Полімери в біомедичній інженерії: матеріали для виробництва протезів та ортезів (огляд)
| dc.citation.epage | 220 | |
| dc.citation.issue | 7 | |
| dc.citation.journalTitle | Хімія, технологія речовин та їх застосування | |
| dc.citation.spage | 211 | |
| dc.citation.volume | 1 | |
| dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
| dc.contributor.affiliation | Lviv Polytechnic National University | |
| dc.contributor.author | Дудок, Г. Д. | |
| dc.contributor.author | Семенюк, Н. Б. | |
| dc.contributor.author | Фарина, В. Д. | |
| dc.contributor.author | Скорохода, В. Й. | |
| dc.contributor.author | Dudok, G. D. | |
| dc.contributor.author | Semenyuk, N. B. | |
| dc.contributor.author | Faryna, V. D. | |
| dc.contributor.author | Skorokhoda, V. Yu. | |
| dc.coverage.placename | Львів | |
| dc.coverage.placename | Lviv | |
| dc.date.accessioned | 2025-09-12T07:59:59Z | |
| dc.date.created | 2024-02-27 | |
| dc.date.issued | 2024-02-27 | |
| dc.description.abstract | Ампутація кінцівок внаслідок війни із московитами, різних травм, нещасних випадків і хвороб стала дуже поширеним явищем в Україні, тому актуалізувалася проблема якісного протезування. В огляді висвітлено основні види протезів і ортезів, матеріали, використовувані для їхнього виробництва, проблеми у дослідженнях матеріалів і виробів. Як зазначено у працях, виконаних за останні 30 років, протези виготовляють переважно з металевих і полімерних композитів, а також композитів, армованих натуральним волокном. Дослідження показали, що завдяки високим механічним властивостям полімерних матричних композитів, армованих волокнами різної природи, перспективне застосування таких матеріалів для протезування. | |
| dc.description.abstract | Amputation of limbs as a result of the muscovites war as well as appearance of various injuries, accidents, diseases is becoming widespread in Ukraine. In this regard, the problem of high-quality prosthetics became relevant. The review highlights the main types of prostheses, orthoses and materials applied for their production also the problems concerning the research of materials and products. Studies conducted over the past 30 years show that prostheses are being made mainly of metal and polymer composites, as well as natural fiber-reinforced composites. Studies have shown that the good mechanical properties of polymer matrix composites reinforced with fibers of various nature have made such materials promising for the prosthetics application. | |
| dc.format.extent | 211-220 | |
| dc.format.pages | 10 | |
| dc.identifier.citation | Полімери в біомедичній інженерії: матеріали для виробництва протезів та ортезів (огляд) / Г. Д. Дудок, Н. Б. Семенюк, В. Д. Фарина, В. Й. Скорохода // Хімія, технологія речовин та їх застосування. — Львів : Видавництво Львівської політехніки, 2024. — Том 1. — № 7. — С. 211–220. | |
| dc.identifier.citationen | Polymers in biomedical engineering:materials for prosthesis and orthosis production (review) / G. D. Dudok, N. B. Semenyuk, V. D. Faryna, V. Yu. Skorokhoda // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2024. — Vol 1. — No 7. — P. 211–220. | |
| dc.identifier.doi | doi.org/10.23939/ctas2024.01.211 | |
| dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111748 | |
| dc.language.iso | uk | |
| dc.publisher | Видавництво Львівської політехніки | |
| dc.publisher | Lviv Politechnic Publishing House | |
| dc.relation.ispartof | Хімія, технологія речовин та їх застосування, 7 (1), 2024 | |
| dc.relation.ispartof | Chemistry, Technology and Application of Substances, 7 (1), 2024 | |
| dc.relation.references | 1. Wolfson, N. (2012). Amputations in natural disasters and mass casualties: staged approach. Int Orthop; 36(10), 1983-1988. https://doi.org/10.1007/s00264-012-1573-y | |
| dc.relation.references | 2. Pasquina, P.F., Miller, M., Carvalho, A.J., Corcoran M., Vandersea, J., Johnson, E., Chen, Y.T. (2014). Special considerations for multiple limb amputation. Current physical medicine and rehabilitation reports., 2(4), 273-289. https://doi.org/10.1007/s40141-014-0067-9 | |
| dc.relation.references | 3. Skelton, P. (2015). In: Harvey, A, Chapter.3 Amputee Rehabilitation.. Rehabilitation in Sudden Onset Disasters. (p.25). Handicap International and UK Emergency Medical Team. | |
| dc.relation.references | 4. Dillingham, T.R., Pezzin L.E. (2008). Rehabilitation setting and associated mortality and medical stability among persons with amputations. Archives of physical medicine and rehabilitation., 89(6), 1038-1045. https://doi.org/10.1016/j.apmr.2007.11.034 | |
| dc.relation.references | 5. World Health Organisation (WHO). (2001). International classification of functioning disability and health (ICF). World Health Organisation, Geneva. | |
| dc.relation.references | 6. Herasymenko, O., Pityn, M., Kozibroda, L., Mukhin, V., Dotsyuk, L., Galan, Y. (2018). Effectiveness of physical therapy interventions for young adults after lower limb transtibial amputation. Journal of Physical Education and Sport. 18, 1084-1091. | |
| dc.relation.references | 7. Mota, A. (2017). Materials of prosthetic limbs. California State Polytechnic University. Pomona, Mechanical Engineering Department. https://scholarworks.calstate.edu/downloads/h128ng975/ | |
| dc.relation.references | 8. Andrew, C, S Sandra, CJ Schaschke and H Kinsman, et al. (2012). Prosthetic limb sockets from plant-based composite materials. Prosthetics and Orthotics International., 36(2 ), 181 -189. https://doi.org/10.1177/0309364611434568 | |
| dc.relation.references | 9. Quintero Quiroz and Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces, 67(1), 117-125. https://doi.org/10.15446/revfacmed.v67n1.64470 | |
| dc.relation.references | 10. Nurhanisah, M., Saba, N., Jawaid, M., and Paridah, M. (2017). Design of prosthetic leg socket from kenaf fibre based composites. Green Biocomposites, 127-141. https://doi.org/10.1007/978-3-319-49382-4_6 | |
| dc.relation.references | 11. Banerji, B., Banerji, J. (1984). A preliminary report on the use of cane and bamboo as basic construction materials for orthotic and prosthetic appliances. Prosthet Orthot Int.; 8(2), 91-96. doi: 10.3109/03093648409145355. | |
| dc.relation.references | 12. Rosalam, C.M., Ibrahim, R . and Paridah Md. (2012). Tahir, natural based biocomposite material for prosthetic socket fabrication. ResearchGate, 5(1), 27-34. | |
| dc.relation.references | 13. Saba, N., Sultan. M.J MTH and Alothman. Y. O. (2017). Green biocomposites design and applications. Renewable and Green Energy, 1-2. https://doi.org/10.1007/978-3-319-49382-4_1 | |
| dc.relation.references | 14. Robert, D.N. and Mary Anne M. (2013). Environmental health consequences of land mines. Int J Occup and Enviro Health, 6(3), 243-248. https://doi.org/10.1179/oeh.2000.6.3.243 | |
| dc.relation.references | 15. Santosh Kumar, D.Z. and Sumit, B. (2020). Investigation of mechanical and viscoelastic properties of flax- and ramie-reinforced green composites for orthopedic implants. J MatEngin and Perf., 29(5), 3161-3171. https://doi.org/10.1007/s11665-020-04845-3 | |
| dc.relation.references | 16. Jin, Y.A., Plott, J., Chen, R., Wensman, J., Shih , A. (2015). Aditive manufacturing of custom orthoses and prostheses - A review. Protsedura CIRP . 36, 199-204. http://doi.org/cv6c . | |
| dc.relation.references | 17. Van der Spoel, E., Rozing, M.P., Houwing-Duistermaat, J.J., Slagboom, P.E., Beekman, M., de Craen, A.J., et al. (2015). Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 7(11), 956-963. http://doi.org/cv6j. | |
| dc.relation.references | 18. Scholz, M.S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., et al. (2011). The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos Sci Technol. 71(16), 1791-1803. http://doi.org/bhmr26. | |
| dc.relation.references | 19. Kelly, B.M., Spires, M.C., Restrepo, J.A. (2007). Orthotic and Prosthetic Prescriptions for Today and Tomorrow. Phys Med Rehabil Clin N Am. 18(4), 785-858. http://doi.org/b332gr. | |
| dc.relation.references | 20. Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (1996). Human Biomaterials Applications. Part III Biomedical Applications of Biomaterials. New York: Humana Press. https://doi.org/10.1007/978-1-4757-2487-5 | |
| dc.relation.references | 21. Quintero Quiroz, C and P Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces. 67(1), 117-125. https://doi.org/10.15446/revfacmed.v67n1.64470 | |
| dc.relation.references | 22. Hsu, J.D., Michael, J.W., Fisk, J.R. (2008). AAOS Atlas of Orthoses and Assistive Devices. 4th edi. Philadelphia: Mosby Elsevier. | |
| dc.relation.references | 23. Purna Irawan, A, F Jusuf Daywin, Fanando and T Agustino. (2016) . Mechanical characteristics of rattan reinforced fiberglass and epoxy composites for shank prosthesis application. International Journal of Engineering and Technology. 8(3), 1543-1549. | |
| dc.relation.references | 24. Odusote, J.K. and Oyewo, A.T. (2016). Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Engin and Tech, 7(1). https://doi.org/10.21859/jet-06011 | |
| dc.relation.references | 25. Odusote, J.K. and Oyewo, Jeleel, A.T. , Adebisi, A. and Akande, Kareem A. (2016). Mechanical Properties of Banana Pseudo Stem Fibre Reinforced Epoxy Composite as a Replacement for Transtibial Prosthetic Socket. J Asso of Prof Engineers of Trinidad and Tobago, 44(2), 4-10. | |
| dc.relation.references | 26. Purna Irawan, A. (2018). Failure mode analysis of ramie fiber reinforced composite material. Nommensen Int Conf on Tech and Eng https://doi.org/10.1088/1757-899X/420/1/012060 | |
| dc.relation.references | 27. Abbas, S.M. (2020). Fatigue characteristics and numerical modeling socket for patient with above knee prosthesis. Trans Tech Publications Ltd, 76-82. https://doi.org/10.4028/www.scientific.net/DDF.398.76 | |
| dc.relation.references | 28. Purna Irawan, A. (2015). Gait analysis of lower limb prosthesis with socket made from rattan fiber reinforced epoxy composites. Asian J App Sci, 03(01), 8-13. | |
| dc.relation.references | 29. Purna Irawan, A, Widjajalaksmi, K. and Reksoprodjo, A.H.S. (2011). Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. Int J Mech and Mat Engi, 6 (1), 46-50. | |
| dc.relation.references | 30. Sukania, A. (2015). Tensile strength of banana fiber reinforced epoxy composites materials. App Mech and Mat, 77, 260-263. https://doi.org/10.4028/www.scientific.net/AMM.776.260 | |
| dc.relation.references | 31. Al-Khazraji, K and JK Payman Sahbah Ahmed. (2011). Effect of reinforcement material on fatigue characteristics of trans-tibial prosthetic socket with pmma matrix. 4th Int Sci Conf of Salahaddin Uni-Su Erbil. 1-10. | |
| dc.relation.references | 32. Kumar, R., Subhash N. and Ajay Naik. (2017). Enhanced dynamic mechanical properties of kenaf epoxy composites. Advanced Materials Proceedings, 2(11), 749-757. https://doi.org/10.5185/amp.2017/981 | |
| dc.relation.references | 33. Jeetendra Mohan, K, Gangil, B., Ranakoti, L. (2020). Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics. Materials Today, 38(2021), 345-349. https://doi.org/10.1016/j.matpr.2020.07.420 | |
| dc.relation.references | 34. Arun, S., Kanagaraj, S. (2015). Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees. J Mech Behav Biomed Mater. 59, 1-10. http://doi.org/cv6h. | |
| dc.relation.references | 35. Datta, D., Vaidya, S.K., Howitt, J., Gopalan, L. (1996). Outcome of fitting an ICEROSS prosthesis: views of trans-tibial amputees. Prosthet Orthot Int. 20(2), 111-115. https://doi.org/10.3109/03093649609164427 | |
| dc.relation.references | 36. Baars, E.C., Geertzen, J.H. (2005). Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int. 29(1), 27-37. http://doi.org/cfkpz6. | |
| dc.relation.references | 37. Sanders, J.E., Nicholson, B.S., Zachariah, S.G., Cassisi, D.V., Karchin, A., Fergason, J.R. (2004). Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance. J Rehabil Res Dev. 41(2), 175-186. http://doi.org/cpbfn8. | |
| dc.relation.references | 38. Yogeshvaran R. Nagarajan, Farukh Farukh, Vadim V. Silberschmidt, Karthikeyan Kandan, Radheshyam Rathore, Amit Kumar Singh and Pooja Mukul. (2023). Strength Assessment of PET Composite Prosthetic Sockets, Materials, 16(13), 4606; https://doi.org/10.3390/ma16134606. | |
| dc.relation.references | 39. Plesec, V., Humar, J., Dobnik-Dubrovski, P. and Harih, G. (2023). Numerical Analysis of a Transtibial Prosthesis Socket Using 3D-Printed Bio-Based PLA,Materials , 16(5), 1985; https://doi.org/10.3390/ma16051985. | |
| dc.relation.referencesen | 1. Wolfson, N. (2012). Amputations in natural disasters and mass casualties: staged approach. Int Orthop; 36(10), 1983-1988. https://doi.org/10.1007/s00264-012-1573-y | |
| dc.relation.referencesen | 2. Pasquina, P.F., Miller, M., Carvalho, A.J., Corcoran M., Vandersea, J., Johnson, E., Chen, Y.T. (2014). Special considerations for multiple limb amputation. Current physical medicine and rehabilitation reports., 2(4), 273-289. https://doi.org/10.1007/s40141-014-0067-9 | |
| dc.relation.referencesen | 3. Skelton, P. (2015). In: Harvey, A, Chapter.3 Amputee Rehabilitation.. Rehabilitation in Sudden Onset Disasters. (p.25). Handicap International and UK Emergency Medical Team. | |
| dc.relation.referencesen | 4. Dillingham, T.R., Pezzin L.E. (2008). Rehabilitation setting and associated mortality and medical stability among persons with amputations. Archives of physical medicine and rehabilitation., 89(6), 1038-1045. https://doi.org/10.1016/j.apmr.2007.11.034 | |
| dc.relation.referencesen | 5. World Health Organisation (WHO). (2001). International classification of functioning disability and health (ICF). World Health Organisation, Geneva. | |
| dc.relation.referencesen | 6. Herasymenko, O., Pityn, M., Kozibroda, L., Mukhin, V., Dotsyuk, L., Galan, Y. (2018). Effectiveness of physical therapy interventions for young adults after lower limb transtibial amputation. Journal of Physical Education and Sport. 18, 1084-1091. | |
| dc.relation.referencesen | 7. Mota, A. (2017). Materials of prosthetic limbs. California State Polytechnic University. Pomona, Mechanical Engineering Department. https://scholarworks.calstate.edu/downloads/h128ng975/ | |
| dc.relation.referencesen | 8. Andrew, C, S Sandra, CJ Schaschke and H Kinsman, et al. (2012). Prosthetic limb sockets from plant-based composite materials. Prosthetics and Orthotics International., 36(2 ), 181 -189. https://doi.org/10.1177/0309364611434568 | |
| dc.relation.referencesen | 9. Quintero Quiroz and Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces, 67(1), 117-125. https://doi.org/10.15446/revfacmed.v67n1.64470 | |
| dc.relation.referencesen | 10. Nurhanisah, M., Saba, N., Jawaid, M., and Paridah, M. (2017). Design of prosthetic leg socket from kenaf fibre based composites. Green Biocomposites, 127-141. https://doi.org/10.1007/978-3-319-49382-4_6 | |
| dc.relation.referencesen | 11. Banerji, B., Banerji, J. (1984). A preliminary report on the use of cane and bamboo as basic construction materials for orthotic and prosthetic appliances. Prosthet Orthot Int.; 8(2), 91-96. doi: 10.3109/03093648409145355. | |
| dc.relation.referencesen | 12. Rosalam, C.M., Ibrahim, R . and Paridah Md. (2012). Tahir, natural based biocomposite material for prosthetic socket fabrication. ResearchGate, 5(1), 27-34. | |
| dc.relation.referencesen | 13. Saba, N., Sultan. M.J MTH and Alothman. Y. O. (2017). Green biocomposites design and applications. Renewable and Green Energy, 1-2. https://doi.org/10.1007/978-3-319-49382-4_1 | |
| dc.relation.referencesen | 14. Robert, D.N. and Mary Anne M. (2013). Environmental health consequences of land mines. Int J Occup and Enviro Health, 6(3), 243-248. https://doi.org/10.1179/oeh.2000.6.3.243 | |
| dc.relation.referencesen | 15. Santosh Kumar, D.Z. and Sumit, B. (2020). Investigation of mechanical and viscoelastic properties of flax- and ramie-reinforced green composites for orthopedic implants. J MatEngin and Perf., 29(5), 3161-3171. https://doi.org/10.1007/s11665-020-04845-3 | |
| dc.relation.referencesen | 16. Jin, Y.A., Plott, J., Chen, R., Wensman, J., Shih , A. (2015). Aditive manufacturing of custom orthoses and prostheses - A review. Protsedura CIRP . 36, 199-204. http://doi.org/cv6c . | |
| dc.relation.referencesen | 17. Van der Spoel, E., Rozing, M.P., Houwing-Duistermaat, J.J., Slagboom, P.E., Beekman, M., de Craen, A.J., et al. (2015). Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 7(11), 956-963. http://doi.org/cv6j. | |
| dc.relation.referencesen | 18. Scholz, M.S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., et al. (2011). The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Compos Sci Technol. 71(16), 1791-1803. http://doi.org/bhmr26. | |
| dc.relation.referencesen | 19. Kelly, B.M., Spires, M.C., Restrepo, J.A. (2007). Orthotic and Prosthetic Prescriptions for Today and Tomorrow. Phys Med Rehabil Clin N Am. 18(4), 785-858. http://doi.org/b332gr. | |
| dc.relation.referencesen | 20. Wise, D.L., Trantolo, D.J., Altobelli, D.E., Yaszemski, M.J., Gresser, J.D. (1996). Human Biomaterials Applications. Part III Biomedical Applications of Biomaterials. New York: Humana Press. https://doi.org/10.1007/978-1-4757-2487-5 | |
| dc.relation.referencesen | 21. Quintero Quiroz, C and P Vera Zasúlich. (2017). Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems. Materials for prosthetics and orthotic interfaces. 67(1), 117-125. https://doi.org/10.15446/revfacmed.v67n1.64470 | |
| dc.relation.referencesen | 22. Hsu, J.D., Michael, J.W., Fisk, J.R. (2008). AAOS Atlas of Orthoses and Assistive Devices. 4th edi. Philadelphia: Mosby Elsevier. | |
| dc.relation.referencesen | 23. Purna Irawan, A, F Jusuf Daywin, Fanando and T Agustino. (2016) . Mechanical characteristics of rattan reinforced fiberglass and epoxy composites for shank prosthesis application. International Journal of Engineering and Technology. 8(3), 1543-1549. | |
| dc.relation.referencesen | 24. Odusote, J.K. and Oyewo, A.T. (2016). Mechanical properties of pineapple leaf fiber reinforced polymer composites for application as a prosthetic socket. J Engin and Tech, 7(1). https://doi.org/10.21859/jet-06011 | |
| dc.relation.referencesen | 25. Odusote, J.K. and Oyewo, Jeleel, A.T. , Adebisi, A. and Akande, Kareem A. (2016). Mechanical Properties of Banana Pseudo Stem Fibre Reinforced Epoxy Composite as a Replacement for Transtibial Prosthetic Socket. J Asso of Prof Engineers of Trinidad and Tobago, 44(2), 4-10. | |
| dc.relation.referencesen | 26. Purna Irawan, A. (2018). Failure mode analysis of ramie fiber reinforced composite material. Nommensen Int Conf on Tech and Eng https://doi.org/10.1088/1757-899X/420/1/012060 | |
| dc.relation.referencesen | 27. Abbas, S.M. (2020). Fatigue characteristics and numerical modeling socket for patient with above knee prosthesis. Trans Tech Publications Ltd, 76-82. https://doi.org/10.4028/www.scientific.net/DDF.398.76 | |
| dc.relation.referencesen | 28. Purna Irawan, A. (2015). Gait analysis of lower limb prosthesis with socket made from rattan fiber reinforced epoxy composites. Asian J App Sci, 03(01), 8-13. | |
| dc.relation.referencesen | 29. Purna Irawan, A, Widjajalaksmi, K. and Reksoprodjo, A.H.S. (2011). Tensile and flexural strength of ramie fiber reinforced epoxy composites for socket prosthesis application. Int J Mech and Mat Engi, 6 (1), 46-50. | |
| dc.relation.referencesen | 30. Sukania, A. (2015). Tensile strength of banana fiber reinforced epoxy composites materials. App Mech and Mat, 77, 260-263. https://doi.org/10.4028/www.scientific.net/AMM.776.260 | |
| dc.relation.referencesen | 31. Al-Khazraji, K and JK Payman Sahbah Ahmed. (2011). Effect of reinforcement material on fatigue characteristics of trans-tibial prosthetic socket with pmma matrix. 4th Int Sci Conf of Salahaddin Uni-Su Erbil. 1-10. | |
| dc.relation.referencesen | 32. Kumar, R., Subhash N. and Ajay Naik. (2017). Enhanced dynamic mechanical properties of kenaf epoxy composites. Advanced Materials Proceedings, 2(11), 749-757. https://doi.org/10.5185/amp.2017/981 | |
| dc.relation.referencesen | 33. Jeetendra Mohan, K, Gangil, B., Ranakoti, L. (2020). Influence of different resins on Physico-Mechanical properties of hybrid fiber reinforced polymer composites used in human prosthetics. Materials Today, 38(2021), 345-349. https://doi.org/10.1016/j.matpr.2020.07.420 | |
| dc.relation.referencesen | 34. Arun, S., Kanagaraj, S. (2015). Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees. J Mech Behav Biomed Mater. 59, 1-10. http://doi.org/cv6h. | |
| dc.relation.referencesen | 35. Datta, D., Vaidya, S.K., Howitt, J., Gopalan, L. (1996). Outcome of fitting an ICEROSS prosthesis: views of trans-tibial amputees. Prosthet Orthot Int. 20(2), 111-115. https://doi.org/10.3109/03093649609164427 | |
| dc.relation.referencesen | 36. Baars, E.C., Geertzen, J.H. (2005). Literature review of the possible advantages of silicon liner socket use in trans-tibial prostheses. Prosthet Orthot Int. 29(1), 27-37. http://doi.org/cfkpz6. | |
| dc.relation.referencesen | 37. Sanders, J.E., Nicholson, B.S., Zachariah, S.G., Cassisi, D.V., Karchin, A., Fergason, J.R. (2004). Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance. J Rehabil Res Dev. 41(2), 175-186. http://doi.org/cpbfn8. | |
| dc.relation.referencesen | 38. Yogeshvaran R. Nagarajan, Farukh Farukh, Vadim V. Silberschmidt, Karthikeyan Kandan, Radheshyam Rathore, Amit Kumar Singh and Pooja Mukul. (2023). Strength Assessment of PET Composite Prosthetic Sockets, Materials, 16(13), 4606; https://doi.org/10.3390/ma16134606. | |
| dc.relation.referencesen | 39. Plesec, V., Humar, J., Dobnik-Dubrovski, P. and Harih, G. (2023). Numerical Analysis of a Transtibial Prosthesis Socket Using 3D-Printed Bio-Based PLA,Materials , 16(5), 1985; https://doi.org/10.3390/ma16051985. | |
| dc.relation.uri | https://doi.org/10.1007/s00264-012-1573-y | |
| dc.relation.uri | https://doi.org/10.1007/s40141-014-0067-9 | |
| dc.relation.uri | https://doi.org/10.1016/j.apmr.2007.11.034 | |
| dc.relation.uri | https://scholarworks.calstate.edu/downloads/h128ng975/ | |
| dc.relation.uri | https://doi.org/10.1177/0309364611434568 | |
| dc.relation.uri | https://doi.org/10.15446/revfacmed.v67n1.64470 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-319-49382-4_6 | |
| dc.relation.uri | https://doi.org/10.1007/978-3-319-49382-4_1 | |
| dc.relation.uri | https://doi.org/10.1179/oeh.2000.6.3.243 | |
| dc.relation.uri | https://doi.org/10.1007/s11665-020-04845-3 | |
| dc.relation.uri | http://doi.org/cv6c | |
| dc.relation.uri | http://doi.org/cv6j | |
| dc.relation.uri | http://doi.org/bhmr26 | |
| dc.relation.uri | http://doi.org/b332gr | |
| dc.relation.uri | https://doi.org/10.1007/978-1-4757-2487-5 | |
| dc.relation.uri | https://doi.org/10.21859/jet-06011 | |
| dc.relation.uri | https://doi.org/10.1088/1757-899X/420/1/012060 | |
| dc.relation.uri | https://doi.org/10.4028/www.scientific.net/DDF.398.76 | |
| dc.relation.uri | https://doi.org/10.4028/www.scientific.net/AMM.776.260 | |
| dc.relation.uri | https://doi.org/10.5185/amp.2017/981 | |
| dc.relation.uri | https://doi.org/10.1016/j.matpr.2020.07.420 | |
| dc.relation.uri | http://doi.org/cv6h | |
| dc.relation.uri | https://doi.org/10.3109/03093649609164427 | |
| dc.relation.uri | http://doi.org/cfkpz6 | |
| dc.relation.uri | http://doi.org/cpbfn8 | |
| dc.relation.uri | https://doi.org/10.3390/ma16134606 | |
| dc.relation.uri | https://doi.org/10.3390/ma16051985 | |
| dc.rights.holder | © Національний університет “Львівська політехніка”, 2024 | |
| dc.subject | ампутація | |
| dc.subject | протез | |
| dc.subject | ортез | |
| dc.subject | біомедицина | |
| dc.subject | гніздо протеза | |
| dc.subject | полімерний композит | |
| dc.subject | amputation | |
| dc.subject | prosthesis | |
| dc.subject | orthosis | |
| dc.subject | biomedicine | |
| dc.subject | prosthetic socket | |
| dc.subject | polymer composite | |
| dc.title | Полімери в біомедичній інженерії: матеріали для виробництва протезів та ортезів (огляд) | |
| dc.title.alternative | Polymers in biomedical engineering:materials for prosthesis and orthosis production (review) | |
| dc.type | Article |
Files
License bundle
1 - 1 of 1