Investigation of the process of modification of petroleum road bitumen by maleic anhydride

dc.citation.epage45
dc.citation.issue2
dc.citation.spage39
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorГунька, В. М.
dc.contributor.authorПрисяжний, Ю. В.
dc.contributor.authorГринчук, Ю. М.
dc.contributor.authorСідун, Ю. В.
dc.contributor.authorДемчук, Ю. Я.
dc.contributor.authorБідось, В. М.
dc.contributor.authorРеутський, В.
dc.contributor.authorБратичак, М. М.
dc.contributor.authorGunka, Volodymyr
dc.contributor.authorPrysiazhnyi, Yuriy
dc.contributor.authorHrynchuk, Yurii
dc.contributor.authorSidun, Iurii
dc.contributor.authorDemchuk, Yuriy
dc.contributor.authorBidos, Volodymyr
dc.contributor.authorReutskyy, Volodymyr
dc.contributor.authorBratychak, Michael
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2023-04-10T08:44:38Z
dc.date.available2023-04-10T08:44:38Z
dc.date.created2021-11-11
dc.date.issued2021-11-11
dc.description.abstractВивчено можливість модифікації окисненого нафтового бітуму 70/100 виробництва ВАТ “Укртатнафта” (м. Кременчук, Україна) малеїновим ангідридом. Детально досліджено фізико-механічні властивості бітуму 70/100 виробництва ВАТ “Укртатнафта”. Наведено технологічні особливості та приладдя для модифікації бітуму малеїновим ангідридом у лабораторних умовах. Досліджено вплив кількості малеїнового ангідриду, тривалості процесу та температури на основні фізико-механічні характеристики модифікованого бітуму. Встановлено оптимальну кількість введення малеїнового ангідриду до бітуму. Встановлено, що 2 мас. % малеїнового ангідриду дає змогу збільшити температуру розм’якшеності модифікованого бітуму (із 46 °С до 52 °С) також зростає зчеплюваність із щебенем (з 2,5 бала до 4,5 балів) та змінюється глибина проникнення голки (пенетрація). Достатній час для модифікації бітуму за допомогою малеїнового ангідриду становив 30 хв. Визначили термостійкість бітуму модифікованого малеїновим ангідритом за температури модифікації 130 °С та 170 °С та вихідного бітуму 70/100 виробництва ВАТ “Укртатнафта” за методом визначення опору до твердіння під впливом теплоти та повітря (RTFOT). Встановлено, що структура зразка бітуму з малеїновим ангідридом, який був модифікований за температури 130 °С, руйнується за нагрівання зі значним зниженням теплостійкості. Для отримання модифікованого бітуму малеїновим ангідридом оптимальною температурою модифікації є 130 °С. Збільшення температури модифікації негативно впливає на кінцеві фізико-механічні показники в’язкого. Висунуто припущення, що за додавання малеїнового ангідриду до вихідного бітуму 70/100 виробництва ВАТ “Укртатнафта” відбувається не фізична модифікація бітуму, а хімічна.
dc.description.abstractThe possibility of modification of oxidized petroleum bitumen 70/100 produced by JSC “Ukrtatnafta” (Kremenchuk, Ukraine) with maleic anhydride was studied. The influence of maleic anhydride amount, process duration, and temperature on the main physical and mechanical characteristics of modified bitumen was studied. The optimal amount of maleic anhydride introduction to bitumen was established. It is found that 2 wt. % maleic anhydride allows to increase the softening temperature of the modified bitumen (from 46 °C to 52 °C). Adhesion to crushed stone also increases (from 2.5 points to 4.5 points) and other indicators improve. Sufficient time to modify the bitumen with maleic anhydride was 30 minutes. The optimum modification temperature for obtaining the modified bitumen with maleic anhydride is 130 °C. Increasing the temperature of the modification has a negative effect on the final physical and mechanical properties of the binder.
dc.format.extent39-45
dc.format.pages7
dc.identifier.citationInvestigation of the process of modification of petroleum road bitumen by maleic anhydride / Volodymyr Gunka, Yuriy Prysiazhnyi, Yurii Hrynchuk, Iurii Sidun, Yuriy Demchuk, Volodymyr Bidos, Volodymyr Reutskyy, Michael Bratychak // Theory and Building Practice. — Lviv : Lviv Politechnic Publishing House, 2021. — Vol 3. — No 2. — P. 39–45.
dc.identifier.citationenGunka V., Prysiazhnyi Y., Hrynchuk Y., Sidun I., Demchuk Y., Bidos V., Reutskyy V., Bratychak M. (2021) Investigation of the process of modification of petroleum road bitumen by maleic anhydride. Theory and Building Practice (Lviv), vol. 3, no 2, pp. 39-45.
dc.identifier.doihttps://doi.org/10.23939/jtbp2021.02.039
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/57939
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofTheory and Building Practice, 2 (3), 2021
dc.relation.referencesHrynchuk Y., Sidun I., Gunka V., Reutskyy V., Koval I., Matcipura P., Mosiuk M. (2020) Possibility
dc.relation.referencesImprovement Technology of Modification Road Bitumen by the Green Epoxy Rapeseed Oil on the Basis of
dc.relation.referencesRenewable Raw Material. Petroleum & Coal,62 (4), 1566–1571. https://www.vurup.sk/wp-content/uploads/2020/ 12/PC-X_-Gunka_105.pdf
dc.relation.referencesStarchevskyy V., Hrynchuk Y., Matcipura P., Reutskyy V. (2021) Influence of initiators on the adhesion
dc.relation.referencesproperties of bitumen modified by natural origin epoxide. Chemistry & Chemical Technology, 15(1), 142–147. https://doi.org/10.23939/chcht15.01.142
dc.relation.referencesGunka, V., Demchuk, Y., Sidun, I., Nyakuma, B.B., Pyshyev, S. (2020) Application of phenol-cresolformaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Materials and Pavement
dc.relation.referencesDesign. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.referencesPyshyev, S., Prysiazhnyi, Y., Sidun, I., Borbeyiyong, G.I., Korsh, D. (2020) Obtaining of resins based on
dc.relation.referencesmodel mixtures with indene, coumarone and styrene and their usage as bitumen modifiers. Petroleum and Coal, 62(2), 341–346 https://www.vurup.sk/wp-content/uploads/2018/11/PC_x_2018_Gunka-73.pdf
dc.relation.referencesDemchuk, Y., Gunka, V., Pyshyev, S., Kucinska-Lipka, J., Bratychak, M. (2020) Slurry surfacing mixes on
dc.relation.referencesthe basis of bitumen modified with phenol-cresol-formaldehyde resin. Chemistry and Chemical Technology, 14(2), 251–256 https://doi.org/10.23939/chcht14.02.251
dc.relation.referencesBratychak M., Gunka V., Prysiazhnyi Y., Hrynchuk Y., Sidun I., Demchuk Y., Shyshchak O. (2021)
dc.relation.referencesProduction of bitumen modified with low-molecular organic compounds from petroleum residues. 1. effect of
dc.relation.referencessolvent nature on the properties of petroleum residues modified with folmaldehyde. Chemistry and Chemical
dc.relation.referencesTechnology, 15(2), 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.referencesHerrington, P. R.; Wu, Y.; Forbes, M. C. (1999) Rheological modification of bitumen with maleic
dc.relation.referencesanhydride and dicarboxylic acids. Fuel, 78(1), 101–110. https://doi.org/10.1016/S0016-2361(98)00120-3
dc.relation.referencesDuty, R. C.; Liu, H. F. (1980) Study of the reaction of maleic anhydride with Illinois bituminous coal. Fuel, 59(8), 546–550. https://doi.org/10.1016/0016-2361(80)90230-6
dc.relation.referencesXinxing Zhou, Shaopeng Wu, Gang Liu, Pan Pan. (2016) Molecular simulations and experimental
dc.relation.referencesevaluation on the curing of epoxy bitumen. Materials and Structures, 49(1–2), 241–247. https://link.springer.com/ article/10.1617/s11527-014-0491-4
dc.relation.referencesYu, L., (2015) Application of Epoxy Asphalt to Adhesive Layer for Deck of Long-Span Steel Bridge,
dc.relation.referencesHighway, 3, 56–59. https://doi.org/10.1155/2021/3454029
dc.relation.referencesNadkarni V., Shenoy A., Mathew J. (1985) Thermomechanical behavior of modified asphalts. Industrial &
dc.relation.referencesEngineering Chemistry Product Research and Development, 24 (3), 478–484 https://doi.org/10.1021/i300019a029
dc.relation.referencesKang Yang, Fei Wang, Zhiming Chen (2010) Reaction of asphalt and maleic anhydride: Kinetics and
dc.relation.referencesmechanism. Chemical Engineering Journal, 164(1), 230–237. https://doi.org/10.1016/j.cej.2010.08.020
dc.relation.referencesSingh, B., Kumar, L., Gupta, M., & Chauhan, G. S. (2013) Polymer‐modified bitumen of recycled LDPE
dc.relation.referencesand maleated bitumen. Journal of applied polymer science, 127(1), 67–78. https://doi.org/10.1002/app.36810
dc.relation.referencesCong, P., Chen, S., & Chen, H. (2011). Preparation and properties of bitumen modified with the maleic
dc.relation.referencesanhydride grafted styrene‐butadiene‐styrene triblock copolymer. Polymer Engineering & Science, 51(7), 1273–1279. https://doi.org/10.1002/pen.21934
dc.relation.referencesDechong Ma, Duijia Zhao, Jingzhe Zhao, Sujun Du, Jinyu Pang, Wei Wang, Changxin Fan (2016)
dc.relation.referencesFunctionalization of reclaimed polyethylene with maleic anhydride and its application in improving the high
dc.relation.referencestemperature stability of asphalt mixtures. Construction and Building Materials, 113, (596–602),
dc.relation.referenceshttps://doi.org/10.1016/j.conbuildmat.2016.03.096
dc.relation.referencesLuo, W. Q., & Chen, J. C. (2011). Preparation and properties of bitumen modified by EVA graft
dc.relation.referencescopolymer. Construction and Building Materials, 25(4), 1830–1835. https://doi.org/10.1016/j.conbuildmat. 2010.11.079
dc.relation.referencesMohammadiroudbari, M., Tavakoli, A., Aghjeh, M. K. R., & Rahi, M. (2016). Effect of nanoclay on the
dc.relation.referencesmorphology of polyethylene modified bitumen. Construction and building materials, 116, 245–251. https://doi.org/ 10.1016/j.conbuildmat.2016.04.098
dc.relation.referencesZhang, S. L., Zhang, Z. X., Xin, Z. X., Pal, K., & Kim, J. K. (2010). Prediction of mechanical properties of
dc.relation.referencespolypropylene/waste ground rubber tire powder treated by bitumen composites via uniform design and artificial
dc.relation.referencesneural networks. Materials & Design, 31(4), 1900–1905 https://doi.org/: 10.1016/j.matdes.2009.10.057
dc.relation.referencesNaskar, M., Chaki, T. K., & Reddy, K. S. (2012). A novel approach to recycle the waste plastics by
dc.relation.referencesbitumen modification for paving application. Advanced Materials Research, 356, 1763–1768).
dc.relation.referenceshttps://doi.org/10.4028/www.scientific.net/AMR.356-360.1763
dc.relation.referencesAngyal, A., Miskolczi, N., Bartha, L., & Gergo, P. (2009). Synthesis and evaluation of modified
dc.relation.referencespolyethylene wax applied as dispersant in rubber bitumen composites. Hungarian Journal of Industry and
dc.relation.referencesChemistry, 37(1), 21–25 https://doi.org/10.1515/217
dc.relation.referencesRossi, D., Filippi, S., Merusi, F., Giuliani, F., & Polacco, G. (2013). Internal structure of bitumen/
dc.relation.referencespolymer/wax ternary mixtures for warm mix asphalts. Journal of Applied Polymer Science, 129(6), 3341–3354.https://doi.org/10.1002/app.39057
dc.relation.referencesenHrynchuk Y., Sidun I., Gunka V., Reutskyy V., Koval I., Matcipura P., Mosiuk M. (2020) Possibility
dc.relation.referencesenImprovement Technology of Modification Road Bitumen by the Green Epoxy Rapeseed Oil on the Basis of
dc.relation.referencesenRenewable Raw Material. Petroleum & Coal,62 (4), 1566–1571. https://www.vurup.sk/wp-content/uploads/2020/ 12/PC-X_-Gunka_105.pdf
dc.relation.referencesenStarchevskyy V., Hrynchuk Y., Matcipura P., Reutskyy V. (2021) Influence of initiators on the adhesion
dc.relation.referencesenproperties of bitumen modified by natural origin epoxide. Chemistry & Chemical Technology, 15(1), 142–147. https://doi.org/10.23939/chcht15.01.142
dc.relation.referencesenGunka, V., Demchuk, Y., Sidun, I., Nyakuma, B.B., Pyshyev, S. (2020) Application of phenol-cresolformaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Materials and Pavement
dc.relation.referencesenDesign. https://doi.org/10.1080/14680629.2020.1808518
dc.relation.referencesenPyshyev, S., Prysiazhnyi, Y., Sidun, I., Borbeyiyong, G.I., Korsh, D. (2020) Obtaining of resins based on
dc.relation.referencesenmodel mixtures with indene, coumarone and styrene and their usage as bitumen modifiers. Petroleum and Coal, 62(2), 341–346 https://www.vurup.sk/wp-content/uploads/2018/11/PC_x_2018_Gunka-73.pdf
dc.relation.referencesenDemchuk, Y., Gunka, V., Pyshyev, S., Kucinska-Lipka, J., Bratychak, M. (2020) Slurry surfacing mixes on
dc.relation.referencesenthe basis of bitumen modified with phenol-cresol-formaldehyde resin. Chemistry and Chemical Technology, 14(2), 251–256 https://doi.org/10.23939/chcht14.02.251
dc.relation.referencesenBratychak M., Gunka V., Prysiazhnyi Y., Hrynchuk Y., Sidun I., Demchuk Y., Shyshchak O. (2021)
dc.relation.referencesenProduction of bitumen modified with low-molecular organic compounds from petroleum residues. 1. effect of
dc.relation.referencesensolvent nature on the properties of petroleum residues modified with folmaldehyde. Chemistry and Chemical
dc.relation.referencesenTechnology, 15(2), 274-283. https://doi.org/10.23939/chcht15.02.274
dc.relation.referencesenHerrington, P. R.; Wu, Y.; Forbes, M. C. (1999) Rheological modification of bitumen with maleic
dc.relation.referencesenanhydride and dicarboxylic acids. Fuel, 78(1), 101–110. https://doi.org/10.1016/S0016-2361(98)00120-3
dc.relation.referencesenDuty, R. C.; Liu, H. F. (1980) Study of the reaction of maleic anhydride with Illinois bituminous coal. Fuel, 59(8), 546–550. https://doi.org/10.1016/0016-2361(80)90230-6
dc.relation.referencesenXinxing Zhou, Shaopeng Wu, Gang Liu, Pan Pan. (2016) Molecular simulations and experimental
dc.relation.referencesenevaluation on the curing of epoxy bitumen. Materials and Structures, 49(1–2), 241–247. https://link.springer.com/ article/10.1617/s11527-014-0491-4
dc.relation.referencesenYu, L., (2015) Application of Epoxy Asphalt to Adhesive Layer for Deck of Long-Span Steel Bridge,
dc.relation.referencesenHighway, 3, 56–59. https://doi.org/10.1155/2021/3454029
dc.relation.referencesenNadkarni V., Shenoy A., Mathew J. (1985) Thermomechanical behavior of modified asphalts. Industrial &
dc.relation.referencesenEngineering Chemistry Product Research and Development, 24 (3), 478–484 https://doi.org/10.1021/i300019a029
dc.relation.referencesenKang Yang, Fei Wang, Zhiming Chen (2010) Reaction of asphalt and maleic anhydride: Kinetics and
dc.relation.referencesenmechanism. Chemical Engineering Journal, 164(1), 230–237. https://doi.org/10.1016/j.cej.2010.08.020
dc.relation.referencesenSingh, B., Kumar, L., Gupta, M., & Chauhan, G. S. (2013) Polymer‐modified bitumen of recycled LDPE
dc.relation.referencesenand maleated bitumen. Journal of applied polymer science, 127(1), 67–78. https://doi.org/10.1002/app.36810
dc.relation.referencesenCong, P., Chen, S., & Chen, H. (2011). Preparation and properties of bitumen modified with the maleic
dc.relation.referencesenanhydride grafted styrene‐butadiene‐styrene triblock copolymer. Polymer Engineering & Science, 51(7), 1273–1279. https://doi.org/10.1002/pen.21934
dc.relation.referencesenDechong Ma, Duijia Zhao, Jingzhe Zhao, Sujun Du, Jinyu Pang, Wei Wang, Changxin Fan (2016)
dc.relation.referencesenFunctionalization of reclaimed polyethylene with maleic anhydride and its application in improving the high
dc.relation.referencesentemperature stability of asphalt mixtures. Construction and Building Materials, 113, (596–602),
dc.relation.referencesenhttps://doi.org/10.1016/j.conbuildmat.2016.03.096
dc.relation.referencesenLuo, W. Q., & Chen, J. C. (2011). Preparation and properties of bitumen modified by EVA graft
dc.relation.referencesencopolymer. Construction and Building Materials, 25(4), 1830–1835. https://doi.org/10.1016/j.conbuildmat. 2010.11.079
dc.relation.referencesenMohammadiroudbari, M., Tavakoli, A., Aghjeh, M. K. R., & Rahi, M. (2016). Effect of nanoclay on the
dc.relation.referencesenmorphology of polyethylene modified bitumen. Construction and building materials, 116, 245–251. https://doi.org/ 10.1016/j.conbuildmat.2016.04.098
dc.relation.referencesenZhang, S. L., Zhang, Z. X., Xin, Z. X., Pal, K., & Kim, J. K. (2010). Prediction of mechanical properties of
dc.relation.referencesenpolypropylene/waste ground rubber tire powder treated by bitumen composites via uniform design and artificial
dc.relation.referencesenneural networks. Materials & Design, 31(4), 1900–1905 https://doi.org/: 10.1016/j.matdes.2009.10.057
dc.relation.referencesenNaskar, M., Chaki, T. K., & Reddy, K. S. (2012). A novel approach to recycle the waste plastics by
dc.relation.referencesenbitumen modification for paving application. Advanced Materials Research, 356, 1763–1768).
dc.relation.referencesenhttps://doi.org/10.4028/www.scientific.net/AMR.356-360.1763
dc.relation.referencesenAngyal, A., Miskolczi, N., Bartha, L., & Gergo, P. (2009). Synthesis and evaluation of modified
dc.relation.referencesenpolyethylene wax applied as dispersant in rubber bitumen composites. Hungarian Journal of Industry and
dc.relation.referencesenChemistry, 37(1), 21–25 https://doi.org/10.1515/217
dc.relation.referencesenRossi, D., Filippi, S., Merusi, F., Giuliani, F., & Polacco, G. (2013). Internal structure of bitumen/
dc.relation.referencesenpolymer/wax ternary mixtures for warm mix asphalts. Journal of Applied Polymer Science, 129(6), 3341–3354.https://doi.org/10.1002/app.39057
dc.relation.urihttps://www.vurup.sk/wp-content/uploads/2020/
dc.relation.urihttps://doi.org/10.23939/chcht15.01.142
dc.relation.urihttps://doi.org/10.1080/14680629.2020.1808518
dc.relation.urihttps://www.vurup.sk/wp-content/uploads/2018/11/PC_x_2018_Gunka-73.pdf
dc.relation.urihttps://doi.org/10.23939/chcht14.02.251
dc.relation.urihttps://doi.org/10.23939/chcht15.02.274
dc.relation.urihttps://doi.org/10.1016/S0016-2361(98)00120-3
dc.relation.urihttps://doi.org/10.1016/0016-2361(80)90230-6
dc.relation.urihttps://link.springer.com/
dc.relation.urihttps://doi.org/10.1155/2021/3454029
dc.relation.urihttps://doi.org/10.1021/i300019a029
dc.relation.urihttps://doi.org/10.1016/j.cej.2010.08.020
dc.relation.urihttps://doi.org/10.1002/app.36810
dc.relation.urihttps://doi.org/10.1002/pen.21934
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2016.03.096
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat
dc.relation.urihttps://doi.org/
dc.relation.urihttps://doi.org/:
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMR.356-360.1763
dc.relation.urihttps://doi.org/10.1515/217
dc.relation.urihttps://doi.org/10.1002/app.39057
dc.rights.holder© Національний університет „Львівська політехніка“, 2021
dc.rights.holder© Gunka V., Prysiazhnyi Y., Hrynchuk Y., Sidun I., Demchuk Y., Bidos V., Reutskyy V., Bratychak M., 2021
dc.subjectокиснений нафтовий бітум
dc.subjectмалеїновий ангідрид
dc.subjectмодифікований бітум
dc.subjectхімічна модифікація
dc.subjectтермостійкість бітуму
dc.subjectзчеплюваність із щебенем
dc.subjectoxidized petroleum bitumen
dc.subjectmaleic anhydride
dc.subjectmodified bitumen
dc.subjectchemical modification
dc.subjectheat resistance of bitumen
dc.subjectadhesion to crushed stone
dc.titleInvestigation of the process of modification of petroleum road bitumen by maleic anhydride
dc.title.alternativeДослідження процесу модифікування нафтового дорожнього бітуму малеїновим ангідридом
dc.typeArticle

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2021v3n2_Gunka_V-Investigation_of_the_process_39-45.pdf
Size:
388.87 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.03 KB
Format:
Plain Text
Description: