Modeling of the regional gravitational field using first and second derivative of spherical functions

dc.citation.epage12
dc.citation.journalTitleГеодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник
dc.citation.spage5
dc.citation.volume88
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorДжуман, Б. Б.
dc.contributor.authorDzhuman, B.
dc.coverage.placenameЛьвів
dc.date.accessioned2019-11-06T12:28:52Z
dc.date.available2019-11-06T12:28:52Z
dc.date.created2018-02-26
dc.date.issued2018-02-26
dc.format.extent5-12
dc.format.pages8
dc.identifier.citationDzhuman B. Modeling of the regional gravitational field using first and second derivative of spherical functions / B. Dzhuman // Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2018. — Том 88. — С. 5–12.
dc.identifier.citationenDzhuman B. Modeling of the regional gravitational field using first and second derivative of spherical functions / B. Dzhuman // Geodesy, cartography and aerial photography : interdepartmental scientific and technical review. — Vydavnytstvo Lvivskoi politekhniky, 2018. — Vol 88. — P. 5–12.
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/45501
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.relation.ispartofГеодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник (88), 2018
dc.relation.ispartofGeodesy, cartography and aerial photography : interdepartmental scientific and technical review (88), 2018
dc.relation.referencesDe Santis, A. (1991). Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 253–263.
dc.relation.referencesDe Santis, A. (1992). Conventional spherical harmonic analysis for regional modeling of the geomagnetic feld, Geophys. Res. Lett., 19, 1065–1067.
dc.relation.referencesDe Santis, A. & Torta, J., (1997). Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geodesy, 71, 526–532.
dc.relation.referencesDzhuman, B. B. (2013). On the constraction of local gravitational field model. Geodynamics, 1(14), 29–33.
dc.relation.referencesDzhuman, B. B. (2014). Approximation of gravity anomalies by method of ASHA on Arctic area. Geodesy, cartography and aerial photography, 80, 62–68.
dc.relation.referencesDzhuman, B. B. (2017). Modeling of the gravitational field on spherical trapezium. Geodesy, cartography and aerial photography, 86, 5–10.
dc.relation.referencesHaines, G. (1985). Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591.
dc.relation.referencesHaines, G. (1988). Computer programs for spherical cap harmonic analysis of potential and general felds, Comput. Geosci., 14, 413–447.
dc.relation.referencesHobson, E. (1931). The theory of spherical and ellipsoidal harmonics, New York: Cambridge Univ. Press, 476 p.
dc.relation.referencesHwang, C. & Chen, S. (1997). Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460.
dc.relation.referencesKelvin, L. & Tait, P. (1896). Treatise on natural philosophy. New York: Cambridge Univ. Press, 852 p. Macdonald, H. (1900). Zeroes of the spherical harmonic m ( ) n P m considered as a function of n, Proc. London Math. Soc., 31, 264–278.
dc.relation.referencesMarchenko, A. & Dzhuman, B. (2015). Regional quasigeoid determination: an application to arctic gravity project, Geodynamics, 18, 7 –17.
dc.relation.referencesPavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. geophys. Res., 117, B04406. doi:10.1029/2011JB008916.
dc.relation.referencesSmirnov, V. (1954). The course of higher mathematics. III, 2, Moscow: Science.
dc.relation.referencesSneeuw, N. (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707–716.
dc.relation.referencesThebault, E., Mandea, M. & Schott, J. (2006). Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA), J. geophys. Res., 111, 111–113.
dc.relation.referencesYankiv-Vitkovska, L. M. & Dzhuman, B. B. (2017). Constructing of regional model of ionosphere parameters. Geodesy, cartography and aerial photography, 85, 27–35.
dc.relation.referencesenDe Santis, A. (1991). Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 253–263.
dc.relation.referencesenDe Santis, A. (1992). Conventional spherical harmonic analysis for regional modeling of the geomagnetic feld, Geophys. Res. Lett., 19, 1065–1067.
dc.relation.referencesenDe Santis, A. & Torta, J., (1997). Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geodesy, 71, 526–532.
dc.relation.referencesenDzhuman, B. B. (2013). On the constraction of local gravitational field model. Geodynamics, 1(14), 29–33.
dc.relation.referencesenDzhuman, B. B. (2014). Approximation of gravity anomalies by method of ASHA on Arctic area. Geodesy, cartography and aerial photography, 80, 62–68.
dc.relation.referencesenDzhuman, B. B. (2017). Modeling of the gravitational field on spherical trapezium. Geodesy, cartography and aerial photography, 86, 5–10.
dc.relation.referencesenHaines, G. (1985). Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591.
dc.relation.referencesenHaines, G. (1988). Computer programs for spherical cap harmonic analysis of potential and general felds, Comput. Geosci., 14, 413–447.
dc.relation.referencesenHobson, E. (1931). The theory of spherical and ellipsoidal harmonics, New York: Cambridge Univ. Press, 476 p.
dc.relation.referencesenHwang, C. & Chen, S. (1997). Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460.
dc.relation.referencesenKelvin, L. & Tait, P. (1896). Treatise on natural philosophy. New York: Cambridge Univ. Press, 852 p. Macdonald, H. (1900). Zeroes of the spherical harmonic m ( ) n P m considered as a function of n, Proc. London Math. Soc., 31, 264–278.
dc.relation.referencesenMarchenko, A. & Dzhuman, B. (2015). Regional quasigeoid determination: an application to arctic gravity project, Geodynamics, 18, 7 –17.
dc.relation.referencesenPavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. geophys. Res., 117, B04406. doi:10.1029/2011JB008916.
dc.relation.referencesenSmirnov, V. (1954). The course of higher mathematics. III, 2, Moscow: Science.
dc.relation.referencesenSneeuw, N. (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707–716.
dc.relation.referencesenThebault, E., Mandea, M. & Schott, J. (2006). Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA), J. geophys. Res., 111, 111–113.
dc.relation.referencesenYankiv-Vitkovska, L. M. & Dzhuman, B. B. (2017). Constructing of regional model of ionosphere parameters. Geodesy, cartography and aerial photography, 85, 27–35.
dc.rights.holder© Національний університет “Львівська політехніка”, 2018
dc.subjectсферичні функції
dc.subjectсферична трапеція
dc.subjectперша та друга похідна
dc.subjectspherical functions
dc.subjectspherical trapezium
dc.subjectfirst and second derivative
dc.subject.udc528.2
dc.titleModeling of the regional gravitational field using first and second derivative of spherical functions
dc.title.alternativeМоделювання регіонального гравітаційного поля з використанням першої та другої похідних сферичних функцій
dc.typeArticle

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.96 KB
Format:
Plain Text
Description: