Особливості металізації гранульованого поліетилену

dc.citation.epage145
dc.citation.issue2
dc.citation.spage140
dc.contributor.affiliationНаціональний університет “Львівська політехніка”
dc.contributor.affiliationLviv Polytechnic National University
dc.contributor.authorКучеренко, А. М.
dc.contributor.authorМанькевич, С. О.
dc.contributor.authorКузнецова, М. Я.
dc.contributor.authorМоравський, В. С.
dc.contributor.authorKucherenko, A. N.
dc.contributor.authorMankevych, S. O.
dc.contributor.authorKuznetsova, M. Ya.
dc.contributor.authorMoravskyi, V. S.
dc.coverage.placenameЛьвів
dc.coverage.placenameLviv
dc.date.accessioned2024-01-22T07:35:29Z
dc.date.available2024-01-22T07:35:29Z
dc.date.created2020-03-16
dc.date.issued2020-03-16
dc.description.abstractНаведено результати експериментальних досліджень особливостей металізації гранульованого поліетилену. Досліджено вплив концентраційних чинників на процес металізації активованих цинком гранул поліетилену марки Liten PL-10. Встановлено, що зміною концентрації сульфату міді і гідроксиду натрію, а також ступенем завантаження полімерної сировини можна ефективно регулювати кількість відновленої міді на гранулах поліетилену, а значить і товщину сформованого на них шару металу. Використання методу попередньої обробки активованих гранул поліетилену в розчині сульфату міді дозволяє суттєво скоротити індукційний період і збільшити швидкість відновлення іонів міді.
dc.description.abstractThe results of experimental studies of the peculiarities of metallization of granular polyethylene are presented. The influence of concentration factors on the metallization process of zinc-activated polyethylene granules of brand Liten PL-10 was investigated. It is established that by changing the concentration of copper sulfate and sodium hydroxide, as well as the degree of loading of polymeric raw materials, it is possible to effectively regulate the amount of recovered copper on granules of polyethylene, and therefore the thickness of the metal layer formed on them. The use of the method of preliminary processing of activated polyethylene granules in a solution of copper sulfate can significantly reduce the induction period and increase the rate of recovery of copper ions.
dc.format.extent140-145
dc.format.pages6
dc.identifier.citationОсобливості металізації гранульованого поліетилену / А. М. Кучеренко, С. О. Манькевич, М. Я. Кузнецова, В. С. Моравський // Chemistry, Technology and Application of Substances. — Львів : Видавництво Львівської політехніки, 2020. — Том 3. — № 2. — С. 140–145.
dc.identifier.citationenPeculiarities of metalization of pulled polyethylene / A. N. Kucherenko, S. O. Mankevych, M. Ya. Kuznetsova, V. S. Moravskyi // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 2. — P. 140–145.
dc.identifier.doidoi.org/10.23939/ctas2020.02.140
dc.identifier.urihttps://ena.lpnu.ua/handle/ntb/60820
dc.language.isouk
dc.publisherВидавництво Львівської політехніки
dc.publisherLviv Politechnic Publishing House
dc.relation.ispartofChemistry, Technology and Application of Substances, 2 (3), 2020
dc.relation.references1. European Council. Council of the European Union (2019). Press releases: Council adopts ban on single-use plastics. Retrieved from https://www.consilium.europa.eu/en/press/press-releases/2019/05/21/council-adopts-banon-single-use-plastics/
dc.relation.references2. Yadav, S., Gangwar, S., Singh, S. (2017). Micro/Nano Reinforced Filled Metal Alloy Composites: A Review Over Current Development in Aerospace and Automobile Applications. Materialstoday: Proceedings, 4(4), 5571-5582. doi:10.1016/j.matpr.2017.06.014
dc.relation.references3. Pinto, G., Jimenez-Martin, A. (2001). Conducting aluminum-filled nylon 6 composites. Polymer Composites, 22(1), 65–70. doi: 10.1002/pc.10517
dc.relation.references4. Gangwar, S., Yadav, S. (2017). A Review on Mechanical and Tribological Properties ofMicro/Nano Filled Metal Alloy Composites. Materialstoday: Proceedings. 4(4), 5583–5592. doi: 10.1016/j.matpr.2017.06.015
dc.relation.references5. Sharma, S., Sudhakara, P., Nijjar, S., Saina, S., Singh, G. (2018). Recent Progress of Composite Materials in various Novel Engineering Applications. Materialstoday: Proceedings. 5(14), 28195-28202. doi: 10.1016/j.matpr.2018.10.063
dc.relation.references6. Chavan, S., Gumtapure, V., Perumal, A. (2020). Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials. Journal of Energy Storage. 27, 101045. doi: 10.1016/j.est.2019.101045
dc.relation.references7. Navarro, L., Barreneche, C., Castell, A., Redpath, D., Griffiths, P., Cabeza, L. (2017). High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. Journal of Energy Storage. 13, 262–267. doi: 10.1016/j.est.2017.07.025
dc.relation.references8. Pinto, G., Maidana, M. B. (2001). Conducting polymer composites of zinc-filled nylon 6. Journal of Applied Polymer Science. 82(6), 1449– 1454. doi: 10.1002/app.1983
dc.relation.references9. Mamunya, Y. P., Davydenko, V. V., Pissis, P., Lebedev, E. V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European polymer journal. 38(9), 1887–1897. doi: 10.1016/S0014-3057(02)00064-2
dc.relation.references10. Tanaka, T., Montanari, G. C., Mulhaupt, R. (2004). Polymer nanocomposites as dielectrics and electrical insulationperspectives for processing technologies, material characterization and future applications. IEEE Transactions on Dielectrics and Electrical Insulation. 11(5), 763–784. doi: 10.1109/TDEI.2004.1349782
dc.relation.references11. Pukánszky, B. (2005). Interfaces and interphases in multicomponent materials: past, present, future. European Polymer Journal. 41(4), 645–662. doi: 10.1016/j.eurpolymj.2004.10.035
dc.relation.references12. Nurazreena, Luay Bakir Hussain, Ismail, H., Mariatti, M. (2006). Metal filled high density polyethylene composites – electrical and tensile properties. Journal of Thermoplastic Composite Materials. 19(4), 413–425. doi: 10.1177/0892705706062197
dc.relation.references13. Bielikov S. B. Volchok I. P. Mitiaiev O. A. Pleskach V. M. Savchenko V. O. (2017). Kompozytsiini materialy v aviabuduvanni (ohliad). Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni. 2, 32–40. Rezhym dostupu: http://nbuv.gov.ua/UJRN/Nmt_2017_2_8
dc.relation.references14. Moravskyi V. S. Tymkiv I. A. Bodnarchuk P. T. (2016). Metalizatsiia polivinilkhlorydnoho plastykatu khimichnym vidnovlenniam v rozchynakh. Visnyk NU “Lvivska Politekhnika” Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia”. 841, 405–409. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/34483
dc.relation.references15. Moravskyi V. S. Kucherenko A. M. Yakushyk I. S. Dulebova L. Harbach T. (2018). Tekhnolohiia metalizatsii hranulovanoi polimernoi syrovyny. Visnyk NU “Lvivska Politekhnika” Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia”. 886, 205–212. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/43632
dc.relation.references16. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, М., Tsimbalista, Т., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 4/12(88), 50–57. doi: 10.15587/1729-4061.2017.108462
dc.relation.references17. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, О., Kuznetsova, M. (2017). Features of the Production of Metal-filled Composites by Metallization of Polymeric Raw Materials, 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties (NAP-2017). IEEE. doi: 10.1109/NAP.2017.8190265
dc.relation.references18. Moravskyi, V., Kucherenko, А., Kuznetsova, М., Dziaman, I., Grytsenko, О., Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 3/12(93), 40–47. doi: 10.15587/1729-4061.2018.131446
dc.relation.references19. Moravskyi V. S. Dziaman I. Z. Baran N. M. Kucherenko A. M. Dulebova L. (2017). Doslidzhennia efektyvnosti aktyvatsii poroshkopodibnoho polivinilkhlorydu. Visnyk NU “Lvivska Politekhnika” Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia”. 868, 413–418. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/40676
dc.relation.referencesen1. European Council. Council of the European Union (2019). Press releases: Council adopts ban on single-use plastics. Retrieved from https://www.consilium.europa.eu/en/press/press-releases/2019/05/21/council-adopts-banon-single-use-plastics/
dc.relation.referencesen2. Yadav, S., Gangwar, S., Singh, S. (2017). Micro/Nano Reinforced Filled Metal Alloy Composites: A Review Over Current Development in Aerospace and Automobile Applications. Materialstoday: Proceedings, 4(4), 5571-5582. doi:10.1016/j.matpr.2017.06.014
dc.relation.referencesen3. Pinto, G., Jimenez-Martin, A. (2001). Conducting aluminum-filled nylon 6 composites. Polymer Composites, 22(1), 65–70. doi: 10.1002/pc.10517
dc.relation.referencesen4. Gangwar, S., Yadav, S. (2017). A Review on Mechanical and Tribological Properties ofMicro/Nano Filled Metal Alloy Composites. Materialstoday: Proceedings. 4(4), 5583–5592. doi: 10.1016/j.matpr.2017.06.015
dc.relation.referencesen5. Sharma, S., Sudhakara, P., Nijjar, S., Saina, S., Singh, G. (2018). Recent Progress of Composite Materials in various Novel Engineering Applications. Materialstoday: Proceedings. 5(14), 28195-28202. doi: 10.1016/j.matpr.2018.10.063
dc.relation.referencesen6. Chavan, S., Gumtapure, V., Perumal, A. (2020). Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials. Journal of Energy Storage. 27, 101045. doi: 10.1016/j.est.2019.101045
dc.relation.referencesen7. Navarro, L., Barreneche, C., Castell, A., Redpath, D., Griffiths, P., Cabeza, L. (2017). High density polyethylene spheres with PCM for domestic hot water applications: Water tank and laboratory scale study. Journal of Energy Storage. 13, 262–267. doi: 10.1016/j.est.2017.07.025
dc.relation.referencesen8. Pinto, G., Maidana, M. B. (2001). Conducting polymer composites of zinc-filled nylon 6. Journal of Applied Polymer Science. 82(6), 1449– 1454. doi: 10.1002/app.1983
dc.relation.referencesen9. Mamunya, Y. P., Davydenko, V. V., Pissis, P., Lebedev, E. V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European polymer journal. 38(9), 1887–1897. doi: 10.1016/S0014-3057(02)00064-2
dc.relation.referencesen10. Tanaka, T., Montanari, G. C., Mulhaupt, R. (2004). Polymer nanocomposites as dielectrics and electrical insulationperspectives for processing technologies, material characterization and future applications. IEEE Transactions on Dielectrics and Electrical Insulation. 11(5), 763–784. doi: 10.1109/TDEI.2004.1349782
dc.relation.referencesen11. Pukánszky, B. (2005). Interfaces and interphases in multicomponent materials: past, present, future. European Polymer Journal. 41(4), 645–662. doi: 10.1016/j.eurpolymj.2004.10.035
dc.relation.referencesen12. Nurazreena, Luay Bakir Hussain, Ismail, H., Mariatti, M. (2006). Metal filled high density polyethylene composites – electrical and tensile properties. Journal of Thermoplastic Composite Materials. 19(4), 413–425. doi: 10.1177/0892705706062197
dc.relation.referencesen13. Bielikov S. B. Volchok I. P. Mitiaiev O. A. Pleskach V. M. Savchenko V. O. (2017). Kompozytsiini materialy v aviabuduvanni (ohliad). Novi materialy i tekhnolohii v metalurhii ta mashynobuduvanni. 2, 32–40. Rezhym dostupu: http://nbuv.gov.ua/UJRN/Nmt_2017_2_8
dc.relation.referencesen14. Moravskyi V. S. Tymkiv I. A. Bodnarchuk P. T. (2016). Metalizatsiia polivinilkhlorydnoho plastykatu khimichnym vidnovlenniam v rozchynakh. Visnyk NU "Lvivska Politekhnika" Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia". 841, 405–409. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/34483
dc.relation.referencesen15. Moravskyi V. S. Kucherenko A. M. Yakushyk I. S. Dulebova L. Harbach T. (2018). Tekhnolohiia metalizatsii hranulovanoi polimernoi syrovyny. Visnyk NU "Lvivska Politekhnika" Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia". 886, 205–212. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/43632
dc.relation.referencesen16. Moravskyi, V., Dziaman, I., Suberliak, S., Kuznetsova, M., Tsimbalista, T., Dulebova, L. (2017). Research into kinetic patterns of chemical metallization of powder-like polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 4/12(88), 50–57. doi: 10.15587/1729-4061.2017.108462
dc.relation.referencesen17. Moravskyi, V., Dziaman, I., Suberliak, S., Grytsenko, O., Kuznetsova, M. (2017). Features of the Production of Metal-filled Composites by Metallization of Polymeric Raw Materials, 2017 IEEE 7th International Conference on Nanomaterials: Applications and Properties (NAP-2017). IEEE. doi: 10.1109/NAP.2017.8190265
dc.relation.referencesen18. Moravskyi, V., Kucherenko, A., Kuznetsova, M., Dziaman, I., Grytsenko, O., Dulebova, L. (2018). Studying the effect of concentration factors on the process of chemical metallization of powdered polyvinylchloride. Eastern-European Journal of Enterprise Technologies. 3/12(93), 40–47. doi: 10.15587/1729-4061.2018.131446
dc.relation.referencesen19. Moravskyi V. S. Dziaman I. Z. Baran N. M. Kucherenko A. M. Dulebova L. (2017). Doslidzhennia efektyvnosti aktyvatsii poroshkopodibnoho polivinilkhlorydu. Visnyk NU "Lvivska Politekhnika" Khimiia tekhnolohiia rechovyn ta yikh zastosuvannia". 868, 413–418. Rezhym dostupu: http://ena.lp.edu.ua:8080/handle/ntb/40676
dc.relation.urihttps://www.consilium.europa.eu/en/press/press-releases/2019/05/21/council-adopts-banon-single-use-plastics/
dc.relation.urihttp://nbuv.gov.ua/UJRN/Nmt_2017_2_8
dc.relation.urihttp://ena.lp.edu.ua:8080/handle/ntb/34483
dc.relation.urihttp://ena.lp.edu.ua:8080/handle/ntb/43632
dc.relation.urihttp://ena.lp.edu.ua:8080/handle/ntb/40676
dc.rights.holder© Національний університет “Львівська політехніка”, 2020
dc.subjectкомпозит
dc.subjectполіетилен
dc.subjectмідь
dc.subjectцинк
dc.subjectхімічна металізація
dc.subjectкінетика
dc.subjectcomposite
dc.subjectpolyethylene
dc.subjectcopper
dc.subjectzinc
dc.subjectchemical metallization
dc.subjectkinetics
dc.titleОсобливості металізації гранульованого поліетилену
dc.title.alternativePeculiarities of metalization of pulled polyethylene
dc.typeArticle

Files

Original bundle

Now showing 1 - 2 of 2
Thumbnail Image
Name:
2020v3n2_Kucherenko_A_N-Peculiarities_of_metalization_140-145.pdf
Size:
434.93 KB
Format:
Adobe Portable Document Format
Thumbnail Image
Name:
2020v3n2_Kucherenko_A_N-Peculiarities_of_metalization_140-145__COVER.png
Size:
522.79 KB
Format:
Portable Network Graphics

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.91 KB
Format:
Plain Text
Description: