Modeling of the regional gravitational field using first and second derivative of spherical functions
dc.citation.epage | 12 | |
dc.citation.journalTitle | Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник | |
dc.citation.spage | 5 | |
dc.citation.volume | 88 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Джуман, Б. Б. | |
dc.contributor.author | Dzhuman, B. | |
dc.coverage.placename | Львів | |
dc.date.accessioned | 2019-11-06T12:28:52Z | |
dc.date.available | 2019-11-06T12:28:52Z | |
dc.date.created | 2018-02-26 | |
dc.date.issued | 2018-02-26 | |
dc.format.extent | 5-12 | |
dc.format.pages | 8 | |
dc.identifier.citation | Dzhuman B. Modeling of the regional gravitational field using first and second derivative of spherical functions / B. Dzhuman // Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2018. — Том 88. — С. 5–12. | |
dc.identifier.citationen | Dzhuman B. Modeling of the regional gravitational field using first and second derivative of spherical functions / B. Dzhuman // Geodesy, cartography and aerial photography : interdepartmental scientific and technical review. — Vydavnytstvo Lvivskoi politekhniky, 2018. — Vol 88. — P. 5–12. | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/45501 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.relation.ispartof | Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник (88), 2018 | |
dc.relation.ispartof | Geodesy, cartography and aerial photography : interdepartmental scientific and technical review (88), 2018 | |
dc.relation.references | De Santis, A. (1991). Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 253–263. | |
dc.relation.references | De Santis, A. (1992). Conventional spherical harmonic analysis for regional modeling of the geomagnetic feld, Geophys. Res. Lett., 19, 1065–1067. | |
dc.relation.references | De Santis, A. & Torta, J., (1997). Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geodesy, 71, 526–532. | |
dc.relation.references | Dzhuman, B. B. (2013). On the constraction of local gravitational field model. Geodynamics, 1(14), 29–33. | |
dc.relation.references | Dzhuman, B. B. (2014). Approximation of gravity anomalies by method of ASHA on Arctic area. Geodesy, cartography and aerial photography, 80, 62–68. | |
dc.relation.references | Dzhuman, B. B. (2017). Modeling of the gravitational field on spherical trapezium. Geodesy, cartography and aerial photography, 86, 5–10. | |
dc.relation.references | Haines, G. (1985). Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591. | |
dc.relation.references | Haines, G. (1988). Computer programs for spherical cap harmonic analysis of potential and general felds, Comput. Geosci., 14, 413–447. | |
dc.relation.references | Hobson, E. (1931). The theory of spherical and ellipsoidal harmonics, New York: Cambridge Univ. Press, 476 p. | |
dc.relation.references | Hwang, C. & Chen, S. (1997). Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460. | |
dc.relation.references | Kelvin, L. & Tait, P. (1896). Treatise on natural philosophy. New York: Cambridge Univ. Press, 852 p. Macdonald, H. (1900). Zeroes of the spherical harmonic m ( ) n P m considered as a function of n, Proc. London Math. Soc., 31, 264–278. | |
dc.relation.references | Marchenko, A. & Dzhuman, B. (2015). Regional quasigeoid determination: an application to arctic gravity project, Geodynamics, 18, 7 –17. | |
dc.relation.references | Pavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. geophys. Res., 117, B04406. doi:10.1029/2011JB008916. | |
dc.relation.references | Smirnov, V. (1954). The course of higher mathematics. III, 2, Moscow: Science. | |
dc.relation.references | Sneeuw, N. (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707–716. | |
dc.relation.references | Thebault, E., Mandea, M. & Schott, J. (2006). Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA), J. geophys. Res., 111, 111–113. | |
dc.relation.references | Yankiv-Vitkovska, L. M. & Dzhuman, B. B. (2017). Constructing of regional model of ionosphere parameters. Geodesy, cartography and aerial photography, 85, 27–35. | |
dc.relation.referencesen | De Santis, A. (1991). Translated origin spherical cap harmonic analysis, Geophys. J. Int., 106, 253–263. | |
dc.relation.referencesen | De Santis, A. (1992). Conventional spherical harmonic analysis for regional modeling of the geomagnetic feld, Geophys. Res. Lett., 19, 1065–1067. | |
dc.relation.referencesen | De Santis, A. & Torta, J., (1997). Spherical cap harmonic analysis: a comment on its proper use for local gravity field representation, J. of Geodesy, 71, 526–532. | |
dc.relation.referencesen | Dzhuman, B. B. (2013). On the constraction of local gravitational field model. Geodynamics, 1(14), 29–33. | |
dc.relation.referencesen | Dzhuman, B. B. (2014). Approximation of gravity anomalies by method of ASHA on Arctic area. Geodesy, cartography and aerial photography, 80, 62–68. | |
dc.relation.referencesen | Dzhuman, B. B. (2017). Modeling of the gravitational field on spherical trapezium. Geodesy, cartography and aerial photography, 86, 5–10. | |
dc.relation.referencesen | Haines, G. (1985). Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583–2591. | |
dc.relation.referencesen | Haines, G. (1988). Computer programs for spherical cap harmonic analysis of potential and general felds, Comput. Geosci., 14, 413–447. | |
dc.relation.referencesen | Hobson, E. (1931). The theory of spherical and ellipsoidal harmonics, New York: Cambridge Univ. Press, 476 p. | |
dc.relation.referencesen | Hwang, C. & Chen, S. (1997). Fully normalized spherical cap harmonics: application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1, Geophys. J. Int., 129, 450–460. | |
dc.relation.referencesen | Kelvin, L. & Tait, P. (1896). Treatise on natural philosophy. New York: Cambridge Univ. Press, 852 p. Macdonald, H. (1900). Zeroes of the spherical harmonic m ( ) n P m considered as a function of n, Proc. London Math. Soc., 31, 264–278. | |
dc.relation.referencesen | Marchenko, A. & Dzhuman, B. (2015). Regional quasigeoid determination: an application to arctic gravity project, Geodynamics, 18, 7 –17. | |
dc.relation.referencesen | Pavlis, N. K., Holmes, S. A., Kenyon, S. C. & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. geophys. Res., 117, B04406. doi:10.1029/2011JB008916. | |
dc.relation.referencesen | Smirnov, V. (1954). The course of higher mathematics. III, 2, Moscow: Science. | |
dc.relation.referencesen | Sneeuw, N. (1994). Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective, Geophys. J. Int., 118, 707–716. | |
dc.relation.referencesen | Thebault, E., Mandea, M. & Schott, J. (2006). Modeling the lithospheric magnetic field over France by means of revised spherical cap harmonic analysis (R-SCHA), J. geophys. Res., 111, 111–113. | |
dc.relation.referencesen | Yankiv-Vitkovska, L. M. & Dzhuman, B. B. (2017). Constructing of regional model of ionosphere parameters. Geodesy, cartography and aerial photography, 85, 27–35. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2018 | |
dc.subject | сферичні функції | |
dc.subject | сферична трапеція | |
dc.subject | перша та друга похідна | |
dc.subject | spherical functions | |
dc.subject | spherical trapezium | |
dc.subject | first and second derivative | |
dc.subject.udc | 528.2 | |
dc.title | Modeling of the regional gravitational field using first and second derivative of spherical functions | |
dc.title.alternative | Моделювання регіонального гравітаційного поля з використанням першої та другої похідних сферичних функцій | |
dc.type | Article |
Files
License bundle
1 - 1 of 1