Graphene – gold grating-based structure to achieve enhanced electromagnetic field distribution

dc.citation.epage186
dc.citation.issue2
dc.citation.journalTitleІнфокомунікаційні технології та електронна інженерія
dc.citation.spage180
dc.citation.volume3
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКузик, Р.
dc.contributor.authorІльїн, О.
dc.contributor.authorЯремчук, І.
dc.contributor.authorKuzyk, R.
dc.contributor.authorIlin, O.
dc.contributor.authorYaremchuk, I.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2025-07-22T11:15:26Z
dc.date.created2023-02-28
dc.date.issued2023-02-28
dc.description.abstractУ роботі досліджено розподіл поля в cтруктурах типу золота ґратка, графеновий шар та кремнієва підкладка. Встановлено умови максимального розподілу електромагнітного поля (поглинання) цими структурами з метою використання їх у пристроях фотоніки та електроніки. Величина напруженості електромагнітного поля дифракційної ґратки із золота з шаром графену зростає зі зменшенням ширини щілини. Водночас збільшення періоду призводить до невеликих змін розподілу електромагнітного поля. Показано, що максимальне значення розподілу електромагнітного поля істотно зростає, майже вдвічі, зі зменшенням товщини графенового шару.
dc.description.abstractIn this work, the field distribution in structures such as a gold grating, a graphene layer, and a silicon substrate was studied. The conditions for maximum electromagnetic field distribution (absorption) by this structure to use in photonics and electronics devices were established. The magnitude of the electromagnetic field of a gold diffraction grating with a graphene layer increases with decreasing slit width. At the same time, an increase in the period leads to small changes in the electromagnetic field distribution. The maximum value of the distribution of the electromagnetic field is increased significantly, almost twice reducing the thickness of the graphene layer.
dc.format.extent180-186
dc.format.pages7
dc.identifier.citationKuzyk R. Graphene – gold grating-based structure to achieve enhanced electromagnetic field distribution / R. Kuzyk, O. Ilin, I. Yaremchuk // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 2. — P. 180–186.
dc.identifier.citationenKuzyk R. Graphene – gold grating-based structure to achieve enhanced electromagnetic field distribution / R. Kuzyk, O. Ilin, I. Yaremchuk // Infocommunication Technologies and Electronic Engineering. — Lviv : Lviv Politechnic Publishing House, 2023. — Vol 3. — No 2. — P. 180–186.
dc.identifier.doidoi.org/10.23939/ictee2023.02.180
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/111450
dc.language.isoen
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofІнфокомунікаційні технології та електронна інженерія, 2 (3), 2023
dc.relation.ispartofInfocommunication Technologies and Electronic Engineering, 2 (3), 2023
dc.relation.references[1] Strobbia, P., Languirand, E., & Cullum, B. M. (2015), “Recent advances in plasmonic nanostructures for sensing: a review. Optical Engineering”, Vol. 54, No. 10, pp. 100902–100902.
dc.relation.references[2] Roduner, E. (2006), “Size matters: why nanomaterials are different”, Chemical Society Reviews, vol. 35, no. 7, pp. 583–592.
dc.relation.references[3] Kolahalam, L. A., Viswanath, I. K., Diwakar, B. S., Govindh, B., Reddy, V., & Murthy, Y. L. N. (2019), “Review on nanomaterials: Synthesis and applications”, Materials Today: Proceedings, Vol. 18, pp. 2182–2190.
dc.relation.references[4] Li, X., Zhu, J., & Wei, B. (2016), “Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications”, Chemical Society Reviews, Vol. 45, No. 11, pp. 3145–3187.
dc.relation.references[5] Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010), “Plasmonics for extreme light concentration and manipulation”. Nature Materials, Vol. 9, No. 3, pp. 193–204.
dc.relation.references[6] Liang, C., Yi, Z., Chen, X., Tang, Y., Yi, Y., Zhou, Z., ... & Zhang, G. (2020), “Dual-band infrared perfect absorber based on an Ag-dielectric-Ag multilayer film with nano ring grooves arrays”, Plasmonics, Vol. 15, pp. 93–100.
dc.relation.references[7] Karmakar, S., Kumar, D., Varshney, R. K., & Roy Chowdhury, D. (2022), “Magnetospectroscopy of terahertz surface plasmons in subwavelength perforated superlattice thin-films”. Journal of Applied Physics, Vol. 131, No. 22, pp. 223102.
dc.relation.references[8] Kim, B. S., Sternbach, A. J., Choi, M. S., Sun, Z., Ruta, F. L., Shao, Y., ... & Basov, D. N. (2023), “Ambipolar charge-transfer graphene plasmonic cavities”. Nature Materials, pp. 1–6.
dc.relation.references[9] Echtermeyer, T. J., Britnell, L., Jasnos, P. K., Lombardo, A., Gorbachev, R. V., Grigorenko, A. N., ... & Novoselov, K. S. (2011), “Strong plasmonic enhancement of photovoltage in graphene”, Nature communications, Vol. 2, No. 1, pp. 458.
dc.relation.references[10] Cui, L., Wang, J., & Sun, M. (2021), “Graphene plasmon for optoelectronics”. Reviews in Physics, Vol. 6, p. 100054.
dc.relation.references[11] Popov, V. V., Polischuk, O. V., Davoyan, A. R., Ryzhii, V., Otsuji, T., & Shur, M. S. (2020), “Plasmonic terahertz lasing in an array of graphene nanocavities”. In Graphene-Based Terahertz Electronics and Plasmonics Jenny Stanford Publishing, pp. 587–601.
dc.relation.references[12] Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020), “Progress in the functional modification of graphene/graphene oxide: A review”, RSC Advances, Vol. 10, No. 26, pp. 15328–15345.
dc.relation.references[13] Wang, S., Zhang, D. W., & Zhou, P. (2019), “Two-dimensional materials for synaptic electronics and neuromorphic systems”, Science Bulletin, Vol. 64, No. 15, pp. 1056–1066.
dc.relation.references[14] Chen, K., Zhou, X., Cheng, X., Qiao, R., Cheng, Y., Liu, C., ... & Liu, Z. (2019), “Graphene photonic crystal fibre with strong and tunable light–matter interaction”, Nature Photonics, Vol. 13, No. 11, pp. 754–759.
dc.relation.references[15] Fitio, V., Yaremchuk, I., Vernyhor, O., & Bobitski, Y. (2018), “Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate”. Applied Nanoscience, Vol. 8, pp. 1015–1024.
dc.relation.references[16] Schinke, C., Christian Peest, P., Schmidt, J., Brendel, R., Bothe, K., Vogt, M. R., ... & MacDonald, D. (2015) ”Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon”, AIP Advances, Vol. 5, No. 6, pp 067168.
dc.relation.references[17] Song, B., Gu, H., Zhu, S., Jiang, H., Chen, X., Zhang, C., & Liu, S. (2018). Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Applied Surface Science, 439, pp. 1079–1087.
dc.relation.referencesen[1] Strobbia, P., Languirand, E., & Cullum, B. M. (2015), "Recent advances in plasmonic nanostructures for sensing: a review. Optical Engineering", Vol. 54, No. 10, pp. 100902–100902.
dc.relation.referencesen[2] Roduner, E. (2006), "Size matters: why nanomaterials are different", Chemical Society Reviews, vol. 35, no. 7, pp. 583–592.
dc.relation.referencesen[3] Kolahalam, L. A., Viswanath, I. K., Diwakar, B. S., Govindh, B., Reddy, V., & Murthy, Y. L. N. (2019), "Review on nanomaterials: Synthesis and applications", Materials Today: Proceedings, Vol. 18, pp. 2182–2190.
dc.relation.referencesen[4] Li, X., Zhu, J., & Wei, B. (2016), "Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications", Chemical Society Reviews, Vol. 45, No. 11, pp. 3145–3187.
dc.relation.referencesen[5] Schuller, J. A., Barnard, E. S., Cai, W., Jun, Y. C., White, J. S., & Brongersma, M. L. (2010), "Plasmonics for extreme light concentration and manipulation". Nature Materials, Vol. 9, No. 3, pp. 193–204.
dc.relation.referencesen[6] Liang, C., Yi, Z., Chen, X., Tang, Y., Yi, Y., Zhou, Z., ... & Zhang, G. (2020), "Dual-band infrared perfect absorber based on an Ag-dielectric-Ag multilayer film with nano ring grooves arrays", Plasmonics, Vol. 15, pp. 93–100.
dc.relation.referencesen[7] Karmakar, S., Kumar, D., Varshney, R. K., & Roy Chowdhury, D. (2022), "Magnetospectroscopy of terahertz surface plasmons in subwavelength perforated superlattice thin-films". Journal of Applied Physics, Vol. 131, No. 22, pp. 223102.
dc.relation.referencesen[8] Kim, B. S., Sternbach, A. J., Choi, M. S., Sun, Z., Ruta, F. L., Shao, Y., ... & Basov, D. N. (2023), "Ambipolar charge-transfer graphene plasmonic cavities". Nature Materials, pp. 1–6.
dc.relation.referencesen[9] Echtermeyer, T. J., Britnell, L., Jasnos, P. K., Lombardo, A., Gorbachev, R. V., Grigorenko, A. N., ... & Novoselov, K. S. (2011), "Strong plasmonic enhancement of photovoltage in graphene", Nature communications, Vol. 2, No. 1, pp. 458.
dc.relation.referencesen[10] Cui, L., Wang, J., & Sun, M. (2021), "Graphene plasmon for optoelectronics". Reviews in Physics, Vol. 6, p. 100054.
dc.relation.referencesen[11] Popov, V. V., Polischuk, O. V., Davoyan, A. R., Ryzhii, V., Otsuji, T., & Shur, M. S. (2020), "Plasmonic terahertz lasing in an array of graphene nanocavities". In Graphene-Based Terahertz Electronics and Plasmonics Jenny Stanford Publishing, pp. 587–601.
dc.relation.referencesen[12] Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020), "Progress in the functional modification of graphene/graphene oxide: A review", RSC Advances, Vol. 10, No. 26, pp. 15328–15345.
dc.relation.referencesen[13] Wang, S., Zhang, D. W., & Zhou, P. (2019), "Two-dimensional materials for synaptic electronics and neuromorphic systems", Science Bulletin, Vol. 64, No. 15, pp. 1056–1066.
dc.relation.referencesen[14] Chen, K., Zhou, X., Cheng, X., Qiao, R., Cheng, Y., Liu, C., ... & Liu, Z. (2019), "Graphene photonic crystal fibre with strong and tunable light–matter interaction", Nature Photonics, Vol. 13, No. 11, pp. 754–759.
dc.relation.referencesen[15] Fitio, V., Yaremchuk, I., Vernyhor, O., & Bobitski, Y. (2018), "Resonance of surface-localized plasmons in a system of periodically arranged gold and silver nanowires on a dielectric substrate". Applied Nanoscience, Vol. 8, pp. 1015–1024.
dc.relation.referencesen[16] Schinke, C., Christian Peest, P., Schmidt, J., Brendel, R., Bothe, K., Vogt, M. R., ... & MacDonald, D. (2015) "Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon", AIP Advances, Vol. 5, No. 6, pp 067168.
dc.relation.referencesen[17] Song, B., Gu, H., Zhu, S., Jiang, H., Chen, X., Zhang, C., & Liu, S. (2018). Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry. Applied Surface Science, 439, pp. 1079–1087.
dc.rights.holder© Національний університет “Львівська політехніка”, 2023
dc.subjectграфен
dc.subjectкремній
dc.subjectґратка
dc.subjectповерхневий плазмонний резонанс
dc.subjectрозподіл електромагнітного поля
dc.subjectgrapheme
dc.subjectsilicon
dc.subjectgrating
dc.subjectsurface plasmon resonance
dc.subjectfield distribution
dc.titleGraphene – gold grating-based structure to achieve enhanced electromagnetic field distribution
dc.title.alternativeСтруктура графен – золота ґратка для отримання підсиленого розподілу електромагнітного поля
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
2023v3n2_Kuzyk_R-Graphene-gold_grating_based_180-186.pdf
Size:
439.79 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
2023v3n2_Kuzyk_R-Graphene-gold_grating_based_180-186__COVER.png
Size:
1.07 MB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.81 KB
Format:
Plain Text
Description: