The fast converging method of calculation of wire radiators in infinite planar phased antenna array

dc.contributor.authorKudzin, V. P.
dc.date.accessioned2010-06-09T11:56:37Z
dc.date.available2010-06-09T11:56:37Z
dc.date.issued2009
dc.description.abstractThe effective fast converging method of calculation of wire radiators in infinite planar phased antenna array is developed. The method is based on use of Green’s function submitted as double series with accelerated convergence. The moment method is applied and piecewise sine basic and weight functions automatically satisfied to Kirchhoff’s current law are used. Expressions for impedance matrix elements consist of two series. Members of the series generated by spectral part of Green’s function are represented as the closed analytical expressions. Members of series generated by spatial part of Green’s function are calculated numerically by one-fold integration.uk_UA
dc.identifier.citationKudzin V. P. The fast converging method of calculation of wire radiators in infinite planar phased antenna array / V. P. Kudzin // Теорія та техніка антен : матеріали 7-ої Міжнародної конференції, 9–12 червня 2009 року, Львів, Україна. – Львів : Видавництво Національного університету "Львівська політехніка", 2009. – C. 143–144. – Bibliography: 3 titles.uk_UA
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/4385
dc.language.isoenuk_UA
dc.publisherВидавництво Національного університету "Львівська політехніка"uk_UA
dc.subjectInfinite phased arrayuk_UA
dc.subjectnumerical methodsuk_UA
dc.subjectintegral equationsuk_UA
dc.subjectthin wire radiatoruk_UA
dc.subjectGreen’s functionuk_UA
dc.titleThe fast converging method of calculation of wire radiators in infinite planar phased antenna arrayuk_UA
dc.typeArticleuk_UA

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
34.pdf
Size:
393.43 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: