial robot gripper via additive manufacturing, Journal of Materials Research and Technology, Vol. 33, 2024, pp. 3714–3727. ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2024.10.064.
dc.relation.references[15] Adriano Nicola Pilagatti, Giuseppe Vecchi, Eleonora Atzeni, Luca Iuliano, Alessandro Salmi, Generative Design and new designers’ role in the manufacturing industry, Procedia CIRP, Vol. 112, 2022, pp. 364–369. ISSN2212-8271, https://doi.org/10.1016/j.procir.2022.09.010.
dc.relation.references[16] Stefan Junk, Nils Rothe, Lightweight design of automotive components using generative design with fiberreinforced additive manufacturing, Procedia CIRP, Vol. 109, 2022, pp. 119–124. ISSN 2212-8271, https://doi.org/10.1016/j.procir.2022.05.224.
dc.relation.references[17] Chen Zheng, Yushu An, Zhanxi Wang, Xiansheng Qin, Fei Yu, Yicha Zhang, Heterogeneous requirement gathering for generative design of robotic manufacturing systems, Procedia CIRP, Vol. 104, 2021,pp. 1861–1866. ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.11.314.
dc.relation.references[18]van der Zee, T.J., Mundinger, E.M. & Kuo, A.D. A biomechanics dataset of healthy human walking at various speeds, step lengths, and step widths. Sci Data, 9, 704 (2022). https://doi.org/10.1038/s41597-022-01817-1
dc.relation.references[19]Becker, R., Kopf, S. & Karlsson, J. Loading conditions of the knee: what does it mean? Knee Surg Sports Traumatol Arthrosc, 21, 2659–2660 (2013). https://doi.org/10.1007/s00167-013-2741-3
dc.relation.references[20] Kim, Chung & Jung, Yong & Park, Jin Seo. (2021). The Visible Korean: movable surface models of the hip joint. Surgical and Radiologic Anatomy, 43, pp. 1–8. 10.1007/s00276-021-02697-7.
dc.relation.references[21] Brockett, C. L., & Chapman, G. J. (2016). Biomechanics of the ankle. Orthopedics and trauma, 30(3),232–238. https://doi.org/10.1016/j.mporth.2016.04.015
dc.relation.references[22] https://www.physio-pedia.com/Biomechanics_of_the_Hip Biomechanics of the hip. Physiopedia. (n.d.-b).
dc.relation.references[23] Ahmad Nisam Amirudin, S. Parasuraman, Amudha Kadirvel, M. K. A. Ahmed Khan, I. Elamvazuthi, Biomechanics of Hip, Knee and Ankle Joint Loading during Ascent and Descent Walking, Procedia Computer Science, Vol. 42, 2014, pp. 336–344., ISSN 1877-0509, https://doi.org/10.1016/j.procs.2014.11.071.
dc.relation.references[24] Chan CW, Rudins A. Foot biomechanics during walking and running. Mayo Clin Proc. 1994 May;69(5):448–61. DOI: 10.1016/s0025-6196(12)61642-5. PMID: 8170197.
dc.relation.references[25] I. Kutzner, B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, G. Bergmann, Loading of the knee joint during activities of daily living measured in vivo in five subjects, Journal of Biomechanics, Vol. 43, Iss. 11, 2010, pp. 2164–2173, ISSN 0021-9290, https://doi.org/10.1016/j.jbiomech.2010.03.046.
dc.relation.references[26] H.-C. Lin, T.-W. Lu, H.-C. Hsu, Comparisons of Joint Kinetics in the Lower Extremity Between Stair Ascent and Descent, Journal of Mechanics, Vol. 21, Issue 1, March 2005, pp. 41–50, https://doi.org/10.1017/S1727719100000538
dc.relation.referencesen[1] Luís Quinto, Pedro Pinheiro, Sérgio B. Goncalves, Ivo Roupa, Paula Simões, Miguel Tavares da Silva, Analysis of a passive ankle exoskeleton for reduction of metabolic costs during walking, Defence Technology,Vol. 37, 2024, pp. 62–68. ISSN 2214-9147, https://doi.org/10.1016/j.dt.2023.11.015.
dc.relation.referencesen[2] Dang Khanh Linh Le, Wei-Chih Lin, Human-exoskeleton cooperation for reducing the musculoskeletal load of manual handling tasks in orchid farms, Computers and Electronics in Agriculture, Vol. 219, 2024, 108820. ISSN0168-1699, https://doi.org/10.1016/j.compag.2024.108820.
dc.relation.referencesen[3] S.K. Hasan, Anoop K. Dhingra, Biomechanical design and control of an eight DOF human lower extremity rehabilitation exoskeleton robot, Results in Control and Optimization, Vol. 7, 2022, 100107. ISSN 2666-7207,https://doi.org/10.1016/j.rico.2022.100107.
dc.relation.referencesen[4] Rushikesh Gholap, Sandeep Thorat, Abhijeet Chavan, Review of current developments in lower extremity exoskeleton systems, Materials Today: Proceedings, Vol. 72, Part 3, 2023, pp. 817–823. ISSN 2214-7853,https://doi.org/10.1016/j.matpr.2022.09.056.
dc.relation.referencesen[5] Christian Di Natali, Giorgio Buratti, Luca Dellera, Darwin Caldwell, Equivalent weight: Application of the assessment method on real task conducted by railway workers wearing a back support exoskeleton, Applied Ergonomics, Vol. 118, 2024, 104278. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104278.
dc.relation.referencesen[6] Woun Yoong Gan, Raja Ariffin Raja Ghazilla, Hwa Jen Yap, Suman Selvarajoo, Industrial practitioner's perception on the application of exoskeleton system in automotive assembly industries: A Malaysian case study, Heliyon, Vol. 10, Iss. 4, 2024, e26183, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2024.e26183.
dc.relation.referencesen[7] Rachel M. van Sluijs, Michael Wehrli, Annina Brunner, Olivier Lambercy, Evaluation of the physiological benefits of a passive back-support exoskeleton during lifting and working in forward leaning postures, Journal of Biomechanics, Vol. 149, 2023, 111489, ISSN 0021-9290, https://doi.org/10.1016/j.jbiomech.2023.111489.
dc.relation.referencesen[8] Slade, P., Kochenderfer, M.J., Delp, S.L. et al. Personalizing exoskeleton assistance while walking in the real world. Nature, 610, 277–282 (2022). https://doi.org/10.1038/s41586-022-05191-1.
dc.relation.referencesen[9] Rifky Ismail, Mochammad Ariyanto, Joga D. Setiawan, Taufik Hidayat, Paryanto, Limbang K. Nuswantara, Design and testing of fabric-based portable soft exoskeleton glove for hand grasping assistance in daily activity, HardwareX, Vol. 18, 2024, e00537. ISSN 2468-0672, https://doi.org/10.1016/j.ohx.2024.e00537.
dc.relation.referencesen[10]Riccardo Karim Khamaisi, Margherita Peruzzini, Agnese Brunzini, Zoi Arkouli, Vincent Weistroffer, Anoop Vargheese, Pietro Alberto Cultrona, A multi-facet approach to functional and ergonomic assessment of passive exoskeletons, Procedia Computer Science, Vol. 232, 2024, pp. 584–594. ISSN 1877-0509, https://doi.org/10.1016/j.procs.2024.01.058.
dc.relation.referencesen[11]Rachel van Sluijs, Tamina Scholtysik, Annina Brunner, Laura Kuoni, Dario Bee, Melanie Kos, Volker Bartenbach, Olivier Lambercy, Design and evaluation of the OmniSuit: A passive occupational exoskeleton for back and shoulder support, Applied Ergonomics, Vol. 120, 2024, 104332. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104332.
dc.relation.referencesen[12]Haotian Ju, Hongwu Li, Songhao Guo, Yanbo Fu, Qinghua Zhang, Tianjiao Zheng, Jie Zhao, Yanhe Zhu, J-Exo: An exoskeleton with telescoping linear actuators to help older people climb stairs and squat, Sensors and Actuators A: Physical, Vol. 366, 2024, 115034. ISSN 0924-4247, https://doi.org/10.1016/j.sna.2024.115034.
dc.relation.referencesen[13]Marc Dufraisse, Julien Cegarra, Jean-Jacques Atain Kouadio, Isabelle Clerc-Urmès, Liên Wioland, From unknown to familiar: An exploratory longitudinal field study on occupational exoskeletons adoption, Applied Ergonomics, Vol. 122, 2025, 104393. ISSN 0003-6870, https://doi.org/10.1016/j.apergo.2024.104393.
dc.relation.referencesen[14] Selim Hartomacıoğlu, Ersin Kaya, Beril Eker, Salih Dağlı, Murat Sarıkaya, Characterization, generative design, and fabrication of a carbon fiber-reinforced industrial robot gripper via additive manufacturing, Journal of Materials Research and Technology, Vol. 33, 2024, pp. 3714–3727. ISSN 2238-7854, https://doi.org/10.1016/j.jmrt.2024.10.064.
dc.relation.referencesen[15] Adriano Nicola Pilagatti, Giuseppe Vecchi, Eleonora Atzeni, Luca Iuliano, Alessandro Salmi, Generative Design and new designers’ role in the manufacturing industry, Procedia CIRP, Vol. 112, 2022, pp. 364–369. ISSN2212-8271, https://doi.org/10.1016/j.procir.2022.09.010.
dc.relation.referencesen[16] Stefan Junk, Nils Rothe, Lightweight design of automotive components using generative design with fiberreinforced additive manufacturing, Procedia CIRP, Vol. 109, 2022, pp. 119–124. ISSN 2212-8271, https://doi.org/10.1016/j.procir.2022.05.224.
dc.relation.referencesen[17] Chen Zheng, Yushu An, Zhanxi Wang, Xiansheng Qin, Fei Yu, Yicha Zhang, Heterogeneous requirement gathering for generative design of robotic manufacturing systems, Procedia CIRP, Vol. 104, 2021,pp. 1861–1866. ISSN 2212-8271, https://doi.org/10.1016/j.procir.2021.11.314.
dc.relation.referencesen[18]van der Zee, T.J., Mundinger, E.M. & Kuo, A.D. A biomechanics dataset of healthy human walking at various speeds, step lengths, and step widths. Sci Data, 9, 704 (2022). https://doi.org/10.1038/s41597-022-01817-1
dc.relation.referencesen[19]Becker, R., Kopf, S. & Karlsson, J. Loading conditions of the knee: what does it mean? Knee Surg Sports Traumatol Arthrosc, 21, 2659–2660 (2013). https://doi.org/10.1007/s00167-013-2741-3
dc.relation.referencesen[20] Kim, Chung & Jung, Yong & Park, Jin Seo. (2021). The Visible Korean: movable surface models of the hip joint. Surgical and Radiologic Anatomy, 43, pp. 1–8. 10.1007/s00276-021-02697-7.
dc.relation.referencesen[21] Brockett, C. L., & Chapman, G. J. (2016). Biomechanics of the ankle. Orthopedics and trauma, 30(3),232–238. https://doi.org/10.1016/j.mporth.2016.04.015
dc.relation.referencesen[22] https://www.physio-pedia.com/Biomechanics_of_the_Hip Biomechanics of the hip. Physiopedia. (n.d.-b).
dc.relation.referencesen[23] Ahmad Nisam Amirudin, S. Parasuraman, Amudha Kadirvel, M. K. A. Ahmed Khan, I. Elamvazuthi, Biomechanics of Hip, Knee and Ankle Joint Loading during Ascent and Descent Walking, Procedia Computer Science, Vol. 42, 2014, pp. 336–344., ISSN 1877-0509, https://doi.org/10.1016/j.procs.2014.11.071.
dc.relation.referencesen[24] Chan CW, Rudins A. Foot biomechanics during walking and running. Mayo Clin Proc. 1994 May;69(5):448–61. DOI: 10.1016/s0025-6196(12)61642-5. PMID: 8170197.
dc.relation.referencesen[25] I. Kutzner, B. Heinlein, F. Graichen, A. Bender, A. Rohlmann, A. Halder, A. Beier, G. Bergmann, Loading of the knee joint during activities of daily living measured in vivo in five subjects, Journal of Biomechanics, Vol. 43, Iss. 11, 2010, pp. 2164–2173, ISSN 0021-9290, https://doi.org/10.1016/j.jbiomech.2010.03.046.
dc.relation.referencesen[26] H.-C. Lin, T.-W. Lu, H.-C. Hsu, Comparisons of Joint Kinetics in the Lower Extremity Between Stair Ascent and Descent, Journal of Mechanics, Vol. 21, Issue 1, March 2005, pp. 41–50, https://doi.org/10.1017/S1727719100000538
dc.relation.urihttps://doi.org/10.1016/j.dt.2023.11.015
dc.relation.urihttps://doi.org/10.1016/j.compag.2024.108820
dc.relation.urihttps://doi.org/10.1016/j.rico.2022.100107
dc.relation.urihttps://doi.org/10.1016/j.matpr.2022.09.056
dc.relation.urihttps://doi.org/10.1016/j.apergo.2024.104278
dc.relation.urihttps://doi.org/10.1016/j.heliyon.2024.e26183
dc.relation.urihttps://doi.org/10.1016/j.jbiomech.2023.111489
dc.relation.urihttps://doi.org/10.1038/s41586-022-05191-1
dc.relation.urihttps://doi.org/10.1016/j.ohx.2024.e00537
dc.relation.urihttps://doi.org/10.1016/j.procs.2024.01.058
dc.relation.urihttps://doi.org/10.1016/j.apergo.2024.104332
dc.relation.urihttps://doi.org/10.1016/j.sna.2024.115034
dc.relation.urihttps://doi.org/10.1016/j.apergo.2024.104393
dc.relation.urihttps://doi.org/10.1016/j.jmrt.2024.10.064
dc.relation.urihttps://doi.org/10.1016/j.procir.2022.09.010
dc.relation.urihttps://doi.org/10.1016/j.procir.2022.05.224
dc.relation.urihttps://doi.org/10.1016/j.procir.2021.11.314
dc.relation.urihttps://doi.org/10.1038/s41597-022-01817-1
dc.relation.urihttps://doi.org/10.1007/s00167-013-2741-3
dc.relation.urihttps://doi.org/10.1016/j.mporth.2016.04.015
dc.relation.urihttps://www.physio-pedia.com/Biomechanics_of_the_Hip
dc.relation.urihttps://doi.org/10.1016/j.procs.2014.11.071
dc.relation.urihttps://doi.org/10.1016/j.jbiomech.2010.03.046
dc.relation.urihttps://doi.org/10.1017/S1727719100000538
dc.rights.holder© Національний університет „Львівська політехніка“, 2024
dc.rights.holder© Polevyi T., Zdobytskyi A., Zinko R., 2024
dc.subjectекзоскелет
dc.subjectгенеративний дизайн
dc.subjectбіомеханіка
dc.subjectпроєктування
dc.subjectкрутний момент
dc.subjectтопологічна оптимізація
dc.subjectexoskeleton
dc.subjectgenerative design
dc.subjectbiomechanics
dc.subjectdesign
dc.subjecttorque
dc.subjecttopological optimization
dc.titleStudy of the optimization process of the exoskeleton design using generative design methods
dc.title.alternativeДослідження процесу оптимізації дизайну екзоскелета за допомогою методів генеративного дизайну
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2024v6n3_Polevyi_T-Study_of_the_optimization_56-64.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.84 KB
Format:
Plain Text
Description: