Полімери в біомедичній інженерії: матеріали для виробництва протезів та ортезів (огляд)

dc.citation.epage220
dc.citation.issue7
dc.citation.journalTitleХімія, технологія речовин та їх застосування
dc.citation.spage211
dc.citation.volume1
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorДудок, Г. Д.
dc.contributor.authorСеменюк, Н. Б.
dc.contributor.authorФарина, В. Д.
dc.contributor.authorСкорохода, В. Й.
dc.contributor.authorDudok, G. D.
dc.contributor.authorSemenyuk, N. B.
dc.contributor.authorFaryna, V. D.
dc.contributor.authorSkorokhoda, V. Yu.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-09-12T07:59:59Z
dc.date.created2024-02-27
dc.date.issued2024-02-27
dc.description.abstractАмпутація кінцівок внаслідок війни із московитами, різних травм, нещасних випадків і хвороб стала дуже поширеним явищем в Україні, тому актуалізувалася проблема якісного протезування. В огляді висвітлено основні види протезів і ортезів, матеріали, використовувані для їхнього виробництва, проблеми у дослідженнях матеріалів і виробів. Як зазначено у працях, виконаних за останні 30 років, протези виготовляють переважно з металевих і полімерних композитів, а також композитів, армованих натуральним волокном. Дослідження показали, що завдяки високим механічним властивостям полімерних матричних композитів, армованих волокнами різної природи, перспективне застосування таких матеріалів для протезування.
dc.description.abstractAmputation of limbs as a result of the muscovites war as well as appearance of various injuries, accidents, diseases is becoming widespread in Ukraine. In this regard, the problem of high-quality prosthetics became relevant. The review highlights the main types of prostheses, orthoses and materials applied for their production also the problems concerning the research of materials and products. Studies conducted over the past 30 years show that prostheses are being made mainly of metal and polymer composites, as well as natural fiber-reinforced composites. Studies have shown that the good mechanical properties of polymer matrix composites reinforced with fibers of various nature have made such materials promising for the prosthetics application.
dc.format.extent211-220
dc.format.pages10
dc.identifier.citationПолімери в біомедичній інженерії: матеріали для виробництва протезів та ортезів (огляд) / Г. Д. Дудок, Н. Б. Семенюк, В. Д. Фарина, В. Й. Скорохода // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 211–220.
dc.identifier.citationenPolymers in biomedical engineering:materials for prosthesis and orthosis production (review) / G. D. Dudok, N. B. Semenyuk, V. D. Faryna, V. Yu. Skorokhoda // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 211–220.
dc.identifier.doidoi.org/10.23939/ctas2024.01.211
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111748
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofХімія, технологія речовин та їх застосування, 7 (1), 2024
dc.relation.ispartofChemistry, Technology and Application of Substances, 7 (1), 2024
dc.relation.references1. Wolfson, N. (2012). Amputations in natural disasters and mass casualties: staged approach. Int Orthop; 36(10), 1983-1988. https://doi.org/10.1007/s00264-012-1573-y
dc.relation.references2. Pasquina, P.F., Miller, M., Carvalho, A.J., Corcoran M., Vandersea, J., Johnson, E., Chen, Y.T. (2014). Special considerations for multiple limb amputation. Current physical medicine and rehabilitation reports., 2(4), 273-289. https://doi.org/10.1007/s40141-014-0067-9
dc.relation.references3. Skelton, P. (2015). In: Harvey, A, Chapter.3 Amputee Rehabilitation.. Rehabilitation in Sudden Onset Disasters. (p.25). Handicap International and UK Emergency Medical Team.
dc.relation.references4. Dillingham, T.R., Pezzin L.E. (2008). Rehabilitation setting and associated mortality and medical stability among persons with amputations. Archives of physical medicine and rehabilitation., 89(6), 1038-1045. https://doi.org/10.1016/j.apmr.2007.11.034
dc.relation.references5. World Health Organisation (WHO). (2001). International classification of functioning disability and health (ICF). World Health Organisation, Geneva.
dc.relation.references6. Herasymenko, O., Pityn, M., Kozibroda, L., Mukhin, V., Dotsyuk, L., Galan, Y. (2018). Effectiveness of physical therapy interventions for young adults after lower limb transtibial amputation. Journal of Physical Education and Sport. 18, 1084-1091.
dc.relation.references7. Mota, A. (2017). Materials of prosthetic limbs. California State Polytechnic University. Pomona, Mechanical Engineering Department. https://scholarworks.calstate.edu/downloads/h128ng975/
dc.relation.references8. Andrew, C, S Sandra, CJ Schaschke and H Kinsman, et al. (2012). Prosthetic limb sockets from plant-based composite materials. Prosthetics and Orthotics International., 36(2 ), 181 -189. https://doi.org/10.1177/0309364611434568
dc.relation.references9. Quintero Quiroz and Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces, 67(1), 117-125. https://doi.org/10.15446/revfacmed.v67n1.64470
dc.relation.references10. Nurhanisah, M., Saba, N., Jawaid, M., and Paridah, M. (2017). Design of prosthetic leg socket from kenaf fibre based composites. Green Biocomposites, 127-141. https://doi.org/10.1007/978-3-319-49382-4_6
dc.relation.references11. Banerji, B., Banerji, J. (1984). A preliminary report on the use of cane and bamboo as basic construction materials for orthotic and prosthetic appliances. Prosthet Orthot Int.; 8(2), 91-96. doi: 10.3109/03093648409145355.
dc.relation.references12. Rosalam, C.M., Ibrahim, R . and Paridah Md. (2012). Tahir, natural based biocomposite material for prosthetic socket fabrication. ResearchGate, 5(1), 27-34.
dc.relation.references13. Saba, N., Sultan. M.J MTH and Alothman. Y. O. (2017). Green biocomposites design and applications. Renewable and Green Energy, 1-2. https://doi.org/10.1007/978-3-319-49382-4_1
dc.relation.references14. Robert, D.N. and Mary Anne M. (2013). Environmental health consequences of land mines. Int J Occup and Enviro Health, 6(3), 243-248. https://doi.org/10.1179/oeh.2000.6.3.243
dc.relation.references15. Santosh Kumar, D.Z. and Sumit, B. (2020). Investigation of mechanical and viscoelastic properties of flax- and ramie-reinforced green composites for orthopedic implants. J MatEngin and Perf., 29(5), 3161-3171. https://doi.org/10.1007/s11665-020-04845-3
dc.relation.references16. Jin, Y.A., Plott, J., Chen, R., Wensman, J., Shih , A. (2015). Aditive manufacturing of custom orthoses and prostheses - A review. Protsedura CIRP . 36, 199-204. http://doi.org/cv6c .
dc.relation.references17. Van der Spoel, E., Rozing, M.P., Houwing-Duistermaat, J.J., Slagboom, P.E., Beekman, M., de Craen, A.J., et al. (2015). Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 7(11), 956-963. http://doi.org/cv6j.
dc.relation.references18. Scholz, M.S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., et al. (2011). The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos Sci Technol. 71(16), 1791-1803. http://doi.org/bhmr26.
dc.relation.references19. Kelly, B.M., Spires, M.C., Restrepo, J.A. (2007). Orthotic and Prosthetic Prescriptions for Today and Tomorrow. Phys Med Rehabil Clin N Am. 18(4), 785-858. http://doi.org/b332gr.
dc.relation.references20. Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (1996). Human Biomaterials Applications. Part III Biomedical Applications of Biomaterials. New York: Humana Press. https://doi.org/10.1007/978-1-4757-2487-5
dc.relation.references21. Quintero Quiroz, C and P Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces. 67(1), 117-125. https://doi.org/10.15446/revfacmed.v67n1.64470
dc.relation.references22. Hsu, J.D., Michael, J.W., Fisk, J.R. (2008). AAOS Atlas of Orthoses and Assistive Devices. 4th edi. Philadelphia: Mosby Elsevier.
dc.relation.references23. Purna Irawan, A, F Jusuf Daywin, Fanando and T Agustino. (2016) . Mechanical characteristics of rattan reinforced fiberglass and epoxy composites for shank prosthesis application. International Journal of Engineering and Technology. 8(3), 1543-1549.
dc.relation.references24. Odusote, J.K. and Oyewo, A.T. (2016). Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Engin and Tech, 7(1). https://doi.org/10.21859/jet-06011
dc.relation.references25. Odusote, J.K. and Oyewo, Jeleel, A.T. , Adebisi, A. and Akande, Kareem A. (2016). Mechanical Properties of Banana Pseudo Stem Fibre Reinforced Epoxy Composite as a Replacement for Transtibial Prosthetic Socket. J Asso of Prof Engineers of Trinidad and Tobago, 44(2), 4-10.
dc.relation.references26. Purna Irawan, A. (2018). Failure mode analysis of ramie fiber reinforced composite material. Nommensen Int Conf on Tech and Eng https://doi.org/10.1088/1757-899X/420/1/012060
dc.relation.references27. Abbas, S.M. (2020). Fatigue characteristics and numerical modeling socket for patient with above knee prosthesis. Trans Tech Publications Ltd, 76-82. https://doi.org/10.4028/www.scientific.net/DDF.398.76
dc.relation.references28. Purna Irawan, A. (2015). Gait analysis of lower limb prosthesis with socket made from rattan fiber reinforced epoxy composites. Asian J App Sci, 03(01), 8-13.
dc.relation.references29. Purna Irawan, A, Widjajalaksmi, K. and Reksoprodjo, A.H.S. (2011). Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. Int J Mech and Mat Engi, 6 (1), 46-50.
dc.relation.references30. Sukania, A. (2015). Tensile strength of banana fiber reinforced epoxy composites materials. App Mech and Mat, 77, 260-263. https://doi.org/10.4028/www.scientific.net/AMM.776.260
dc.relation.references31. Al-Khazraji, K and JK Payman Sahbah Ahmed. (2011). Effect of reinforcement material on fatigue characteristics of trans-tibial prosthetic socket with pmma matrix. 4th Int Sci Conf of Salahaddin Uni-Su Erbil. 1-10.
dc.relation.references32. Kumar, R., Subhash N. and Ajay Naik. (2017). Enhanced dynamic mechanical properties of kenaf epoxy composites. Advanced Materials Proceedings, 2(11), 749-757. https://doi.org/10.5185/amp.2017/981
dc.relation.references33. Jeetendra Mohan, K, Gangil, B., Ranakoti, L. (2020). Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics. Materials Today, 38(2021), 345-349. https://doi.org/10.1016/j.matpr.2020.07.420
dc.relation.references34. Arun, S., Kanagaraj, S. (2015). Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees. J Mech Behav Biomed Mater. 59, 1-10. http://doi.org/cv6h.
dc.relation.references35. Datta, D., Vaidya, S.K., Howitt, J., Gopalan, L. (1996). Outcome of fitting an ICEROSS prosthesis: views of trans-tibial amputees. Prosthet Orthot Int. 20(2), 111-115. https://doi.org/10.3109/03093649609164427
dc.relation.references36. Baars, E.C., Geertzen, J.H. (2005). Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int. 29(1), 27-37. http://doi.org/cfkpz6.
dc.relation.references37. Sanders, J.E., Nicholson, B.S., Zachariah, S.G., Cassisi, D.V., Karchin, A., Fergason, J.R. (2004). Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance. J Rehabil Res Dev. 41(2), 175-186. http://doi.org/cpbfn8.
dc.relation.references38. Yogeshvaran R. Nagarajan, Farukh Farukh, Vadim V. Silberschmidt, Karthikeyan Kandan, Radheshyam Rathore, Amit Kumar Singh and Pooja Mukul. (2023). Strength Assessment of PET Composite Prosthetic Sockets, Materials, 16(13), 4606; https://doi.org/10.3390/ma16134606.
dc.relation.references39. Plesec, V., Humar, J., Dobnik-Dubrovski, P. and Harih, G. (2023). Numerical Analysis of a Transtibial Prosthesis Socket Using 3D-Printed Bio-Based PLA,Materials , 16(5), 1985; https://doi.org/10.3390/ma16051985.
dc.relation.referencesen1. Wolfson, N. (2012). Amputations in natural disasters and mass casualties: staged approach. Int Orthop; 36(10), 1983-1988. https://doi.org/10.1007/s00264-012-1573-y
dc.relation.referencesen2. Pasquina, P.F., Miller, M., Carvalho, A.J., Corcoran M., Vandersea, J., Johnson, E., Chen, Y.T. (2014). Special considerations for multiple limb amputation. Current physical medicine and rehabilitation reports., 2(4), 273-289. https://doi.org/10.1007/s40141-014-0067-9
dc.relation.referencesen3. Skelton, P. (2015). In: Harvey, A, Chapter.3 Amputee Rehabilitation.. Rehabilitation in Sudden Onset Disasters. (p.25). Handicap International and UK Emergency Medical Team.
dc.relation.referencesen4. Dillingham, T.R., Pezzin L.E. (2008). Rehabilitation setting and associated mortality and medical stability among persons with amputations. Archives of physical medicine and rehabilitation., 89(6), 1038-1045. https://doi.org/10.1016/j.apmr.2007.11.034
dc.relation.referencesen5. World Health Organisation (WHO). (2001). International classification of functioning disability and health (ICF). World Health Organisation, Geneva.
dc.relation.referencesen6. Herasymenko, O., Pityn, M., Kozibroda, L., Mukhin, V., Dotsyuk, L., Galan, Y. (2018). Effectiveness of physical therapy interventions for young adults after lower limb transtibial amputation. Journal of Physical Education and Sport. 18, 1084-1091.
dc.relation.referencesen7. Mota, A. (2017). Materials of prosthetic limbs. California State Polytechnic University. Pomona, Mechanical Engineering Department. https://scholarworks.calstate.edu/downloads/h128ng975/
dc.relation.referencesen8. Andrew, C, S Sandra, CJ Schaschke and H Kinsman, et al. (2012). Prosthetic limb sockets from plant-based composite materials. Prosthetics and Orthotics International., 36(2 ), 181 -189. https://doi.org/10.1177/0309364611434568
dc.relation.referencesen9. Quintero Quiroz and Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces, 67(1), 117-125. https://doi.org/10.15446/revfacmed.v67n1.64470
dc.relation.referencesen10. Nurhanisah, M., Saba, N., Jawaid, M., and Paridah, M. (2017). Design of prosthetic leg socket from kenaf fibre based composites. Green Biocomposites, 127-141. https://doi.org/10.1007/978-3-319-49382-4_6
dc.relation.referencesen11. Banerji, B., Banerji, J. (1984). A preliminary report on the use of cane and bamboo as basic construction materials for orthotic and prosthetic appliances. Prosthet Orthot Int.; 8(2), 91-96. doi: 10.3109/03093648409145355.
dc.relation.referencesen12. Rosalam, C.M., Ibrahim, R . and Paridah Md. (2012). Tahir, natural based biocomposite material for prosthetic socket fabrication. ResearchGate, 5(1), 27-34.
dc.relation.referencesen13. Saba, N., Sultan. M.J MTH and Alothman. Y. O. (2017). Green biocomposites design and applications. Renewable and Green Energy, 1-2. https://doi.org/10.1007/978-3-319-49382-4_1
dc.relation.referencesen14. Robert, D.N. and Mary Anne M. (2013). Environmental health consequences of land mines. Int J Occup and Enviro Health, 6(3), 243-248. https://doi.org/10.1179/oeh.2000.6.3.243
dc.relation.referencesen15. Santosh Kumar, D.Z. and Sumit, B. (2020). Investigation of mechanical and viscoelastic properties of flax- and ramie-reinforced green composites for orthopedic implants. J MatEngin and Perf., 29(5), 3161-3171. https://doi.org/10.1007/s11665-020-04845-3
dc.relation.referencesen16. Jin, Y.A., Plott, J., Chen, R., Wensman, J., Shih , A. (2015). Aditive manufacturing of custom orthoses and prostheses - A review. Protsedura CIRP . 36, 199-204. http://doi.org/cv6c .
dc.relation.referencesen17. Van der Spoel, E., Rozing, M.P., Houwing-Duistermaat, J.J., Slagboom, P.E., Beekman, M., de Craen, A.J., et al. (2015). Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 7(11), 956-963. http://doi.org/cv6j.
dc.relation.referencesen18. Scholz, M.S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., et al. (2011). The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos Sci Technol. 71(16), 1791-1803. http://doi.org/bhmr26.
dc.relation.referencesen19. Kelly, B.M., Spires, M.C., Restrepo, J.A. (2007). Orthotic and Prosthetic Prescriptions for Today and Tomorrow. Phys Med Rehabil Clin N Am. 18(4), 785-858. http://doi.org/b332gr.
dc.relation.referencesen20. Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (1996). Human Biomaterials Applications. Part III Biomedical Applications of Biomaterials. New York: Humana Press. https://doi.org/10.1007/978-1-4757-2487-5
dc.relation.referencesen21. Quintero Quiroz, C and P Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces. 67(1), 117-125. https://doi.org/10.15446/revfacmed.v67n1.64470
dc.relation.referencesen22. Hsu, J.D., Michael, J.W., Fisk, J.R. (2008). AAOS Atlas of Orthoses and Assistive Devices. 4th edi. Philadelphia: Mosby Elsevier.
dc.relation.referencesen23. Purna Irawan, A, F Jusuf Daywin, Fanando and T Agustino. (2016) . Mechanical characteristics of rattan reinforced fiberglass and epoxy composites for shank prosthesis application. International Journal of Engineering and Technology. 8(3), 1543-1549.
dc.relation.referencesen24. Odusote, J.K. and Oyewo, A.T. (2016). Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Engin and Tech, 7(1). https://doi.org/10.21859/jet-06011
dc.relation.referencesen25. Odusote, J.K. and Oyewo, Jeleel, A.T. , Adebisi, A. and Akande, Kareem A. (2016). Mechanical Properties of Banana Pseudo Stem Fibre Reinforced Epoxy Composite as a Replacement for Transtibial Prosthetic Socket. J Asso of Prof Engineers of Trinidad and Tobago, 44(2), 4-10.
dc.relation.referencesen26. Purna Irawan, A. (2018). Failure mode analysis of ramie fiber reinforced composite material. Nommensen Int Conf on Tech and Eng https://doi.org/10.1088/1757-899X/420/1/012060
dc.relation.referencesen27. Abbas, S.M. (2020). Fatigue characteristics and numerical modeling socket for patient with above knee prosthesis. Trans Tech Publications Ltd, 76-82. https://doi.org/10.4028/www.scientific.net/DDF.398.76
dc.relation.referencesen28. Purna Irawan, A. (2015). Gait analysis of lower limb prosthesis with socket made from rattan fiber reinforced epoxy composites. Asian J App Sci, 03(01), 8-13.
dc.relation.referencesen29. Purna Irawan, A, Widjajalaksmi, K. and Reksoprodjo, A.H.S. (2011). Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. Int J Mech and Mat Engi, 6 (1), 46-50.
dc.relation.referencesen30. Sukania, A. (2015). Tensile strength of banana fiber reinforced epoxy composites materials. App Mech and Mat, 77, 260-263. https://doi.org/10.4028/www.scientific.net/AMM.776.260
dc.relation.referencesen31. Al-Khazraji, K and JK Payman Sahbah Ahmed. (2011). Effect of reinforcement material on fatigue characteristics of trans-tibial prosthetic socket with pmma matrix. 4th Int Sci Conf of Salahaddin Uni-Su Erbil. 1-10.
dc.relation.referencesen32. Kumar, R., Subhash N. and Ajay Naik. (2017). Enhanced dynamic mechanical properties of kenaf epoxy composites. Advanced Materials Proceedings, 2(11), 749-757. https://doi.org/10.5185/amp.2017/981
dc.relation.referencesen33. Jeetendra Mohan, K, Gangil, B., Ranakoti, L. (2020). Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics. Materials Today, 38(2021), 345-349. https://doi.org/10.1016/j.matpr.2020.07.420
dc.relation.referencesen34. Arun, S., Kanagaraj, S. (2015). Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees. J Mech Behav Biomed Mater. 59, 1-10. http://doi.org/cv6h.
dc.relation.referencesen35. Datta, D., Vaidya, S.K., Howitt, J., Gopalan, L. (1996). Outcome of fitting an ICEROSS prosthesis: views of trans-tibial amputees. Prosthet Orthot Int. 20(2), 111-115. https://doi.org/10.3109/03093649609164427
dc.relation.referencesen36. Baars, E.C., Geertzen, J.H. (2005). Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int. 29(1), 27-37. http://doi.org/cfkpz6.
dc.relation.referencesen37. Sanders, J.E., Nicholson, B.S., Zachariah, S.G., Cassisi, D.V., Karchin, A., Fergason, J.R. (2004). Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance. J Rehabil Res Dev. 41(2), 175-186. http://doi.org/cpbfn8.
dc.relation.referencesen38. Yogeshvaran R. Nagarajan, Farukh Farukh, Vadim V. Silberschmidt, Karthikeyan Kandan, Radheshyam Rathore, Amit Kumar Singh and Pooja Mukul. (2023). Strength Assessment of PET Composite Prosthetic Sockets, Materials, 16(13), 4606; https://doi.org/10.3390/ma16134606.
dc.relation.referencesen39. Plesec, V., Humar, J., Dobnik-Dubrovski, P. and Harih, G. (2023). Numerical Analysis of a Transtibial Prosthesis Socket Using 3D-Printed Bio-Based PLA,Materials , 16(5), 1985; https://doi.org/10.3390/ma16051985.
dc.relation.urihttps://doi.org/10.1007/s00264-012-1573-y
dc.relation.urihttps://doi.org/10.1007/s40141-014-0067-9
dc.relation.urihttps://doi.org/10.1016/j.apmr.2007.11.034
dc.relation.urihttps://scholarworks.calstate.edu/downloads/h128ng975/
dc.relation.urihttps://doi.org/10.1177/0309364611434568
dc.relation.urihttps://doi.org/10.15446/revfacmed.v67n1.64470
dc.relation.urihttps://doi.org/10.1007/978-3-319-49382-4_6
dc.relation.urihttps://doi.org/10.1007/978-3-319-49382-4_1
dc.relation.urihttps://doi.org/10.1179/oeh.2000.6.3.243
dc.relation.urihttps://doi.org/10.1007/s11665-020-04845-3
dc.relation.urihttp://doi.org/cv6c
dc.relation.urihttp://doi.org/cv6j
dc.relation.urihttp://doi.org/bhmr26
dc.relation.urihttp://doi.org/b332gr
dc.relation.urihttps://doi.org/10.1007/978-1-4757-2487-5
dc.relation.urihttps://doi.org/10.21859/jet-06011
dc.relation.urihttps://doi.org/10.1088/1757-899X/420/1/012060
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/DDF.398.76
dc.relation.urihttps://doi.org/10.4028/www.scientific.net/AMM.776.260
dc.relation.urihttps://doi.org/10.5185/amp.2017/981
dc.relation.urihttps://doi.org/10.1016/j.matpr.2020.07.420
dc.relation.urihttp://doi.org/cv6h
dc.relation.urihttps://doi.org/10.3109/03093649609164427
dc.relation.urihttp://doi.org/cfkpz6
dc.relation.urihttp://doi.org/cpbfn8
dc.relation.urihttps://doi.org/10.3390/ma16134606
dc.relation.urihttps://doi.org/10.3390/ma16051985
dc.rights.holder© Національний університет “Львівська політехніка”, 2024
dc.subjectампутація
dc.subjectпротез
dc.subjectортез
dc.subjectбіомедицина
dc.subjectгніздо протеза
dc.subjectполімерний композит
dc.subjectamputation
dc.subjectprosthesis
dc.subjectorthosis
dc.subjectbiomedicine
dc.subjectprosthetic socket
dc.subjectpolymer composite
dc.titleПолімери в біомедичній інженерії: матеріали для виробництва протезів та ортезів (огляд)
dc.title.alternativePolymers in biomedical engineering:materials for prosthesis and orthosis production (review)
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2024v1n7_Dudok_G_D-Polymers_in_biomedical_211-220.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2024v1n7_Dudok_G_D-Polymers_in_biomedical_211-220__COVER.png
Size:
465.71 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Plain Text
Description: