Graphene – gold grating-based structure to achieve enhanced electromagnetic field distribution
dc.citation.epage | 186 | |
dc.citation.issue | 2 | |
dc.citation.journalTitle | Інфокомунікаційні технології та електронна інженерія | |
dc.citation.spage | 180 | |
dc.citation.volume | 3 | |
dc.contributor.affiliation | Національний університет “Львівська політехніка” | |
dc.contributor.affiliation | Lviv Polytechnic National University | |
dc.contributor.author | Кузик, Р. | |
dc.contributor.author | Ільїн, О. | |
dc.contributor.author | Яремчук, І. | |
dc.contributor.author | Kuzyk, R. | |
dc.contributor.author | Ilin, O. | |
dc.contributor.author | Yaremchuk, I. | |
dc.coverage.placename | Львів | |
dc.coverage.placename | Lviv | |
dc.date.accessioned | 2025-07-22T11:15:26Z | |
dc.date.created | 2023-02-28 | |
dc.date.issued | 2023-02-28 | |
dc.description.abstract | У роботі досліджено розподіл поля в cтруктурах типу золота ґратка, графеновий шар та кремнієва підкладка. Встановлено умови максимального розподілу електромагнітного поля (поглинання) цими структурами з метою використання їх у пристроях фотоніки та електроніки. Величина напруженості електромагнітного поля дифракційної ґратки із золота з шаром графену зростає зі зменшенням ширини щілини. Водночас збільшення періоду призводить до невеликих змін розподілу електромагнітного поля. Показано, що максимальне значення розподілу електромагнітного поля істотно зростає, майже вдвічі, зі зменшенням товщини графенового шару. | |
dc.description.abstract | In this work, the field distribution in structures such as a gold grating, a graphene layer, and a silicon substrate was studied. The conditions for maximum electromagnetic field distribution (absorption) by this structure to use in photonics and electronics devices were established. The magnitude of the electromagnetic field of a gold diffraction grating with a graphene layer increases with decreasing slit width. At the same time, an increase in the period leads to small changes in the electromagnetic field distribution. The maximum value of the distribution of the electromagnetic field is increased significantly, almost twice reducing the thickness of the graphene layer. | |
dc.format.extent | 180-186 | |
dc.format.pages | 7 | |
dc.identifier.citation | Kuzyk R. Graphene – gold grating-based structure to achieve enhanced electromagnetic field distribution / R. Kuzyk, O. Ilin, I. Yaremchuk // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 2. — P. 180–186. | |
dc.identifier.citationen | Kuzyk R. Graphene – gold grating-based structure to achieve enhanced electromagnetic field distribution / R. Kuzyk, O. Ilin, I. Yaremchuk // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 2. — P. 180–186. | |
dc.identifier.doi | doi.org/10.23939/ictee2023.02.180 | |
dc.identifier.uri | https://ena.lpnu.ua/handle/ntb/111450 | |
dc.language.iso | en | |
dc.publisher | Видавництво Львівської політехніки | |
dc.publisher | Lviv Politechnic Publishing House | |
dc.relation.ispartof | Інфокомунікаційні технології та електронна інженерія, 2 (3), 2023 | |
dc.relation.ispartof | Infocommunication Technologies and Electronic Engineering, 2 (3), 2023 | |
dc.relation.references | [1] Strobbia, P., Languirand, E., & Cullum, B. M. (2015), “Recent advances in plasmonic nanostructures for sensing: a review. Optical Engineering”, Vol. 54, No. 10, pp. 100902–100902. | |
dc.relation.references | [2] Roduner, E. (2006), “Size matters: why nanomaterials are different”, Chemical Society Reviews, vol. 35, no. 7, pp. 583–592. | |
dc.relation.references | [3] Kolahalam, L. A., Viswanath, I. K., Diwakar, B. S., Govindh, B., Reddy, V., & Murthy, Y. L. N. (2019), “Review on nanomaterials: Synthesis and applications”, Materials Today: Proceedings, Vol. 18, pp. 2182–2190. | |
dc.relation.references | [4] Li, X., Zhu, J., & Wei, B. (2016), “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications”, Chemical Society Reviews, Vol. 45, No. 11, pp. 3145–3187. | |
dc.relation.references | [5] Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010), “Plasmonics for extreme light concentration and manipulation”. Nature Materials, Vol. 9, No. 3, pp. 193–204. | |
dc.relation.references | [6] Liang, C., Yi, Z., Chen, X., Tang, Y., Yi, Y., Zhou, Z., ... & Zhang, G. (2020), “Dual-band infrared perfect absorber based on an Ag-dielectric-Ag multilayer film with nano ring grooves arrays”, Plasmonics, Vol. 15, pp. 93–100. | |
dc.relation.references | [7] Karmakar, S., Kumar, D., Varshney, R. K., & Roy Chowdhury, D. (2022), “Magnetospectroscopy of terahertz surface plasmons in subwavelength perforated superlattice thin-films”. Journal of Applied Physics, Vol. 131, No. 22, pp. 223102. | |
dc.relation.references | [8] Kim, B. S., Sternbach, A. J., Choi, M. S., Sun, Z., Ruta, F. L., Shao, Y., ... & Basov, D. N. (2023), “Ambipolar charge-transfer graphene plasmonic cavities”. Nature Materials, pp. 1–6. | |
dc.relation.references | [9] Echtermeyer, T. J., Britnell, L., Jasnos, P. K., Lombardo, A., Gorbachev, R. V., Grigorenko, A. N., ... & Novoselov, K. S. (2011), “Strong plasmonic enhancement of photovoltage in graphene”, Nature communications, Vol. 2, No. 1, pp. 458. | |
dc.relation.references | [10] Cui, L., Wang, J., & Sun, M. (2021), “Graphene plasmon for optoelectronics”. Reviews in Physics, Vol. 6, p. 100054. | |
dc.relation.references | [11] Popov, V. V., Polischuk, O. V., Davoyan, A. R., Ryzhii, V., Otsuji, T., & Shur, M. S. (2020), “Plasmonic terahertz lasing in an array of graphene nanocavities”. In Graphene-Based Terahertz Electronics and Plasmonics Jenny Stanford Publishing, pp. 587–601. | |
dc.relation.references | [12] Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020), “Progress in the functional modification of graphene/graphene oxide: A review”, RSC Advances, Vol. 10, No. 26, pp. 15328–15345. | |
dc.relation.references | [13] Wang, S., Zhang, D. W., & Zhou, P. (2019), “Two-dimensional materials for synaptic electronics and neuromorphic systems”, Science Bulletin, Vol. 64, No. 15, pp. 1056–1066. | |
dc.relation.references | [14] Chen, K., Zhou, X., Cheng, X., Qiao, R., Cheng, Y., Liu, C., ... & Liu, Z. (2019), “Graphene photonic crystal fibre with strong and tunable light–matter interaction”, Nature Photonics, Vol. 13, No. 11, pp. 754–759. | |
dc.relation.references | [15] Fitio, V., Yaremchuk, I., Vernyhor, O., & Bobitski, Y. (2018), “Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate”. Applied Nanoscience, Vol. 8, pp. 1015–1024. | |
dc.relation.references | [16] Schinke, C., Christian Peest, P., Schmidt, J., Brendel, R., Bothe, K., Vogt, M. R., ... & MacDonald, D. (2015) ”Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon”, AIP Advances, Vol. 5, No. 6, pp 067168. | |
dc.relation.references | [17] Song, B., Gu, H., Zhu, S., Jiang, H., Chen, X., Zhang, C., & Liu, S. (2018). Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Applied Surface Science, 439, pp. 1079–1087. | |
dc.relation.referencesen | [1] Strobbia, P., Languirand, E., & Cullum, B. M. (2015), "Recent advances in plasmonic nanostructures for sensing: a review. Optical Engineering", Vol. 54, No. 10, pp. 100902–100902. | |
dc.relation.referencesen | [2] Roduner, E. (2006), "Size matters: why nanomaterials are different", Chemical Society Reviews, vol. 35, no. 7, pp. 583–592. | |
dc.relation.referencesen | [3] Kolahalam, L. A., Viswanath, I. K., Diwakar, B. S., Govindh, B., Reddy, V., & Murthy, Y. L. N. (2019), "Review on nanomaterials: Synthesis and applications", Materials Today: Proceedings, Vol. 18, pp. 2182–2190. | |
dc.relation.referencesen | [4] Li, X., Zhu, J., & Wei, B. (2016), "Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications", Chemical Society Reviews, Vol. 45, No. 11, pp. 3145–3187. | |
dc.relation.referencesen | [5] Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010), "Plasmonics for extreme light concentration and manipulation". Nature Materials, Vol. 9, No. 3, pp. 193–204. | |
dc.relation.referencesen | [6] Liang, C., Yi, Z., Chen, X., Tang, Y., Yi, Y., Zhou, Z., ... & Zhang, G. (2020), "Dual-band infrared perfect absorber based on an Ag-dielectric-Ag multilayer film with nano ring grooves arrays", Plasmonics, Vol. 15, pp. 93–100. | |
dc.relation.referencesen | [7] Karmakar, S., Kumar, D., Varshney, R. K., & Roy Chowdhury, D. (2022), "Magnetospectroscopy of terahertz surface plasmons in subwavelength perforated superlattice thin-films". Journal of Applied Physics, Vol. 131, No. 22, pp. 223102. | |
dc.relation.referencesen | [8] Kim, B. S., Sternbach, A. J., Choi, M. S., Sun, Z., Ruta, F. L., Shao, Y., ... & Basov, D. N. (2023), "Ambipolar charge-transfer graphene plasmonic cavities". Nature Materials, pp. 1–6. | |
dc.relation.referencesen | [9] Echtermeyer, T. J., Britnell, L., Jasnos, P. K., Lombardo, A., Gorbachev, R. V., Grigorenko, A. N., ... & Novoselov, K. S. (2011), "Strong plasmonic enhancement of photovoltage in graphene", Nature communications, Vol. 2, No. 1, pp. 458. | |
dc.relation.referencesen | [10] Cui, L., Wang, J., & Sun, M. (2021), "Graphene plasmon for optoelectronics". Reviews in Physics, Vol. 6, p. 100054. | |
dc.relation.referencesen | [11] Popov, V. V., Polischuk, O. V., Davoyan, A. R., Ryzhii, V., Otsuji, T., & Shur, M. S. (2020), "Plasmonic terahertz lasing in an array of graphene nanocavities". In Graphene-Based Terahertz Electronics and Plasmonics Jenny Stanford Publishing, pp. 587–601. | |
dc.relation.referencesen | [12] Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020), "Progress in the functional modification of graphene/graphene oxide: A review", RSC Advances, Vol. 10, No. 26, pp. 15328–15345. | |
dc.relation.referencesen | [13] Wang, S., Zhang, D. W., & Zhou, P. (2019), "Two-dimensional materials for synaptic electronics and neuromorphic systems", Science Bulletin, Vol. 64, No. 15, pp. 1056–1066. | |
dc.relation.referencesen | [14] Chen, K., Zhou, X., Cheng, X., Qiao, R., Cheng, Y., Liu, C., ... & Liu, Z. (2019), "Graphene photonic crystal fibre with strong and tunable light–matter interaction", Nature Photonics, Vol. 13, No. 11, pp. 754–759. | |
dc.relation.referencesen | [15] Fitio, V., Yaremchuk, I., Vernyhor, O., & Bobitski, Y. (2018), "Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate". Applied Nanoscience, Vol. 8, pp. 1015–1024. | |
dc.relation.referencesen | [16] Schinke, C., Christian Peest, P., Schmidt, J., Brendel, R., Bothe, K., Vogt, M. R., ... & MacDonald, D. (2015) "Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon", AIP Advances, Vol. 5, No. 6, pp 067168. | |
dc.relation.referencesen | [17] Song, B., Gu, H., Zhu, S., Jiang, H., Chen, X., Zhang, C., & Liu, S. (2018). Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Applied Surface Science, 439, pp. 1079–1087. | |
dc.rights.holder | © Національний університет “Львівська політехніка”, 2023 | |
dc.subject | графен | |
dc.subject | кремній | |
dc.subject | ґратка | |
dc.subject | поверхневий плазмонний резонанс | |
dc.subject | розподіл електромагнітного поля | |
dc.subject | grapheme | |
dc.subject | silicon | |
dc.subject | grating | |
dc.subject | surface plasmon resonance | |
dc.subject | field distribution | |
dc.title | Graphene – gold grating-based structure to achieve enhanced electromagnetic field distribution | |
dc.title.alternative | Структура графен – золота ґратка для отримання підсиленого розподілу електромагнітного поля | |
dc.type | Article |
Files
License bundle
1 - 1 of 1